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CHOW-LAM RECOVERY

E. PRATT - K. RANESTAD

We study the conditions under which a subvariety of the Grassmannian
may be recovered from certain of its linear projections. In the special
case that our Grassmannian is projective space, this is equivalent to ask-
ing when a variety can be recovered from its Chow form; the answer is
“always” by work of Chow in 1937 [4]. In the general Grassmannian
setting, the analogous question is when a variety can be recovered from
its Chow-Lam form. We give both necessary conditions for recovery and
families of examples where, in contrast with the projective case, recovery
is not possible.

1. Introduction

The Grassmannian Gr(k,n) parameterizes (k−1)-dimensional subspaces of Pn−1.
We are interested in projections between Grassmannians induced by projections
of the underlying projective spaces. That is, fix an n× r matrix Z of rank r and
consider the map

Z ∶Gr(k,n)⇢Gr(k,r)
[M]↦ [MZ]

(1)

where M is a k × n matrix and [M] is its rowspan. Geometrically, one may
think of projecting each (k−1)-plane from Pn−1 to Pr−1. Indeed, when k = 1 we
recover linear projections between projective spaces.

Received on March 20, 2025
AMS 2010 Subject Classification: 14M15, 14M12
Keywords: Chow variety, Chow-Lam form, Dual variety



432 E. PRATT - K. RANESTAD

In this paper, V will be a subvariety of Gr(k,n) of dimension k(r−k)−1 for
some r ≤ n. Let Z(V) denote the closure of the image of V under the projection
map induced by Z. Then for a general Z the variety Z(V) is expected to be a
hypersurface in the target Grassmannian, and is thus cut out by a single equation.

We ask the question: can V be recovered from the data of all possible Z(V)?
Let Z−1(Z(V)) denote the pre-image of Z(V) in Gr(k,n). In general, we have
the containment

V ⊆ ⋂
Z

Z−1(Z(V)). (2)

If k = 1, equality holds in 2. In general the right side may be strictly larger.
Such linear projections arise in the construction of the amplituhedron in par-

ticle physics. The context is that of particle scattering for N = 4 super-symmetric
Yang-Mills. Recall that the Grassmannian Gr(k,n) has a Plücker embedding
into projective space P(

n
k)−1, given by taking the k× k minors of each k×n ma-

trix representative of a subspace. The projective coordinates on P(
n
k)−1 are called

the Plücker coordinates of Gr(k,n). We define the positive Grassmannian to be
the semi-algebraic subset of GrR(k,n) where the Plücker coordinates are non-
negative. When Z has strictly positive maximal minors, any Z-projection of the
positive Grassmannian into Gr(k,r) is called the amplituhedron (the images for
different such Z are combinatorially equivalent). The amplituhedron is used in
calculations of scattering amplitudes for gluons [1].

The boundaries of the positive Grassmannian are known as positroid vari-
eties [10]. Thomas Lam studied positroid varieties and their Z-projections in
[8], and his work motivated the later definition of the Chow-Lam form in [9].
We will return to positroid varieties in Section 6 of this paper.

We now define the Chow-Lam form as in [9] and explain the connection to
projections. The input data is a variety V ⊂ Gr(k,n) of dimension k(r− k)−1
for some r ≤ n. For a subspace Q ⊂ Pn−1, let Gr(k,Q̂) denote the Grassmannian
of (k−1)-spaces contained in Q. The Chow-Lam locus is the variety

CLV ∶= {Q ∈Gr(n− r+k,n) ∶ V ∩Gr(k,Q̂) ≠∅}.

In words, the Chow-Lam locus consists of linear spaces Q which contain as
a subspace some (k− 1)-space P, where P is a point in V. By Lemma 3.2 of
[9], CLV is a proper irreducible subvariety of Gr(n− r+ k,n). When CLV is a
hypersurface, it is defined by a single equation, which we call the Chow-Lam
form and denote CLV . If CLV is not a hypersurface, we set CLV ∶= 1.

Example 1.1 (Curve in Gr(2,4)). Let V be a curve in the Grassmannian Gr(2,4).
Here k = 2,n = 4, and r = 3. Thus the Chow-Lam locus lives in Gr(3,4) = (P3)∨.
It consists of planes containing a line in P3, such that the line is a point of V.
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Figure 1: Geometry in P3 (left) and Gr(2,4) (right)

Let XV be the surface in P3 swept out by all of the lines in V . Then any
tangent plane to XV contains all lines through the point of tangency; thus the
dual surface X∨V is contained in CLV . In fact, since they are irreducible varieties
of the same dimension, we have that the Chow-Lam locus is precisely X∨V .

When k = 1, we recover the definition of the Chow form from classical alge-
braic geometry. This was pioneered by Cayley in 1860 for curves in three-space
[3] and generalized by Chow and van der Waerden in 1937 [4].

If A,B are subvarieties of Pn, we define their join A∨B to be the closure of
the union of all lines ab spanned by distinct points a in A and b in B. The fibers of
the projections Z of the form 1 can be described using join. Let KZ ∈Gr(n−r,n)
be the projectivized kernel of the r×n matrix ZT .

Lemma 1.2. Fix a linear space P ∈ Gr(k,n), and assume that KZ does not in-
tersect P. Then P∨KZ is in CLV if and only if P is in Z−1(Z(V)).
Proof. Observe that Z−1(Z(P)), as a subset of Gr(k,n), is exactly the Grass-
mannian Gr(k, P̂∨KZ). So Z(P) is in Z(V) only if P∨KZ contains as a subspace
some Q ∈ V.

Inspired by Lemma 1.2, we define for a given (k(r − k)− 1)-dimensional
variety V ⊂Gr(k,n), the algebraic set

WV ∶= {P ∈Gr(k,n) ∶ Q ∈ CLV whenever Q ⊃ P} (3)

and call it the recovered variety of V. (We will call it a variety, but in general it
may be reducible.) We remind the reader that the dimension of Q is n−r+k−1.
Note that if Q ⊃ P, then Q ⊃ P∨A for every A ∈Gr(n− r,Q̂), and each such A is
the projectivized kernel KZ for some n× r matrix Z. This gives us the following
corollary.



434 E. PRATT - K. RANESTAD

Corollary 1.3. The varieties WV and ⋂Z Z−1(Z(V)) are equal.

In particular, WV contains V. Our question about projections becomes: are
there points in the recovered variety which are not in V?

For the Chow form, we have that WV = V . That is, any projective variety
can be uniquely recovered from its Chow form. In fact, the Chow form was
originally studied as a way to represent a projective variety by a single equation
in Plücker coordinates [4]. However, this is not true for the Chow-Lam form:
two different varieties may have the same Chow-Lam form, as in Example 1.4.

Example 1.4 (A ruled quadric). Let X be a quadric surface in P3. Then X has
two rulings, which give two curves V and V ′ in Gr(2,4). The Chow-Lam locus
of each of these curves is the dual variety to X .

The structure of this paper is as follows. In Section 2 we will review the
theory of Chow-Lam forms and their computation. In Section 3 we will discuss
a general criterion for a point in Gr(k,n) to lie in WV . The remaining three sec-
tions are devoted to examples. Section 4 discusses curves and surfaces, Section
5 describes families of varieties with the same Chow-Lam form, and Section 6
describes WV when V is a Schubert hyperplane section of the Grassmannian.

2. Chow-Lam Forms and Computation

To compute Chow-Lam forms and their recovery, it is convenient to use two
types of Plücker coordinates. An (m− 1)-subspace P of Pn−1 can be repre-
sented as the rowspan of a m× n matrix, or as the projectivized kernel of an
(n−m)×n matrix. In the first case, the m×m minors of this matrix are called
the dual Plücker coordinates of P and denoted qI(P), where I ⊂ ([n]m ). In the
latter case, the maximal minors are called the primal Plücker coordinates and
denoted pI(P), where I ⊂ ( [n]n−m).

If m is close to n then it is more convenient to use primal coordinates. Primal
and dual Plücker coordinates are related up to sign by complementary indices.
For example, the ten Plücker coordinates on Gr(3,5) are

p12 p13 p14 p15 p23 p24 p25 p34 p35 p45,
q345 −q245 q235 −q234 q145 −q135 q134 q125 −q124 q123.

(4)

Suppose that V ⊂ Gr(k,n) is a variety of dimension k(r − k)− 1 for some
r ≥ k. Then the Chow-Lam form of V can be computed by first computing the
equations for the incidence variety

Φ = {(P,Q) ∶ P ⊂Q} ⊂Gr(k,n)×Gr(n− r+k,n).



CHOW-LAM RECOVERY 435

We then intersect Φ with V ×Gr(n− r + k,n) and project to the latter factor.
Algebraically, this corresponds to taking the sum of the ideal of Φ with the ideal
of V and eliminating the variables in Gr(k,n).

Example 2.1 (Equations of incidence variety). Suppose k = 2,n = 4, and r = 3.
The incidence variety Φ will consist of pairs of lines and planes in P3 such that
the plane contains the line. If pi are the primal coordinates of the plane and qi j

are the dual coordinate of the line, then the ideal of Φ is generated by

q12 p1−q23 p3−q24 p4, q12 p2+q13 p3+q14 p4,

q13 p1+q23 p2−q34 p4, q14 p1+q24 p2+q34 p3.
(5)

Given the Chow-Lam form CLV of a variety V , the variety WV can be com-
puted as follows. We expand the dual Plücker coordinates of A∨P ∈Gr(n− r+
k,n) in terms of dual Plücker coordinates of A ∈ Gr(n− r,n) and P ∈ Gr(k,n),
then collect coefficients of monomials in the qI(A). When A∨P ∈ CLV , these
coefficients are polynomials in the variables qI(P) which define the variety WV .
Note that this process produces not only a variety, but a scheme; indeed, one
may define the recovered schemeWV as the scheme defined by these polynomi-
als. In the classical case of the Chow form for a variety in projective space, cf.
[2, Theorem 1.14], the schemeWV is equal to V exactly at the smooth points of
V and has embedded components at the singular points. We can see this in Ex-
ample 2.2. In the Chow-Lam case the situation is more complicated: even for a
smooth subvariety V of the Grassmannian with WV =V, there may be embedded
components inWV , as in Example 2.3.

Example 2.2 (Singular quintic in P3). Consider the curve V ⊂ P3 given para-
metrically by [s ∶ t]↦ [s5 ∶ s4t ∶ s3t2 ∶ t5]. Let P3 have coordinates x1,x2,x3,x4.
Then V has a singularity of Jacobian degree 4 at [0 ∶ 0 ∶ 0 ∶ 1] and is otherwise
smooth; that is, the vanishing of the Jacobian and the equation for V define an
ideal of length 4 whose variety is that point. Because the curve is given to us
parametrically, we can also compute the Chow form parametrically: it is the
closure of rowspans of matrices

Ls = [
1 t t2 t5

a b c d
]

and obtained by eliminating t,a,b,c,d. In primal Plücker coordinates this gives

CV = p5
14−p3

13 p14 p24+3p12 p13 p2
14 p24+ p3

12 p2
24

+ p4
13 p34− p3

12 p23 p34−4p12 p2
13 p14 p34+2p2

12 p2
14 p34.

We view the pi j as primal Plücker coordinates of the line x∨a where x and a are
points in P3. Then x is in V if and only if x∨a is in CV for all a ∈P3. Thus we can
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make the change of coordinates p12 = x3a4−x4a3, etc. Collecting coefficients of
monomials in the a variables gives us an ideal which is the intersection of two
primary components. One is the ideal of V, and the other is the degree 16 ideal

(x2
4,x

3
3x4,x2x2

3x4,x2
2x3x4,x3

2x4,x4
3,x2x3

3,x
2
2x2

3,x
3
2x3−x1x2

3x4,x4
2−x1x3

3)

whose variety is the point [0 ∶ 0 ∶ 0 ∶ 1].

Example 2.3 (Curve in Gr(2,4)). Consider the curve V in Gr(2,4) given by
tangent lines to the quintic in Example 2.2. In dual Plücker coordinates, this
curve is given by

V =V(q2
24−4q23q34,3q14q24−10q13q34,q13q24−6q12q34,8q2

14−25q23q24,

q23q14−5q12q34,15q2
23−4q13q14,2q13q23−3q12q24,5q2

13−9q12q14).

Then V has a singular locus consisting of two points [0 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 1] and
[1 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 0], each of Jacobian degree 2. The Chow-Lam form of V in
Gr(3,4) = P3 is the degree 7 form given in primal Plücker coordinates by

CLV = 16p3
2 p4

3+108p2
1 p5

3−128p4
2 p2

3 p4

−900p2
1 p2 p3

3 p4+256p5
2 p2

4+2000p2
1 p2

2 p3 p2
4+3125p4

1 p3
4.

Here CLV can be computed by using the equations in Example 2.1 and elim-
inating. The ideal of the recovered scheme has three primary components of de-
grees 14,42, and 52. Their corresponding varieties are the curve V and the two
singular points. This is an example where WV and V are the same as algebraic
sets, but scheme-theoretically different even at the smooth points, as seen by the
degree.

To keep our discussion simple, we will restrict ourselves to considering the
recovered variety WV as an algebraic set. We end this section by noting that the
dimension of WV may be higher than that of V.

Example 2.4 (High dimension WV ). Choose a basis e1, ...,en of Cn. Let W ⊂
Gr(k,n) be the Schubert variety of subspaces meeting en, which we now view
as a point in Pn−1. ThenW is isomorphic to the Grassmannian Gr(k−1,n−1).
Let V be a generic (k−1)-dimensional subvariety ofW. We claim thatW and
V have the same Z-projections for a generic matrix Z of dimension n× (k+1).
ThusW will appear as a component in WV .

To see this, let Zn be the last row of Z. Then we may view Zn as a point in
Pk. The projection Z(W) consists of all (k−1)-spaces in Pk meeting the point
Zn. So Z(W) is a hyperplane in Gr(k,k+ 1) = (Pk)∨. To conclude it suffices
to show that Z(V) has the same dimension as V for generic V ⊂W. But this
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follows by Proposition 4.8 of [8], which gives cohomological conditions on V
for the dimension of the projection to agree with the dimension of the variety.

How much bigger isW? It has codimension n−k and dimension (k−1)(n−
k) in Gr(k,n). Recall that V has dimension k+1. Thus as k increases, we get a
family of examples which show that WV can be arbitrarily large compared to V.

3. A Recovery Criterion

Fix a variety V ⊂ Gr(k,n) of dimension k(r− k)−1 for some r. In this section,
we will establish a general criterion for a point P ∈Gr(k,n) to be in WV .

Fix a linear space P ⊂ Pn−1 of dimension k−1. Then we may stratify V as
follows. Let

VP,i = {P′ ∈ V ∶ dimP′∩P ≥ i} ⊂Gr(k,n)
be the Schubert variety of spaces in V which meet P in dimension at least i. We
take the empty set to have dimension −1. Then we have

V = VP,−1 ⊃ VP,0 ⊃ ... ⊃ VP,k−1,

where the last term is nonempty exactly when P itself is in V. We begin with
a lemma on the dimension of certain Schubert varieties, then state our main
theorem. Let Q ⊂ Pn−1 be a subspace of dimension m and assume l > m. Then
we denote by Ω(Q) ⊂Gr(l,n) the Schubert variety of subspaces that contain Q.

Lemma 3.1 (Dimension). Suppose Q⊂Pn−1 is a subspace of dimension m. Then
the variety Ω(Q) has dimension (l−m−1)(n− l) in Gr(l,n).

Proof. Ω(Q) is isomorphic to the Grassmannian Gr(l−m−1,n−m−1), so has
dimension (l−m−1)(n− l) in Gr(l,n).

Theorem 3.2 (Recovery criterion). Let V ⊂Gr(k,n) be a subvariety of dimen-
sion k(r− k)−1. If a linear space P ∈ Gr(k,n) is in the recovery WV , then for
some 0 ≤ i ≤ k−1, the variety VP,i has dimension at least (k− i−1)(r−k).

Proof. The proof is essentially a dimension argument. Consider the Schubert
variety Ω(P) ⊂ Gr(n− r+ k,n) of (n− r+ k− 1)-spaces containing P. Observe
that a linear space P is in the recovery if and only if every point of Ω(P) is also
a point of Ω(P′) for some P′ ∈ V.

So we consider the incidence

IP = {(R,P′) ∣ R ∈Ω(P)∩Ω(P′),P′ ∈ V} ⊂ Gr(n− r+k,n)×Gr(k,n),

with projections π ∶ IP→Ω(P) and π
′ ∶ IP→ V. Then P is in the recovery if and

only if π is surjective.The latter is the case only if the dimension of IP is at least
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(n−r)(r−k) = dimΩ(P). Now IP may have several components since the fibers
of π

′ may differ in dimensions. The fiber (π ′)−1(P′) is the variety Ω(P∧P′) ⊂
Gr(n− r+ k,n). The dimension of this fiber depends on the dimension of the
intersection P∩P′. Observe that

dimP′∨P = dimP′+dimP−dim(P′∩P).

When P′ ∈ VP,i ∖VP,i+1, the span P∧P′ of P and P′ has dimension 2k− i−2, so
Ω(P∩P′) has dimension (n− r− k+ i+1)(r− k). Therefore the preimage over
VP,i dominates Ω(P) only if dimVP,i + (n− r− k+ i+1)(r− k) ≥ (n− r)(r− k),
i.e. when dimVP,i ≥ (k− i−1)(r−k).

For example, let V be a surface in Gr(3,n), whose points represent planes
in Pn−1. Then dimV = 2 = 3(r−3)−1, so r = 4. If a plane P is in WV , then by
Theorem 3.2 at least one of the following must be true:

• (i = 0) ∶ P meets each P′ ∈ V in a point, or

• (i = 1) ∶ P meets a one-dimensional family of P′ ∈ V in a line, or

• (i = 2) ∶ P is in V , i.e. meets a point in V in a plane.

The dimension condition may be satisfied for multiple i. For example, suppose
all planes P′ in V contain a fixed line L in Pn−1. Then for any plane P not in V
containing L, the dimension condition is satisfied for both i = 0 and i = 1.

Theorem 3.2 gives a necessary condition for P to be in the recovery, but it is
not sufficient in general. Even if the variety VP,i has high dimension, the map π

may have high-dimensional fibers and so may not be surjective.

Example 3.3 (Counterexample to the converse of Theorem 3.2). This example
will show that the condition in Theorem 3.2 is not sufficient for P to be in
WV . Let n be large, and let ei be the ith standard basis vector. Fix the plane
Q ∶= e1 ∨ e2 ∨ e3 and the 3-space P ∶= e1 ∨ e2 ∨ e3 ∨ e4. Next, we let V1 be a 4-
dimensional subvariety of Gr(4,n) with the property that all P′ in V1

i) meet Q in at least a line

ii) meet en−1∨en in at least a point.

Finally, choose a general 7-dimensional variety V ⊂ Gr(4,n) containing V1.
Then r = 6 and the Chow-Lam locus CLV lives in Gr(n−2,n). The dimension of
VP,1 is at least (k−1−1)(r−k) = 4, which per Theorem 3.2 is necessary for P to
be in the recovery; indeed, the dimension of VP,0 is lower than 6 if V is chosen
generically. However, we will see that P is not in the recovery.
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To see this, take the codimension two subspace R ⊂ Pn−1 given by the span
of all vectors except en−1 and en. Then R contains P, but by construction cannot
contain any P′ in V1. If V is chosen generically to contain V1, then R will not
contain any P′ in V either. Thus π ∶ IP →Ω(P) is not surjective, and P is not in
the reecovery WV .

4. Chow-Lam Locus as a Dual Variety

Given a variety V ⊂ Gr(k,n), we define XV ⊂ Pn−1 to be the union of all (k−
1)-spaces in V, or equivalently the image under the projection to Pn−1 of the
incidence

{(x,P) ∣ x ∈ P ⊂ Pn−1,P ∈ V} ⊂ Pn−1×Gr(k,n).

The following proposition is a generalization of Example 1.4 of the quadric
surface.

Proposition 4.1. Let V be a subvariety of Gr(k,n) of dimension k− 1. Then
the dual X∨V is contained in CLV , with equality whenever they have the same
dimension. In this case a (k−1)-space P belongs to the recovery WV if and only
if its dual linear space P� is contained in X∨V .

Proof. Note that if n is less than 2k, then XV = Pn−1 and its dual is empty,
meaning the proposition has no content. For the rest of the proof we sup-
pose that n ≥ 2k. Here r = k+ 1, so the Chow-Lam locus is a hypersurface in
Gr(n−1,n) ≅ (Pn−1)∨. Take any tangent space to XV at a smooth point x. Then
it must contain all linear spaces in XV through x. In particular it contains all
(k− 1)-dimensional linear spaces through x that belong to V . But by defini-
tion, x is in at least one (k−1)-space in V. Thus any hyperplane that contains
such a tangent space, i.e. any hyperplane that belong to X∨V , is in the Chow-
Lam locus. Both X∨V and CLV are irreducible, so we have equality whenever
their dimensions coincide. In this case the last statement of the proposition is
immediate.

Let us apply Theorem 3.2 to curves. When a curve V ⊂Gr(k,n) has a Chow-
Lam form, then k(r−k)−1 = 1. Thus either k = 1 and we are in the ordinary case
of Chow forms, or k = 2 and r = 3 and the Chow-Lam form defines a hypersurface
in Gr(n−1,n). In the latter case, the Proposition 4.1 applies, and the Chow-Lam
form defines the dual variety X∨V whenever the latter is non-degenerate.

More generally, when V ⊂Gr(k,n) has a Chow-Lam form and k(r−k)−1 =
p− 1, where p is prime, then k = 1 and we are in the ordinary case of Chow
forms, or k = p,r = p+1 and the Chow-Lam locus lives in Gr(n−1,n). So we
have the following corollary of Proposition 4.1:
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Corollary 4.2. Fix a variety V ⊂Gr(k,n),k > 1 of dimension p−1 for p prime.
Then V has a Chow-Lam form only if k = p and CLV ⊂ (Pn)∨. In this case, a
(p−1)-space P is in the recovery WV if and only if P� ⊂ X∨V .

In the case p = 2, i.e. when V is a curve with a Chow-Lam form, then k = 2.
With this assumption we can prove a stronger statement.

Corollary 4.3. Let V ⊂Gr(2,n) be a curve such that XV is not a cone. Then a
line L ∈ Pn−1 is in the recovery WV if and only if L ⊂ XV .

Proof. When the surface scroll XV is not a cone, the dual variety X∨V is a hy-
persurface which coincides with the Chow-Lam locus. If L is a line contained
in the surface XV , then every hyperplane that contains L will contain a line that
belongs to V , so L will belong to the recovery WV . For the converse, we will
show that if L is not contained in XV then we can find a hyperplane that contains
L but no line in V .

First note that since XV is not a cone, only finitely many lines in V intersects
L. Now, consider a general codimension two linear space Q that contain L. It
will intersect XV in finitely many points. So there are only finitely many lines
in V that intersect Q. But then there are only finitely many hyperplanes that
contain both Q and a line in V . Therefore a general hyperplane containing Q
will contain no line in V.

Example 4.4 (Hirzebruch surface). Consider the Hirzebruch surface

X = P(OP1(1)⊕OP1(a)).

Since X is the projectivization of a bundle, there is a map π ∶ X → P1 whose
fibers are isomorphic to P1. Then X is ruled by these fibers, all of which meet
the curve L ⊂ X corresponding to the line subbundle OP1(1). Embed X into
Pa+2, and let V be the curve in Gr(2,a+ 3) whose points are the lines in the
ruling of X . Then the image of L is a line and the recovery of V will contain this
line as a point in Gr(2,n)∖V.

For a concrete example, let a = 1. Then X is the closure of the embedding

(C∗)2→ P4

(s ∶ t)↦ [1 ∶ s ∶ s2 ∶ st ∶ s2t].

Each line in the ruling is given by fixing s. Parametrically, they are rowspans of

Ls = [
1 s s2 0 0
1 s s2 s s2] .
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These lines form a curve V ⊂Gr(2,5) given by the Plücker relations and

V(q45,q34−q25,q24−q15,q23,q13,q12).

The Chow-Lam form may be calculated parametrically by adding two rows to
Ls, and is p3 p2

4− p2 p4 p5+ p1 p2
5.

The recovered scheme will be the original curve as well as a fat point of
length 25, whose radical ideal consists of all Plücker coordinates except for q45.
This is the line spanned by [0 ∶ 0 ∶ 0 ∶ 1 ∶ 0] and [0 ∶ 0 ∶ 0 ∶ 0 ∶ 1] obtained in the
closure of the embedding by allowing t to approach infinity.

In a surface scroll XV , there may even be two lines L1 and L2 in the scroll
that are not rulings. In this case every line in the ruling is in the linear span of
L1 and L2, i.e. a P3, so n = 4 and the scroll XV is a surface of degree d1 + d2
in P3 with multiplicity d1 along L1 and multiplicity d2 along L2. In fact, we
explain the multiplicities as follows. We have that V ⊂Gr(2,4) is contained in
the quadric surface of lines meeting L1 and L2. The surface XV is the birational
image of PV(L1+L2) in P3. Here L1 is a line bundle of degree di and Li is the
image of V by a basepoint free pencil of sections of Li. The degree of XV is then
computed on PV(L1 +L2), or in P3. The map of V to Li has degree di, so XV
must have multiplicity di along Li. The degree of XV in P3 is computed as a sum
of intersection multiplicities with a line. A general line that intersect L1 and L2
will intersect XV only in these lines, and the sum of intersection multiplicities is
the sum of the multiplicities of XV along these lines, i.e. d1+d2.

Example 4.5 (Maps to a curve and a line). Consider a curve C with a d1 ∶ 1 map
ϕ1 to P1 and a birational map ϕ2 to Pn−3 with image a curve C of degree d2.
Next, we embed Pn−3 and P1 as non-intersecting linear spaces in Pn−1. Let X be
obtained by joining, for each c ∈ C, the points ϕ1(c) and ϕ2(c) in Pn−1. Then the
two maps ϕ1 and ϕ2 define a map C →Gr(2,n) with image V such that X = XV .
The recovery of V contains the line ϕ1(C) in X that does not belong to V .

Analogously, we find surfaces V ⊂Gr(3,n),n ≥ 10 for which WV ≠ V .

Example 4.6. (Maps to a surface and a plane). Suppose an abstract (not em-
bedded) surface S has two very ample linear systems L1,L2 and a basepoint free
2-dimensional linear system L3. Let XV be the 4-dimensional P2-scroll spanned
by the images of S by the sum of the three linear systems (composed possibly
with a general linear projection to Pn−1 with n ≥ 10). This gives us an embed-
ding S → V ⊂Gr(3,n) such that the plane image of S by L3 belongs to the WV
but not to V .
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Figure 2: Construction of a rational scroll

5. Multi-ruled Varieties

In this section we generalize Example 1.4 and construct subvarieties of Gr(k,n)
which have the same Chow-Lam form. We begin with an immediate corollary
of Proposition 4.1.

Corollary 5.1 (Multi-ruled varieties). Let V1,V2 be subvarieties of Gr(k,n) of
dimension k−1. Let Xi ⊂ Pn−1 be the closure of the union of linear spaces in Vi

for i = 1,2. Suppose that the duals X∨i are non-degenerate. Then X1 = X2 if and
only if V1 and V2 have the same Chow-Lam locus.

Example 5.2 (Segre varieties). Consider the Segre embedding ΣK ∶= Pk−1 ×
Pk−1 ↪ Pk2−1. Let V1 and V2 be the two (k − 1)-dimensional subvarieties of
Gr(k,k2) that parameterize (k−1)-spaces in ΣK . That is, V1 parameterizes the
(k−1)-spaces in the second factor,

V1 = {Seg({p}×Pk−1) ∈Gr(k,k2) ∶ p ∈ Pk−1},

while V2 parameterizes the (k−1)-spaces in the first factor. Then the varieties
Xi as in the Corollary 5.1 coincide with ΣK . By Theorem 0.1 in [6], the dual
variety of ΣK is non-degenerate. Thus Corollary 5.1 tells us that V1 and V2 both
have Chow-Lam locus equal to Σ

∨
k .

Example 5.3 (Multi-Segre varieties). We can also consider Segre embeddings
with more factors than two: for example, P1×P1×P1×P1↪ P15. Let Vi be the
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variety in Gr(2,16) corresponding to embedding the ith factor, and letting points
on the other factors vary. In other words, Vi is a family of lines parameterized
by P1×P1×P1. Then dimVi = 3, and so Vi has a Chow-Lam locus which lives in
Gr(16−4+3,16) =Gr(15,16). It is exactly the dual variety to the Segre variety.

More generally, for any k ≥ 2 and i ≥ 0, the Segre embedding (Pk−1)ki+2 is
ruled by ki+2 families of (k−1)-spaces. This gives an example of ki+2 varieties
in Gr(k,N) with the same Chow-Lam locus, where N = kki+2 −1. Each variety
has dimension (ki+1)(k−1) = k(r−k)−1, where r = ki+1− i+k. By Theorem
0.1 of [6] the dual variety of the Segre embedding is non-degenerate, and thus
the Chow-Lam form of each Vi is exactly this dual variety.

Example 5.4 (Linear determinantal hypersurfaces). The Segre variety defines
two varieties isomorphic to Pk−1 in Gr(k,k2). Their Chow-Lam locus lives in
Gr(k2 −1,k2) = (Pk2−1)∨ and is the dual hypersurface to the Segre variety. We
can view Pk2−1 as the space of k× k-matrices in which the Segre variety is the
variety of matrices of rank one. The dual space may then also be interpreted as
(k×k)-matrices, under the nondegenerate bilinear map

(A,B)↦ Trace(A ⋅B).

If A is a matrix of rank one, then a general tangent hyperplane to the Segre vari-
ety at A is a matrix B of corank one such that the matrix product A ⋅B vanishes.
So the dual hypersurface to the Segre variety is the matrices of corank one, i.e.
the determinantal hypersurface Sk ⊂Pk2−1 of degree k. We call a linear combina-
tion of rows in the matrix defining Sk a “generalized row.” It will be a vector of
linear forms. Each generalized row in the matrix defining Sk vanishes on a linear
space of codimension k contained in Sk, and similarly for generalized columns.
Thus Sk contains two Pk−1-families of codimension k subspaces. The variety Sk
has a degenerate dual variety, namely the Segre variety Σk itself.

We can get additional examples from linear projections of Σk. The dual va-
riety of a linear section L∩Sk of Sk coincides with the projection of Σk from L�,
as long as L� does not intersect Σk, which is possible only if L has dimension at
least 2k−1. In fact, when L� does not intersect the Segre variety, the tangent hy-
perplanes to the projected variety are precisely the tangent hyperplanes in Pk2−1

that contain L�. These hyperplanes correspond to the points on Sk that lie in L.
Suppose L has dimension m = 2k − 1.The projection of the Segre variety

gives rise to two varieties isomorphic to Pk−1 in Gr(k,2k) with Chow-Lam form
the determinantal hypersurface Dk ∶= L∩Sk. Since m = 2k−1 both the projection
of the Segre variety and Dk are hypersurfaces. They are dual hypersurfaces that
both have two rulings of (k−1)-spaces. In fact, the two families of codimension
k subspaces in Sk define, after intersection with L, two families of (k−1)-spaces
on Dk = L∩Sk. So this case gives rise to two pairs of varieties in Gr(k,2k) with
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coinciding Chow-Lam form. For the two varieties defined by rows and columns
of the (k×k)-matrices restricted to L, the Chow-Lam form defines the projected
Segre variety and has degree (2k−2

k−1 ), the degree of the Segre variety. For the two
varieties defined by the two factors in the Segre variety, the Chow-Lam form
defines the determinantal hypersurface Dk.

Example 5.5 (Cubic surface). This is a special case of Example 5.4 in which
k = 3 and thus m = 5. Consider a 3×3 matrix M filled with linear forms in six
variables. Let S denote the determinantal hypersurface cut out by detM. Then
S is ruled by two families V1,V2 of planes. A plane [a ∶ b ∶ c] in the first family
is given by setting the linear combination aR1 +bR2 + cR3 of the rows to zero.
Similarly, a plane in the second family is given by setting a linear combination
of the columns to zero. These give two subvarieties of Gr(3,6).

The Chow-Lam locus is the dual variety S∨. We may think of S∨ as a pro-
jection of the Segre variety Σ3 from (P8)∨ to (P5)∨. The Chow-Lam form is the
defining equation of S∨, and has degree (42) = 6.

There is a connection to cubic surfaces as follows. We may calculate the de-
gree of S∨ by intersecting it with a line in (P5)∨, or equivalently by intersecting
S with a generic pencil of hyperplanes in P5. The base locus L of this pencil is
a P3. The points on S∨ are hyperplanes in P5 that contains a plane in S. So the
intersection points of S∨ with L� correspond exactly to the planes in S which
meet L in a line.

Now, the restriction S∣L will be a cubic surface in L = P3. So, one can calcu-
late the degree of S∨ using this description, as follows. Write the 3×3 matrix M
as a 3×3×6 tensor. Write L as the rowspan of a 4×6 matrix, which we call ML.
Then we may restrict to L by multiplying our tensor by ML, giving a 3×3×4
tensor T . For a concrete example, we might have that the slices of T are

Tx =
⎡⎢⎢⎢⎢⎢⎣

0 1 1
2 −1 −3
0 3 3

⎤⎥⎥⎥⎥⎥⎦
, Ty =

⎡⎢⎢⎢⎢⎢⎣

2 −3 −1
−1 −3 0
3 0 −2

⎤⎥⎥⎥⎥⎥⎦

Tz =
⎡⎢⎢⎢⎢⎢⎣

0 0 2
−2 0 1
−1 −2 3

⎤⎥⎥⎥⎥⎥⎦
, Tw =

⎡⎢⎢⎢⎢⎢⎣

3 −2 0
0 3 −3
2 1 −1

⎤⎥⎥⎥⎥⎥⎦
.

Then the cubic surface S∣L is given by the vanishing of

F ∶= det

⎡⎢⎢⎢⎢⎢⎣

2y+3w x−3y−2w x−y+2z
2x−y−2z −x−3y+3w −3x+ z−3w
3y− z+2w 3x−2z+w 3x−2y+3z−w

⎤⎥⎥⎥⎥⎥⎦
.

The intersection points of S∨ with L� are the exactly set of points [a ∶ b ∶ c] in
P2 such that {aR1+bR2+cR3 = 0} corresponds to a line rather than a point. In
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other words, these are the points where the matrix [a b c] ⋅T drops rank. In
our example, we have

[a b c] ⋅T =
⎡⎢⎢⎢⎢⎢⎣

b+c 2a−3b−c 2c 3a−2b
2a−b−3c −a−3b −2a+c 3b−3c

3b+3c 3a−2c −a−2b+3c 2a+b−c

⎤⎥⎥⎥⎥⎥⎦
.

By Porteous’ formula, the degree of the degeneracy locus of [a b c] ⋅T
is 6, which is our desired degree. For example, in our case the degeneracy locus
consists of six complex points cut out by

153669b3−9842a2c+126290abc+211487b2c+29792ac2−152462bc2−21896c3,

153669ab2+127798a2c+223799abc+47621b2c−79510ac2+109111bc2−87722c3,

153669a2b+151069a2c−331777abc+513941b2c−112573ac2−104261bc2−104150c3,

153669a3−600557a2c+298853abc+542006b2c+314438ac2−752480bc2+231640c3.

If we had multiplied T with [a b c] on a different side, we would have a
matrix whose degeneracy locus consists of those generalized columns which
define lines rather than points. Thus we obtain two families of lines, six coming
from the rows and six from the columns. These form a “double six” on the cubic
surface defined by F : namely, they do not pairwise intersect and any line from
one family meets exactly five lines from another family.

6. Schubert Arrangements

In this section we explore in detail the case where V is a linear section of
Gr(k,n) by Schubert divisors. We will see that in this case the variety WV con-
tains additional linear components not in V .

Fix n,k with k ≤ n, and a partition λ = (λ0, ...,λk−1) which fits in a k×(n−k)
box. Let E0 ⊂ ... ⊂En−1 be the standard flag, where Ei is the linear space spanned
by the first i+1 coordinate points. We define the Schubert variety Ωλ to be

Ωλ = {L ∈Gr(k,n) ∶ dim L∩En−k+i−λi ≥ i for all i}.

For convenience we may sometimes write our partitions in the form mam . . .1a1

where a j is the number of parts of size j. For example, λ = (3,3,2,2,2,2,0)
would be written as 3224. For more on Schubert varieties, see [5].

Let H be a linear space of codimension k in Pn−1. Let Ω1(H) ⊂ Gr(k,n)
be the variety of subspaces in Pn−1 which meet H. In our notation, Ω1(H) is
isomorphic to the Schubert variety Ω1, i.e. the Schubert variety of codimension
1 in Gr(k,n). In this section, we will consider Schubert varieties of the form
Ω

j
1 =Ω1(H1)∩ ...∩Ω1(H j), for j general linear spaces Hi, with j = k(n− r)+1
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for some k < r < n. We will refer to the Schubert varieties in WV ∖V as recovered
Schubert components. Note that our notation for Ω

j
1 does not depend on n; we

will show that given j, there is a set of recovered Schubert components which
will appear for any n large enough.

Example 6.1 (Threefold in Gr(2,5)). Choose H1,H2,H3 general planes in P4.
Consider the threefold V =Ω

3
1 of lines in P4 meeting all three planes. The Chow-

Lam locus of V will live in Gr(3,5). Then WV is the variety of all lines L such
that for all planes Q containing L, Q also contains a common transversal to
H1,H2, and H3. We claim that WV also contains three extra components of each
of two equivalence classes:

i) The Schubert variety Ω3 of lines meeting Hi∩H j

ii) The Schubert variety Ω22 of lines contained in Hi.

Let Q≅P2 be any plane. For a generic choice of Q, the planes H1,H2,H3 will
intersect Q in three points p1, p2, p3, which do not have a common transversal.
To show that L is in the recovery, we need to check that the condition Q ⊃ L
forces p1, p2, p3 to have a common transversal in Q.

For case (i), suppose L meets H1∩H2 and consider the geometry in a generic
plane Q ≅ P2 containing L. Then Q also contains the point p =H1∩H2 ∈ L. Thus
the line pp3 is a common transversal to H1,H2,H3.

For case (ii), suppose L is contained in H1 and consider a generic plane Q
containing L. Then H1 intersects Q not in a point, but a line: the line L itself.
Then the line p2 p3 will intersect L in Q by Bézout’s theorem. Thus p2 p3 will be
a common transversal to H1,H2,H3. Both these cases are illustrated in Figure 3.

Finally, we note that V = Ω
3
1 ⊂ Gr(2,n) will have these recovered compo-

nents for all n ≥ 5, since nothing about the geometry in Q uses the value of n.

Example 6.2 (Codimension seven variety). Similarly, Ω
7
1 ⊂ Gr(2,n) will have

recovered Schubert components of two classes: (73) of type Ω62 (lines contained
in Hi∩H j ∩Hk) and (74) of type Ω7 (lines meeting Hi∩H j ∩Hk ∩Hl).

To see this, we observe that the Chow-Lam locus lives in Gr(5,n). Consider
a general subspace Q in the Chow-Lam locus. Then Q has dimension 4 and
contains seven planes Pi ∶= Q∩Hi. A generically chosen Q will not contain a
transversal to P1, ...,P7. We would like to show that if Q is specially chosen to
contain a line L in one of the Schubert classes above, then Q must also contain
a transversal line L′ to the seven Pi.

For an example of the first type, consider the case n = 8 and let L denote the
line H1∩H2∩H3. Suppose Q contains L. Then any line L′ in Q which meets L
and P4, ...,P7 will be a common transversal to the seven planes. The subvariety
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p = p1 = p2

p3

L

L is in Ω3

p2

p3

L = H1 ∩Q

L is in Ω2,2

Figure 3: Geometry in Q ≅ P2

of such L′ in Gr(2,5) has cohomology class [Ω2][Ω1]4 ≠ 0, and thus a common
transversal must exist.

For an example of the second type, consider the case n = 9 and a line L that
meets the point H1 ∩ ...∩H4. Suppose Q contains L, and thus the intersection
of the four hyperplanes Then any line L′ in Q through the point H1 ∩ ...∩H4
and meeting P5,P6,P7 will be a common transversal. This has class [Ω3][Ω1]3,
which is nonzero in H∗(Gr(2,5)).

Note that we have conditions on n in both cases for these components to
actually appear for generic Hi. For the class Ω62 , we must have that the three Hi

intersect in at least a line in Pn−1, so that L can be contained in the intersection.
Thus we want (n−1)−codim H1∩H2∩H3 = (n−1)−3 ⋅2≥ 1, meaning that n is at
least 8. For the second class, we want that (n−1)−codim H1∩H2∩H3∩H4 ≥ 0,
so n ≥ 9. There is also a cohomological bound on n. We want the classes of Ω62

and Ω7 to be nonzero in Gr(2,n), so n must be at least 8 and 9, respectively.

It turns out that Ω
ki+1
1 ⊂ Gr(k,n) will have additional recovered Schubert

components for all i, provided that n is sufficiently high. Here we list some
recovered components for small k and i, assuming that n is higher than some
lower bound which we describe in Theorem 6.3.

Theorem 6.3. Fix k and i > k. Consider V ∶=Ω
ki+1
1 ⊂Gr(k,n) for n > k(i+1)+1.

Then the Chow-Lam recovery WV will contain recovered components of Schu-
bert types Ωki+1,Ω(k(i−1)+2)2 ,Ω(k(i−2)+3)3 , ...,Ω(k(i−k+1)+k)k .

Proof. Fix a between 0 and k−1, and fix any i+1−a of the ki+1 codimension
k spaces Hi. Let H denote their intersection of codimension k(i+1−a) in Pn−1.
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k i V Recovered Interpretation, with ∩iH ∶=
H1∩ . . .∩Hi

Bounds on
n

2 3 Ω
7
1 Ω7,Ω62 line meets ∩4H, line con-

tained in ∩3H
9, 8

2 4 Ω
9
1 Ω9,Ω82 line meets ∩5H, line con-

tained in ∩4H
11,10

2 i Ω
2i+1
1 Ω2i+1,Ω(2i)2 line meets ∩i+1H, line con-

tained in ∩iH
2i+3, 2i+2

3 4 Ω
13
1 Ω13,Ω112 ,Ω93 plane meets ∩5H, plane

meets ∩4H in a line, plane
contained in ∩3H

16,14,12

3 i Ω
3i+1
1 Ω3i+1,

Ω(3i−1)2 ,
Ω(3i−3)3

plane meets ∩i+1H, plane
meets ∩iH in a line, plane
contained in ∩i−1H

3i + 4, 3i +
2, 3i

Table 1: Some recovered components for some small values of k and i

Consider the Schubert variety of linear spaces of projective dimension k − 1
which intersect H in dimension at least a. This is isomorphic to Ω(k(i−a)+a+1)a+1 .

We will show that this Schubert variety is a recovered component of Ω
ki+1
1 .

For example, for i = 3, k = 2 and a = 0, we may fix codimension 2 spaces
H1,H2,H3,H4, and consider the Schubert variety of lines in Pn−1 which intersect
the codimension 8 intersection H ∶=H1∩H2∩H3∩H4. This is a Schubert variety
isomorphic to Ω7. It is nonempty only if H is nonempty, i.e. n ≥ 9.

In fact, there are (k−1)-spaces that intersect H in dimension at least a only
if the dimension of H in Pn−1 is at least a. Thus we must have

n−1−codim H ≥ a,

where codim H = k(i+1−a). So

n ≥ k(i+1)+1−a(k−1).

This lower bound on n is largest when a = 0, in which case it is k(i+1)+1.
Let us turn to the ambient Grassmannian of the Chow-Lam locus. The di-

mension of Ω
ki+1
1 is k(n− k)− (ki+ 1) = k(r − k)− 1 where r = n− i. Thus its

Chow-Lam locus is a subset of Gr(i+k,n).
Now, choose a (k− 1)-space P intersecting H in at least dimension a, so

that P is in the relevant Schubert variety. Next, choose a generic space Q ≅
Pi+k−1 containing P. Let P1, ...,Pki+1 be the intersections of the codimension k-
spaces H1, ...,Hki+1 with Q. We would like to show that the Pi have a common
transversal P′ ∈Gr(k,Q̂) =Gr(k, i+k) in Q.
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Without the assumption that Q contains P, the ki+1 linear spaces Pi do not
generically have such a transversal; indeed, meeting Pi is a codimension one
condition on P′ ∈Gr(k, i+k) and the total dimension of Gr(k, i+k) is ki. How-
ever, if Q contains P, then Q also intersects H in at least dimension a and any
(k−1)-space P′ in Q meeting H and the remaining Pi is a common transversal.
The class of such P′ is Ωi−a ⋅Ωki+1−(i+1−a)

1 , which is nonzero in the cohomology
ring of Gr(k, i+k). Thus there exists a common transversal.

We caution that not all recovered components of Ω
ki+1
1 ⊂Gr(k,n) are of the

form in Theorem 6.3. For example, the Schubert variety Ω2,2∩Ω3 of lines con-
tained in H1 and intersecting H2∩H3 is in the recovered locus of Ω

5
1 ⊂Gr(2,7).

Indeed, consider a line L in this Schubert variety. In a generic 3-space Q ≅ P3,
there are five lines Li ∶=Hi∩Q. If Q contains L, then L1 = L intersects H2∩H3 at
a point p. Then p must be in Q, so it is also the intersection point of the lines L2
and L3. Thus there are common transversals of the five lines: those which pass
through the point p and intersect the lines L4,L5, of which there are one since
[Ω2] ⋅ [Ω1]2 = 1 in Gr(2,Q̂). This is shown in Figure 4. However, this case is
special because i is small, which allows for the possibility that Li is equal to L;
for i large, Hi∩Q will have dimension higher than k.

L = L1 L2

L3

L4 L5

Figure 4: Geometry of the lines Li in Q ≅ P3

Conjecture 6.4. If i ≥ k then all recovered components of Ω
ki
1 are of the form in

Theorem 6.3.

One could also ask what happens when a linear section of Gr(k,n) is not
the intersection of Schubert hyperplane sections: do generic (k(r − k) − 1)-
dimensional linear sections of the Grassmannian have residual components in
their Chow-Lam recovery? This is difficult to establish in general. The special
case of curves may indicate what to expect. Let V be the intersection of Gr(2,n)
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with a general linear space of codimension 2n−5 in P(
n
2)−1. Then V is a curve,

and if n ≠ 4, there is no line L in XV that does not belong to V , i.e. WV = V. This
is because XV is smooth and therefore contains a line not in the ruling only if V
is rational. But, by adjunction, the canonical divisors on V are the restriction of
hypersurfaces of degree 2n−5−n = n−5, so V is rational only if n = 4. We note
that in this case V must have degree 2.

A threefold example shows that the analysis in general may be more in-
volved. In it we are able to prove there are no residual components, using the
tools we developed in Section 3.

Proposition 6.5. Let Q be the intersection of three generic hyperplanes in the
Plücker space P9 of Gr(2,5), and let V =Q∩Gr(2,5). Then WV is equal to V,
i.e. has no residual components.

Proof. Let V be Q∩Gr(2,5). Then V is a three-fold and r = 4. Suppose there
is a recovered line L. By Theorem 3.2, we must have that the dimension of the
space V0 of lines in V meeting L is at least two.

Since Q is generic, the variety V is a smooth Fano threefold of degree 5. In
particular it has Picard rank one with Picard group generated by the class of a
hyperplane section (cf. [7, Corollary 6.6]). Note that V0 is a divisor in V. Thus
its class is some multiple of the hyperplane class in V.

We can describe V0 even more explicitly. Let TL denote the tangent space
TLGr(2,5) at the point L. The variety C ∶= TL∩Gr(2,5) is four-dimensional, and
is a cone over P1 ×P2 ⊂ P5 in P6. It is the four-dimensional Schubert variety
Ω3 of lines in Gr(2,5) meeting L. Since V is smooth, the linear space Q does
not contain [L]. So Q∩C is the intersection of P1 ×P2 ⊂ P5 with at least one
hyperplane. Since V0 is a surface in this intersection, it has degree at most 3. But
the degree of every surface in V is divisible by five, so this is a contradiction.

Based on these first examples we boldly conjecture:

Conjecture 6.6. Fix r, with k < r ≤ n. Let V be a generic linear section of
Gr(k,n) of dimension k(r−k)−1. Then the algebraic sets WV and V coincide.

Finally, we return to the study of positroid varieties laid out in the intro-
duction. These are boundary components of the positive Grassmannian. Their
ideals are given explicitly by setting certain Plücker coordinates to zero. Un-
derstanding projections of these varieties would aid in understanding the ampli-
tuhedron itself. The class of examples in Theorem 6.3 includes certain positroid
varieties, as some of them can be cut out by generic Schubert divisors.

Corollary 6.7. Let n = 2i+1 be odd and at least three. Consider the positroid
variety V in Gr(2,2n) given by the vanishing of p12, ..., p2n−1,2n. Then WV ≠ V.
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Proof. Each condition of the form pi,i+1 =0 defines a Schubert hyperplane. Thus
V is of the form Ω

n
1, and we only need to check the bounds in Theorem 6.3. But

2n > 2(i+1)+1 = n+2 whenever n is greater than two.

It would be interesting to undertake a systematic study of WV where V is a
positroid variety, using the tools developed in this paper.
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