
LE MATEMATICHE
Vol. LXXX (2025) – Issue I, pp. 167–187
doi: 10.4418/2025.80.1.6

BIVARIATE EXPONENTIAL INTEGRALS AND
EDGE-BICOLORED GRAPHS

M. BORINSKY - C. MERONI - M. WIESMANN

We show that specific exponential bivariate integrals serve as generat-
ing functions of labeled edge-bicolored graphs. Based on this, we prove
an asymptotic formula for the number of regular edge-bicolored graphs
with arbitrary weights assigned to different vertex incidence structures.
The asymptotic behavior is governed by the critical points of a polyno-
mial. As an application, we discuss the Ising model on a random 4-regular
graph and show how its phase transitions arise from our formula.

1. Introduction

In this article, we study the following family of bivariate integrals,

I(z) =
z

2π

∫
D

exp(zg(x,y)) dxdy , (1)

where D is a certain subset of R2, g is a function D → R fulfilling specific
conditions (see Section 2) and z is a large positive number. Integrals as I(z) arise
naturally in two important applications. First, they appear in Bayesian statistics
as marginal likelihood integrals (see, e.g., [14, §1]). Second, they are path
integrals associated to a zero-dimensional quantum system with two interacting
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fields parametrized by x and y, whose action is given by g(x,y) (see, e.g., [13,
§2] or [2]). The setups might differ, however, in the integration domain D,
leading to different asymptotic behaviors (see [12] for an asymptotic analysis in
the realm of statistics). Edge-bicolored graphs play a classical role in Ramsey
theory (see, e.g., [3, Ch. 12]) and their (asymptotic) enumeration is a subject
with a long history (see, e.g., [15] and the references therein).

We will explain that the coefficients of the large-z asymptotic expansion of
I(z) count weighted edge-bicolored graphs. Each graph is weighted by the re-
ciprocal of the order of its automorphism group and the product of an arbitrary
set of parameters assigned to each bicolored incidence structure of a vertex.
We do so by proving a bivariate version of the Laplace method in Section 2,
before interpreting the coefficients of the asymptotic expansion combinatori-
ally in Section 3. Therefore, we may interpret I(z) as a generating function of
edge-bicolored graphs (Theorem 3.6). From a physical perspective, these are
Feynman graphs of the corresponding path integral. In Section 4, we derive
an effective algorithm for the computation of those coefficients. In the final
Section 5, we prove an asymptotic formula for the weighted number of regular
edge-bicolored graphs, in the limit where the number of edges and vertices goes
to infinity. Our main result Theorem 5.3 relates this asymptotic formula to the
critical points of the polynomial g(x,y) whose shape is governed by the vertex
incidence structure of the graphs. We showcase that, unlike the monochromatic
case, which has previously been discussed (see, e.g., [5, Ch. 3]), only critical
points satisfying some reality constraints contribute to the asymptotics.

Throughout the text we illustrate our statements through the example of the
Ising model on a random 4-regular graph. The Ising model is a central object of
study in mathematical physics (see, e.g., [9, 10]). The relationship between our
combinatorial approach and this model is explained in Remark 3.8.

2. Laplace method and asymptotic expansions

We will start by using the Laplace method to study the large-z behavior of the
integral I(z) defined in (1). We require the data D and g : D → R determining
I(z) to be chosen such that

1. the integral I(z) exists for z > 0,

2. D is a neighborhood of the origin,

3. g attains its unique supremum sup(x,y)∈D g(x,y)=g(0) at the origin,
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4. near the origin, g is analytic with absolutely converging expansion

g(x,y) =−x2

2
− y2

2
+ ∑

u,w≥0
u+w≥3

Λu,w
xuyw

u!w!
. (2)

The last condition ensures that (1) resembles a Gaussian integral when x and y
are small. This observation allows to approximate I(z) by a slightly perturbed
Gaussian when z is large.

We define a family of polynomials as,t indexed by integers s, t ≥ 0 in a two-
fold infinite set of variables λu,w indexed by u,w ≥ 0 with u+w ≥ 1. Let R be
the ring of polynomials in these variables, i.e., R = Q[λ0,1,λ1,0,λ1,1,λ0,2, . . .].
The polynomials as,t(λ ) ∈R are defined by the generating function

∑
s,t≥0

as,t(λ )xsyt = exp

 ∑
u,w≥0
u+w≥1

λu,w
xuyw

u!w!

 ∈R[[x,y]]. (3)

For instance, a0,0(λ ) = 1, a1,0(λ ) = λ1,0, and a2,0(λ ) =
1
2(λ2,0 +λ 2

1,0).
We will relate the asymptotic expansion of I(z) for large z to the polynomials

as,t . For a given function h(z), the set O(h(z)) consists of all functions f (z)
for which limsupz→∞ | f (z)/h(z)| is finite. The notation f (z) = g(z)+O(h(z))
means that f (z)− g(z) ∈ O(h(z)). The asymptotic expansion notation f (z) ∼
∑n≥0 gn(z) means that f (z)−∑

R−1
n=0 gn(z) ∈ O(gR(z)) for all R ≥ 0.

Proposition 2.1. If I(z), g, D and the coefficients Λu,w are related as above, then

I(z)∼ ∑
n≥0

Anz−n,

for large z, where An is the coefficient of z−n in the formal power series

∑
s,t≥0

z−(s+t)(2s−1)!! · (2t −1)!! ·a2s,2t(z ·Λ) ∈ R[[z−1]] ,

where (2s− 1)!! = (2s− 1)(2s− 3) · · ·3 · 1 and a2s,2t(z ·Λ) is the polynomial
a2s,2t(λ ) defined in (3), with

λu,w =

{
0 for u,w ≥ 0 and 1 ≤ u+w < 3,
zΛu,w for u,w ≥ 0 and u+w ≥ 3.

(4)

The proof of this proposition uses the classical Laplace method which gives
an expression for the asymptotic expansion of the integral I(z). See, e.g., [7,
Appendix A] for the proof of the one-dimensional case.
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Proof. Fix an integer R ≥ 0 and any value for γ ∈
(1

3 ,
1
2

)
. We first prove that the

integral I(z) is concentrated in the square B(z) = [−z−γ ,z−γ ]2 ⊂ D that shrinks
for growing z. Let M(z) = max(x,y)∈D\B(z) g(x,y), then∣∣∣∣I(z)− z

2π

∫
B(z)

exp(zg(x,y))dxdy
∣∣∣∣= z

2π

∫
D\B(z)

exp(zg(x,y))dxdy

≤ z
2π

exp((z−1)M(z))
∫

D
exp(g(x,y))dxdy .

The last integral is finite by requirement. As the origin is the unique global
maximum of g in D, the maximal value M(z) will be attained on the boundary
of the square B(z) if z is sufficiently large. Near the origin g(x,y) behaves as
− x2

2 − y2

2 + (higher order terms), so M(z) =−1
2 z−2γ +O(z−3γ). Hence,

I(z) =
z

2π

∫
B(z)

exp(zg(x,y))dxdy+O(zexp(−z1−2γ)). (5)

As γ < 1
2 , we have, in particular, O(zexp(−z1−2γ)) ⊂ O(z−R). So, for the

purpose of finding the asymptotic expansion of I(z) in decreasing powers z0,
z−1,z−2, . . . ,z−R+1, integrating only over B(z) as in (5) is sufficient.

Note that, by (4), as,t(z ·Λ) is a polynomial of degree at most s+t
3 in z. The

function exp(z(1
2 x2 + 1

2 y2 +g(x,y))) is analytic for all (x,y) ∈ B(z). Therefore,
for each K ≥ 0, there is a constant C > 0 such that∣∣∣∣∣∣∣exp

z ∑
u,w≥0
u+w≥3

Λu,w
xuyw

u!w!

− ∑
s,t≥0

s+t<K

as,t(z ·Λ)xsyt

∣∣∣∣∣∣∣≤Cz
1
3 K−γK for (x,y) ∈ B(z).

Next, we fix K = 3R
3γ−1 ≥ 0 so that z

1
3 K−γK = z−R, and use (5) to get

I(z) =
z

2π
∑

s,t≥0
s+t<K

as,t(z ·Λ)
∫

B(z)
e−z x2

2 −z y2
2 xsytdxdy+O(z−R). (6)

We want now to extend the integration domain to the whole real plane. For any
integer s ≥ 0, consider the integral∫

∞

z−γ

e−z x2
2 xsdx = exp

(
−z1−2γ

2

)∫
∞

0
exp
(
−z

x2

2
− z1−γx

)
(z−γ + x)sdx.

For fixed z, the function x 7→ exp(−z1−γx)(z−γ + x)s attains its unique maxi-
mum at x = xmax = szγ−1 − z−γ . If z is sufficiently large we have xmax ≤ 0.
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Hence, in the range we are interested in, the integral is decreasing in x, and

using
√ z

2π

∫
R e−z x2

2 dx = 1 we get√
z

2π

∫
∞

z−γ

e−z x2
2 xsdx ∈ O

(
z−γs exp

(
−z1−2γ

2

))
⊂O(z−R).

Combining this with (6) shows that

I(z) =
z

2π
∑

s,t≥0
s+t<K

as,t(z ·Λ)
∫
R2

e−z x2
2 −z y2

2 xsytdxdy+O(z−R).

Using the Gaussian integral identities
√ z

2π

∫
R e−z x2

2 x2sdx = z−s · (2s− 1)!! and∫
R e−z x2

2 x2s+1dx = 0 for all integers s ≥ 0, proves the statement.

Example 2.2. Fix D = [−1,1]2 and g(x,y) =− x2

2 − y2

2 + x4

4! +λ
x2y2

4 +λ 2 y4

4! with
λ ∈ R>0 some arbitrary positive constant. The conditions for Proposition 2.1
are fulfilled and the associated integral I(z) as defined in (1) has an asymptotic
expansion I(z) ∼ ∑n≥0 Anz−n. Using the formula from Proposition 2.1 and the
generating function for the polynomials as,t from (3), we find that A0 = 1 and

A1 =
1
8
+

1
4

λ +
1
8

λ
2,

A2 =
35

384
+

5
32

λ +
19
64

λ
2 +

5
32

λ
3 +

35
384

λ
4,

A3 =
385

3072
+

105
512

λ +
1295
3072

λ
2 +

175
256

λ
3 +

1295
3072

λ
4 +

105
512

λ
5 +

385
3072

λ
6. ⋄

In the next section, we endow the obtained analytic expressions with a com-
binatorial interpretation. This process is inspired by quantum field theory, where
perturbative expansions of observables, which are combinatorially controlled
via Feynman graphs, relate to path integrals. The integral in (1) can be seen as
a path integral for a zero-dimensional space-time: the integral is then taken over
all two-parameter fields on a point, hence an integral over R2. The associated
Feynman graphs are edge-bicolored graphs. See [13] for more details.

3. Edge-bicolored graphs

A graph is a one-dimensional, finite CW complex, sometimes also called multi-
graph in the literature. It is edge-bicolored if each edge has one of two different
colors. We will represent graphs using only discrete data. A (set) partition P
of a finite set H is a set of non-empty and mutually disjoint subsets of H whose
union equals H. The elements of P are called blocks.
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Figure 1: An edge-bicolored graph with two connected components.

Definition 3.1. Given two disjoint finite sets S and T of labels, an [S,T ]-labeled
edge-bicolored graph is a tuple Γ = (V,ES,ET ), where

1. the vertex set V is a partition of S⊔T ,

2. ES is a partition of S into blocks of size 2,

3. ET is a partition of T into blocks of size 2.

We think of the elements of S and T as half-edge labels colored red and
yellow, respectively. These half-edges are bundled together in vertices via the
partition V . The edge sets ES and ET pair the half-edges into edges of the re-
spective color. Every edge-bicolored graph without isolated vertices can be rep-
resented by at least one [S,T ]-labeled graph. All graphs in this article will be
edge-bicolored, so we will drop this adjective from now on.

Example 3.2. Let S = {s1,s2, . . . ,s6} and T = {t1, t2}. The partitions

V = {{s1,s2,s3,s4},{s5,s6, t1, t2}} ,
ES = {{s1,s2},{s3,s4},{s5,s6}} ,
ET = {{t1, t2}} ,

form an [S,T ]-labeled graph representing the graph depicted in Figure 1. ⋄
An isomorphism from an [S1,T1]-labeled graph (V 1,E1

S ,E
1
T ) to an [S2,T2]-

labeled graph (V 2,E2
S ,E

2
T ) is a pair of bijections jS : S1 → S2, jT : T1 → T2 such

that j(V 1) =V 2, j(E1
S ) = E2

S , and j(E1
T ) = E2

T with j being the map that jS and
jT canonically induce on the subsets of S, T , and S⊔T . An automorphism of an
[S,T ]-labeled graph Γ is an isomorphism to itself. Those form the group Aut(Γ).

Lemma 3.1. Each [{1, . . . ,2s},{1, . . . ,2t}]-labeled graph Γ belongs to an iso-
morphism class of such graphs of size (2s)!(2t)!

|Aut(Γ)| .

Proof. For given Γ, let lab(Γ) be the set of [{1, . . . ,2s},{1, . . . ,2t}]-labeled
graphs that are isomorphic to Γ. The group S2s×S2t acts on lab(Γ) by permuting
the half-edge labels of the respective color. Aut(Γ) is the subgroup of S2s×S2t

stabilizing Γ. The lemma follows from the orbit stabilizer theorem.

Example 3.3. An [S,T ]-labeled graph Γ representing the graph depicted in Fig-
ure 1 has automorphism group isomorphic to (S2×S2⋊S2×S2)×S2 ≤ S6×S2,
where ⋊ denotes the semidirect product of groups, S6 refers to the six red half-
edges in S and S2 to the two yellow half-edges in T . ⋄
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We write G for the set of isomorphism classes of graphs. For each G∈G, we
write V G,EG

S ,E
G
T ,E

G = EG
S ⊔EG

T and Aut(G) for the respective set or group of
some [S,T ]-labeled representative of G. The Euler characteristic of G is defined
by χ(G) = |V G|− |EG|, and does not depend on the coloring. The bidegree of a
graph’s vertex v ∈V G is the pair of integers deg(v) = (u,w) where u counts the
number of half-edges in v that lie in the red-colored set S and w the half-edges
in the yellow-colored part T . The vertex degree of v is |deg(v)|= u+w.

Proposition 3.4. The generating function for graphs with marked bidegrees is

∑
G∈G

η |EG|

|Aut(G)| ∏
v∈V G

λdeg(v) = ∑
s,t≥0

η
s+t · (2s−1)!! · (2t −1)!! ·a2s,2t(λ ) ∈R[[η ]],

where as,t is defined as in (3).

We postpone the proof to after Lemma 3.2 and first illustrate the result.

Example 3.5. The formula in Proposition 3.4 provides a recipe to count our
graphs for a given number of edges, grouping them according to their bidegrees.
For instance, the coefficient of η1 counts graphs with one edge:

∑
G∈G,
|EG|=1

1
|Aut(G)| ∏

v∈V G

λdeg(v) = + + +

=
1
2

λ2,0 +
1
2

λ
2
1,0 +

1
2

λ0,2 +
1
2

λ
2
0,1.

Using the power series on the right-hand side of Proposition 3.4, this can be
obtained simply as a2,0 +a0,2, and by expanding the exponential in (3), we get
exactly the above expression. If for |EG| = 1 these two approaches may seem
equally complicated, already for graphs with two edges it is clear that the use
of the generating function speeds up the computation. In fact, there are seven
(monochromatic) graphs with two edges: , , , , , , ,
which turn into 23 edge-bicolored graphs. On the other hand, a simple expan-
sion of the exponential function gives

∑
G∈G,
|EG|=2

1
|Aut(G)| ∏

v∈V G

λdeg(v) = 3a4,0 +a2,2 +3a0,4 =

=λ0,1λ1,0λ1,1 +
λ 4

0,1
8 +

3λ 2
0,1λ0,2

4 +
λ 2

0,1λ 2
1,0

4 +
λ 2

0,1λ2,0

4

+
λ0,1λ0,3

2 +
λ0,1λ2,1

2 +
3λ 2

0,2
8 +

λ0,2λ 2
1,0

4 +
λ0,2λ2,0

4 +
λ0,4

8 +
λ 4

1,0
8

+
3λ 2

1,0λ2,0

4 +
λ1,0λ1,2

2 +
λ1,0λ3,0

2 +
λ 2

1,1
2 +

3λ 2
2,0

8 +
λ2,2

4 +
λ4,0

8 . ⋄
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To prove Proposition 3.4, we use the following lemma on the number of par-
titions of a set where elements come in two different colors. Let S = {1, . . . ,s}
and T = {1, . . . , t} and Ps,t the set of partitions of the disjoint union S⊔T . For
each block B of a partition P ∈ Ps,t we define the bidegree deg(B) of the block
to be the pair of integers (u,w) where u is the number of elements from S and w
the number of elements from T in B.

Lemma 3.2. Given s, t ≥ 0, consider a set of non-negative integers nu,w indexed
by pairs u,w with 0 ≤ u ≤ s, 0 ≤ w ≤ t, u+w ≥ 1, such that

∑
u

u ·nu,w = s, ∑
w

w ·nu,w = t.

The number of partitions in Ps,t with exactly nu,w blocks of bidegree (u,w) is

s!t!
∏u,w nu,w!(u!)nu,w(w!)nu,w

.

Proof. The group Ss×St acts on Ps,t by permuting the elements of S and T ,
respectively. This action is transitive if we restrict to partitions with specific
block bidegree set {nu,w}u,w. A specific partition with given block bidegrees
is stabilized by the subgroup that permutes the elements inside each block and
blocks of the same size. This subgroup is isomorphic to (Su×Sw)

nu,w ⋊Snu,w .
The claim follows from the orbit stabilizer theorem.

Proof of Proposition 3.4. From (3), and eX = ∑n≥0
Xn

n! , we get

s! · t! ·as,t(λ ) = ∑
{nu,w}

s!t!
∏u,w nu,w!(u!)nu,w(w!)nu,w ∏

u,w≥0
u+w≥1

λ
nu,w
u,w , (7)

where the sum is over all sets of integers {nu,w} that fulfill the conditions for
Lemma 3.2 with respect to s and t.

We can match the elements of the set S = {1, . . . ,2s} among each other in
(2s− 1)!! ways and the ones of T = {1, . . . ,2t} analogously. So, by Defini-
tion 3.1, Lemma 3.2, and (7), the number of [S,T ]-labeled graphs with exactly
nu,w vertices of bidegree u,w is (2s−1)!! · (2t −1)!! times the coefficient of the
monomial ∏u,w λ

nu,w
u,w in the polynomial (2s)! · (2t)! · a2s,2t(λ ) ∈ R. The state-

ment follows then from Lemma 3.1.

Our first main result follows by combining Propositions 2.1 and 3.4.

Theorem 3.6. If I(z), g, D and the coefficients Λu,w are related as in Section 2,
then the integral in (1) has the asymptotic expansion

I(z)∼ ∑
n≥0

Anz−n,
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for large z, with the coefficients An given by

An = ∑
G∈G⋆

−n

1
|Aut(G)| ∏

v∈V G

Λdeg(v),

where we sum over the set G⋆
−n of all isomorphism classes of edge-bicolored

graphs with vertex degrees at least 3 and Euler characteristic equal to −n.

Proof. Using the fact that χ(G) = |V G|− |EG| we rewrite

∑
n≥0

Anz−n = ∑
G∈G⋆

−n

zχ(G)

|Aut(G)| ∏
v∈V G

Λdeg(v) = ∑
G∈G⋆

−n

z−|EG|

|Aut(G)| ∏
v∈V G

z ·Λdeg(v).

Applying Proposition 3.4 for λu,w as defined in (4), this is further equal to

∑
s,t≥0

z−(s+t) · (2s−1)!! · (2t −1)!! ·a2s,2t(λ ).

By Proposition 2.1, this is the large-z asymptotic expansion of I(z).

Example 3.7. Continuing Example 2.2, let c(k)n be the coefficient of λ k in An.
By Theorem 3.6, c(k)n counts automorphism-weighted graphs with Euler charac-
teristic −n and vertex degree four, such that k1 vertices have exactly two yellow
half-edges and k2 vertices have four yellow half-edges, so that k1 + k2 = k. We
can view this explicitly for n = 2, as follows. Among the 21 (monochromatic)
graphs with χ = −2, there are only three 4-regular graphs. These are , ,

. Considering all bicolorings, we get

c(0)2 = + + = 1
128 +

1
48 +

1
16 = 35

384 ,

c(0)2 = + + = 1
128 +

1
48 +

1
16 = 35

384 ,

c(1)2 = + = 1
32 +

1
8 = 5

32 ,

c(2)2 = + + + + = 1
64 +

1
32 +

1
8 +

1
16 +

1
16 = 19

64 ,

c(3)2 = + = 1
32 +

1
8 = 5

32 ,

c(4)2 = + + = 1
128 +

1
48 +

1
16 = 35

384 . ⋄
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Remark 3.8 (Ising model). Our examples are motivated from the physical Ising
model. The partition function of the critical Ising model on a specific monochro-
matic graph G (not necessarily lattice-like) is defined by

Z(G,λ ) = ∑
γ⊂G

γ Eulerian

λ
|E(γ)|,

where we sum over all Eulerian subgraphs γ of G (see, e.g., [8]). This means
that if we delete all edges of G that are not in γ , then the resulting graph shall
only have vertices of even degree. A pair (G,γ) of a monochromatic graph G
and an Eulerian subgraph γ ⊂ G is equivalent to an edge-bicolored graph in
which an even number of yellow edges belongs to each vertex.

Notice that we effectively designed the polynomial g(x,y) from Example 2.2
and equivalently the coefficients Λu,w, such that the coefficient of λ k in An is the
automorphism-weighted number of 4-regular graphs with k yellow edges where
an even number of yellow edges belong to each vertex.

Hence, with An as defined in Example 2.2, we find that

An = ∑
G

Z(G,λ )

|AutG|
,

where we sum over all monochromatic graphs G that are 4-regular and which
have Euler characteristic −n. We can thus interpret An as the partition function
of the critical Ising model of a random 4-regular monochromatic graph of fixed
Euler characteristic. Here, random means that each monochromatic graph G is
sampled with probabilty 1/|AutG|.

4. Efficient computation of the coefficients An

In this section, we describe an effective algorithm to compute the coefficients
An that encode the asymptotic expansion of the integral (1), and the weighted
numbers of edge-bicolored graphs of Euler characteristic −n, by Theorem 3.6.
The algorithm is implemented in Julia and is available at [6].

Proposition 4.1. For a given integer n ≥ 1, and the coefficients Λu,w as required
by Theorem 3.6, the following algorithm correctly computes A0, . . . ,An:

Step 1: Define the polynomials

Fk(x,y) = ∑
u,w≥0

u+w=k+2

Λu,w
xuyw

u!w!
for k ∈ {1, . . . ,2n};
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Step 2: Set Q0(x,y) = 1 and recursively compute Q1, . . . ,Q2n using

Qm(x,y) =
1
m

m

∑
k=1

kFk(x,y)Qm−k(x,y) for m ∈ {1, . . . ,2n};

Step 3: Let q(k)s,t be the coefficients of Qk(x,y) = ∑s,t≥0 q(k)s,t xsyt . Then,

Ak = ∑
s,t≥0

(2s−1)!! · (2t −1)!! ·q(2k)
2s,2t for k ∈ {0, . . . ,n}.

To run the algorithm with a fixed n, it is sufficient to know Λu,w for all
u,w ≥ 0 with u+w ≤ 2n+2. Also, recall that we require Λu,w = 0 if u+w < 3.

Proof. By Proposition 2.1, we have this identity of power series in z−n:

∑
n≥0

Anz−n = ∑
s,t≥0

z−(s+t) · (2s−1)!! · (2t −1)!! ·a2s,2t(z ·Λ),

where as,t(z ·Λ) is as described in Proposition 2.1 and (3):

∑
s,t≥0

as,t(z ·Λ)xsyt = exp

z ∑
u,w≥0
u+w≥3

Λu,w
xuyw

u!w!

 .

Rescaling (x,y) 7→ (x/
√

z,y/
√

z) in the above formula gives the following iden-
tity of power series in R[x,y][[z−1/2]],

∑
s,t≥0

z−
s+t
2 as,t(z ·Λ)xsyt = exp

(
∑
k≥1

z−
k
2 Fk(x,y)

)
, (8)

where we used the definition of Fk(x,y) in the statement. Let q(k)s,t be the coeffi-

cients ∑k≥0 q(k)s,t z−
k
2 = z−

s+t
2 as,t(z ·Λ). With this definition, (8) and the formula

under Step 3 in the statement correctly compute Ak.
It remains to prove that the coefficients q(k)s,t are computed correctly by Step

2 in the statement. Rewrite (8) using the definition of Qk(x,y), before applying
the derivative operator z ∂

∂ z on both sides. This gives

z
∂

∂ z

(
∑
k≥0

Qk(x,y)z−
k
2

)
= z

∂

∂ z
exp

(
∑
k≥1

z−
k
2 Fk(x,y)

)

⇒− ∑
k≥0

k
2

Qk(x,y)z−
k
2 =−

(
∑

m≥0
Qm(x,y)z−

m
2

)
∑
k≥1

k
2

z−
k
2 Fk(x,y).

The recursive relation between Qm and Fk follows by comparing the z−
m
2 coeffi-

cients on both sides of this equation.
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5. Asymptotics and critical points

In this section, we study the asymptotic behavior of the coefficients An in The-
orem 3.6 for large n. Here, we will restrict ourselves to regular edge-bicolored
graphs, meaning that each vertex has a fixed degree k ≥ 3. For fixed coefficients
Λu,w given for u,w ≥ 0 with u+w = k, we study the weighted sum over graphs

An = ∑
G∈Gk

−n

1
|Aut(G)| ∏

v∈V G

Λdeg(v),

where Gk
−n is the set of all regular (edge-bicolored) graphs with vertex degree k

and Euler characteristic −n = |V G| − |EG|. As for each k-regular graph G we
have k|V G| = 2|EG|, all graphs in Gk

−n have 2n
k−2 vertices and nk

k−2 edges. It is
convenient to define the homogeneous polynomial

V (x,y) = g(x,y)+
x2

2
+

y2

2
= ∑

u,w≥0
u+w=k

Λu,w
xuyw

u!w!
∈ R[x,y].

Let Φ be the set of global maxima of the function

S1 = {(x,y) ∈ R2 : x2 + y2 = 1}→ R≥0, (x,y) 7→ |V (x,y)|.

A point (x,y) ∈ Φ is non-degenerate if k2V (x,y) ̸=
(

∂ 2V
∂x2 (x,y)+ ∂ 2V

∂y2 (x,y)
)

.

Proposition 5.1. Let M = k
k−2 and K = 2

k−2 . If An, V , Λu,w and Φ are related as
described above and all extrema in Φ are non-degenerate, then

An ∼


1

2
√

2π
knM+ 1

2 Kn− 1
2 Γ(n) ∑

(x,y)∈Φ

V (x,y)nK√
B(x,y)

if nK,nM ∈ Z,

0 else,

where Γ denotes the Gamma function and

B(x,y) = k2 −
∂ 2V
∂x2 (x,y)+ ∂ 2V

∂y2 (x,y)

V (x,y)
for (x,y) ∈ S1.

We will prove this theorem by first proving an integral representation of the
coefficients An. Afterwards, we apply the one-dimensional Laplace method to
provide an asymptotic expression for this integral in the large n limit.

Lemma 5.1. Let M = k
k−2 and K = 2

k−2 . For a given integer n ≥ 0 such that nK
and nM are integers, we have

An =
2nM(nM)!
2π · (nK)!

∫
π

−π

V (cosϕ,sinϕ)nKdϕ.

If nK or nM is not an integer then An = 0.
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Proof. A k-regular graph has nM edges and nK vertices, so nM and nK must be
integers; otherwise An = 0. We will assume the former. By Proposition 3.4,

An = ∑
s,t≥0

s+t=nM

(2s−1)!! · (2t −1)!! ·a2s,2t(Λ).

If s+ t = nM, it follows from (3) that a2s,2t(Λ) is a homogeneous polynomial
of degree nK. Because exp(X) = ∑N≥0

XN

N! , it also follows that a2s,2t(Λ) is the
coefficient in front of x2sy2t in the quotient V (x,y)nK/(nK)!, since V is homoge-

neous. Using 1√
2π

∫
R e−

x2
2 x2sdx = (2s−1)!! and

∫
R e−

x2
2 x2s+1dx = 0 for integers

s, we obtain

An =
1

2π · (nK)!

∫
R2

e−
x2
2 − y2

2 V (x,y)nKdxdy.

We can pass to polar coordinates and use V (rx,ry) = rkV (x,y) together with∫
∞

0
e−

r2
2 rnkK+1dr =

∫
∞

0
e−q(2q)nkK/2dq = 2nM(nM)!

to prove the lemma.

Proof of Proposition 5.1. We are interested in the cases in which An ̸= 0. When
n is large, the main contribution to the integral in the statement of Lemma 5.1
comes from angles ϕ where |V (cosϕ,sinϕ)| is maximal. Let ϕc be the location
of such a maximum. By definition, we have (cosϕc,sinϕc) ∈ Φ. Near this
maximum, we get the Taylor expansion

fϕc(ϕ) := log
V (cosϕ,sinϕ)

V (cosϕc,sinϕc)
=−B(cosϕc,sinϕc)

(ϕ −ϕc)
2

2
+O((ϕ −ϕc)

3),

where B(cosϕc,sinϕc) is defined as in the statement. Because ϕc is a maximum
of |V (cosϕc,sinϕc)|, we have B(cosϕc,sinϕc)≥ 0. Our assumption that all the
maxima are non-degenerate hence implies that B(cosϕc,sinϕc)> 0.

We may therefore write, for some sufficiently small ε > 0,

An =
2nM(nM)!
2π · (nK)!

(
∑

(cosϕc,sinϕc)∈Φ

V (cosϕc,sinϕc)
nK
∫

ϕc+ε

ϕc−ε

enK fϕc (ϕ)dϕ

)
+R1(n,ε).

From the Taylor expansion of the function fϕc(ϕ) and Lemma 5.1, it follows
by the same reasoning as in the proof of Proposition 2.1 that the remainder term
respects the bound |R1(n,ε)| ≤C1 exp(−C2nε2) with some constants C1,C2 > 0.
Specifying ε = n−γ with γ ∈ (1

3 ,
1
2) allows us to truncate the Taylor expansion
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of fϕc after the second term without changing asymptotic behavior in the n → ∞

limit. Hence,∫
ϕc+ε

ϕc−ε

enK fϕc (ϕ)dϕ =
∫

ε

−ε

exp
(
−nK

B(cosϕc,sinϕc)

2
ϕ

2
)

dϕ +R2(n,ε).

The remainder term fulfills |R2(n,ε)| < C3n
1
2 ε3 for some C3 > 0. Again, as in

the proof of Proposition 2.1, we may complete the Gaussian integral to find that

∫
ϕc+ε

ϕc−ε

enK fϕc (ϕ)dϕ =

√
2π

nK ·B(cosϕc,sinϕc)
+O(n−1).

The result follows from Stirling’s formula Γ(n)∼
√

2πn−1nne−n as n → ∞.

Example 5.2. To continue the running example of the Ising model (cf. Exam-
ple 3.7), let V (x,y) = x4

4! +λ
x2y2

4 +λ 2 y4

4! . We want to find the critical points of V
on the circle, that means the points (x,y) ∈ R2 with x2 + y2 = 1 satisfying

y
∂V
∂x

(x,y) = x
∂V
∂y

(x,y). (9)

We get the following eight critical points:

(±1,0),(0,±1),

(
±
√

λ (λ −3)√
λ 2 −6λ +1

,±
√

1−3λ√
λ 2 −6λ +1

)
∈ R2. (10)

Our case of interest is λ > 0. Then, the last four points are real if and only if
λ ∈ [1

3 ,3], and in that interval those are the maxima of |V | on S1. For λ < 1
3 ,

the maxima are (±1,0), whereas for λ > 3, the maxima are (0,±1). Figure 2
displays the function (V (x,y)x,V (x,y)y) and its critical points, for λ ∈ (0,4).

We can now use Proposition 5.1 to find An ∼ c Γ(n)αn, where c = c(λ ) and
α = α(λ ) are piecewise defined as

α(λ ) c(λ )

0 < λ < 1
3

2
3

1
π

√
1

2−6λ

1
3 < λ < 3 −16λ 2

3λ 2−18λ+3
1
π

√
8λ

−3λ 2+10λ−3

λ > 3 2λ 2

3
1
π

√
λ

2λ−6

The function α is continuous, it is not C1-differentiable at λ = 1
3 , and it is C1-

but not C2-differentiable at λ = 3. On the other hand, the limits of c(λ ) at 1
3 ,
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λ = 2

λ = 1
3

λ = 3

Figure 2: The system (9) for the function V from Example 5.2. Left: all values
of λ ∈ (0,4) on the (reversed) vertical axis. At each level λ = const. the black
continuous curves are the maxima; the dashed curves are the minima. In blue,
the curves for λ = 1

3 and λ = 3 where the behavior of the maxima changes.
Right: the section λ = 2, with its maxima (squares) and its minima (crosses).

3 go to infinity from both sides. This can be observed in Figure 3. The points
λ = 1

3 and λ = 3 where the functions α(λ ) and c(λ ) are non-analytic are phase
transition points. Phase transitions are of pivotal interest in statistical physics.
Here, we find the phase transitions of the Ising model on a random 4-regular
graph. In each of the three regions for the parameter λ , the statistical system is
expected to exhibit intrinsically different behaviors.

Note that using Proposition 4.1 we can also compute An for large n and solve
for α and c numerically. For details see our implementation at [6]. ⋄

Figure 3: The behavior of α(λ ) and c(λ ) in the Ising model from Example 5.2.
The phase transitions at λ = 1

3 ,3 can be detected in both quantities. At λ = 3,
the function α is C1- but not C2-differentiable.

It is common belief in physics that the asymptotic behavior of An depends
on the critical points of g(x,y) =− x2

2 − y2

2 +V (x,y) (see, e.g., [11]). Moreover,
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it is well-known, also in applied mathematics, that identifying the critical point
which contributes most to the asymptotics is a complicated connection problem
[1]. With this in mind, we rephrase Proposition 5.1 in terms of the critical points
of g instead of those of V restricted to the sphere. We write critD f for the set of
critical points of f restricted to the domain D. Let

Ψ=
{
(w,z) ∈ critC·R2 g\{0} : ∥(w,z)∥ ≤ ∥(w′,z′)∥ ∀(w′,z′) ∈ critC·R2 g\{0}

}
,

where C ·R2 is the set of complex points (w,z) whose ratio (when well-defined)
is real. We call points in Ψ non-degenerate if the Hessian (the matrix of second
derivatives) of g has full rank.

Theorem 5.3. Assume that An, g, and Ψ are related as described above and all
extrema in Ψ are non-degenerate. Then

An ∼
1

2π
Γ(n) ∑

(w,z)∈Ψ

(−g(w,z))−n√
−detHg(w,z)

. (11)

Proof. Our goal is to express An from Proposition 5.1 in terms of the critical
points of g. The first step is to associate the critical points of V to those of g.
Given (x,y)∈ critS1(V ), we look for some ℓ∈C∗ such that (ℓx, ℓy)∈ critC·R2(g).
Imposing the conditions ℓx = ∂V

∂x (ℓx, ℓy), ℓy =
∂V
∂y (ℓx, ℓy), and using homogene-

ity of V , we get
ℓ2−k = kV (x,y). (12)

Therefore, as k ≥ 3,

max
(x,y)∈critS1 (V )

V (x,y) =
1
k

(
min

(w,z)∈critC·R2 (g)
∥(w,z)∥

)2−k

,

so every element (w,z) ∈ Ψ ⊂ C ·R2 arises as (ℓx, ℓy) for some (x,y) ∈ Φ.
Using these considerations, we write the result from Proposition 5.1 in terms

of the critical points of g. At a point (w,z) = (ℓx, ℓy) ∈ Ψ, by (12), we have

g(w,z) =−ℓ2

2
+V (w,z) =−ℓ2

2
+ ℓkV (x,y) = ℓ2 2− k

2k
. (13)

Let K = 2
k−2 and M = k

k−2 . Then, we have

V (x,y)nK = k−nKℓ−2n = k−nK(−kKg(w,z))−n = k−nMK−n(−g(w,z))−n.

This allows to cancel prefactors in the asymptotic expression for An from Propo-
sition 5.1. We are left to rewrite B in terms of (w,z). Notice that the determinant
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of the Hessian of g(w,z) can be expressed, using (12), as

detHg(w,z) =
1
ℓ2 detHg(ℓx, ℓy) = B(x,y)ℓk−2V (x,y)(1− k(k−1)ℓk−2V (x,y))

=−B(x,y)
k−2

k
,

where (ℓ,x,y) are new coordinates on C∗×S1, and (w,z) ∈ Ψ. Hence,

An ∼
1

2
√

2π
knM+ 1

2 Kn− 1
2 Γ(n) ∑

(x,y)∈Φ

V (x,y)nK√
B(x,y)

=
1

4π

√
k(k−2)Γ(n)

2
k−2 ∑

(w,z)∈Ψ

(−g(w,z))−n√
− k detHg(w,z)

k−2

=
1

2π
Γ(n) ∑

(w,z)∈Ψ

(−g(w,z))−n√
−detHg(w,z)

,

where the factor 2
k−2 appears since each of the k−2 points {(w,z) = (ℓx, ℓy)} in

Ψ is counted twice by the corresponding points {(x,y),(−x,−y)} ∈ Φ.

Remark 5.4. The formula (11) yields 0 if nM or nK are not integers. Indeed,
using (13) from the proof above, we can write, for (w,z) ∈ Ψ,

g(w,z) = (l ·ζi)
2 2− k

2k
, i ∈ {1, ...,k−2},

where l ∈ R and ζi is a (k− 2)th root of unity, so (w,z) = (lζix, lζiy) for some
(x,y) ∈ Φ. Also (lζ jx, lζ jy) ∈ Ψ for all j ∈ {1, . . . ,k− 2}. Therefore, the sum
in (11) becomes

∑
(w,z)∈Ψ

(−g(w,z))−n√
−detHg(w,z)

∝

k−2

∑
j=1

(l ·ζ j)
−2n ( k−2

k

)−n√
−detHg(lζ jx, lζ jy)

=

 (k−2)
l−2n( k−2

k )
−n

√
−detHg(lx,ly)

if (k−2) | 2n,

0 else.

The condition (k−2) | 2n is equivalent to nK ∈ Z, which also implies nM ∈ Z.

We exhibit the connection between the two collections Φ and Ψ of critical
points explicitly in our running example.

Example 5.5. Let V (x,y) = x4

4! +λ
x2y2

4 +λ 2 y4

4! and g(x,y) =− x2

2 − y2

2 +V (x,y).
Consider the system of critical equations for g

w =
∂V
∂w

(w,z), z =
∂V
∂ z

(w,z), (14)
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−3 3

−11

11

λ = 1
4

−3 3

−6

6

λ = 1
2

−3 3

−1

1

λ = 4

Figure 4: The system (14) for the function V from Example 5.5, for the values
λ = 1

2 ,
1
4 ,4, from left to right. The solutions are marked in black. The solu-

tions that are (equally) closest to (but distinct from) the origin, are marked with
squares. Notice the different scaling in the y-axis, for the sake of clarity.

and its complex non-trivial solutions, for λ > 0:

(±
√

6,0),

(
0,±

√
6

λ

)
,

(
±
√

9−3λ

4λ
,±

√
9λ −3
2λ

)
.

Among these solutions, some are real for every λ > 0. The last type of singular
points is real if and only if λ ∈ [1

3 ,3]. We get

Ψ =


(±

√
6,0) 0 < λ < 1

3 ,(
±
√

9−3λ

4λ
,±

√
9λ−3
2λ

)
1
3 < λ < 3,(

0,±
√

6
λ

)
λ > 3.

This is displayed in Figure 4. The reader may check that rescaling each point in
Ψ to unit vector gives precisely two of the points in (10). ⋄
Remark 5.6. Lee–Yang theory studies the location of the roots of the polynomi-
als An, when n becomes large. This fascinating theory touches combinatorics,
statistics and physics (see, e.g., [4] for an overview). In the spirit of Lee–Yang
theory, the two phase transitions λ = 1

3 ,3 in the running example can be detected
also by looking at the asymptotic behavior of the roots of An(λ ) as n → ∞. Us-
ing our algorithm from Proposition 4.1, we can compute the polynomials An(λ )
and find their roots numerically. This is the content of Figure 5. The roots of
these polynomials are all complex (except for λ = −1, for odd n) but they get
closer and closer to the real values λ = 1

3 and λ = 3.
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Figure 5: The roots of An(λ ) under the assumptions of Example 2.2, for n =
10,25,200. The blue crosses are the phase transitions λ = 1

3 ,3.

Although Proposition 5.1 and Theorem 5.3 assume V to be homogeneous,
the following example shows that this condition does not seem to be necessary.

Example 5.7. Take the inhomogeneous polynomial V (x,y) = x3

3! +λ
xy2

2 +λ 2 y4

4! ,
with λ > 0. For λ < 1

2 , one can compute that Ψ = {(2,0)}; for λ > 1
2 , one gets

Ψ =

{(
4λ−

√
2λ (8λ−3)
λ

,±
√

6

√
1−(4λ−

√
2λ (8λ−3))

λ 2

)}
.

The formula for An from Theorem 5.3 would give

α(λ ) c(λ )

0 < λ < 1
2

3
2

1
2π

√
1−2λ

λ > 1
2

6λ 2

(8λ−3)
(

16λ−3−4
√

2λ (8λ−3)
) 1

π

√
λ

32λ 2−12λ+2
√

2λ (8λ−3)(1−16λ 2)

This matches our numerical computations, see [6]. ⋄

Based on the previous example and similar computations, we conjecture
that Theorem 5.3 is also valid for inhomogeneous V (x,y), i.e., graphs that are
not necessarily regular. In this setting, the univariate Laplace method as used in
the proof of Proposition 5.1 does not work anymore, also due to the failure of
Lemma 5.1. Instead a multivariate saddle point method shall be required.

Conjecture 5.8. Let g and An be related as in the beginning of Section 2 (i.e.,
g(x,y)+ x2

2 + y2

2 is not necessarily homogeneous). Let Ψ be defined as before
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and assume that all points in Ψ are non-degenerate. Then,

An ∼
1

2π
Γ(n) ∑

(w,z)∈Ψ

(−g(w,z))−n√
−detHg(w,z)

as n → ∞.
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