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HOW TO STAB A POLYTOPE

S. SEEMANN - F. ZAFFALON

We study the set of linear subspaces of a fixed dimension intersecting a
given polytope. To describe this set as a semialgebraic subset of a Grass-
mannian, we introduce a Schubert arrangement of the polytope, defined
by the Chow forms of the polytope’s faces of complementary dimension.
We show that the set of subspaces intersecting a specified family of faces
is defined by fixing the sign of the Chow forms of their boundaries. We
give inequalities defining the set of stabbing subspaces in terms of sign
conditions on the Chow form.

1. Introduction

The amplituhedron, introduced by Arkani-Hamed and Trnka [3], has initiated
the use of new polyhedral and algebro-geometric methods in the study of scat-
tering amplitudes in quantum field theories. For positive integers k,n,m such
that k+m ≤ n, and given a n× (k+m) totally positive matrix, the amplituhe-
dron An,k,m is defined as the image of the totally non-negative Grassmannian
Gr≥0(k,n) under the map Z̃

An,k,m = Z̃(Gr≥0(k,n))⊆ Gr(k,k+m),

where Z̃(C) =C ·Z, with C a k×n matrix representing the point in Gr≥0(k,n). In
particular, each point in the amplituhedron is a subspace intersecting the cyclic
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polytope defined by Z. The case of k = 2,m = 2 has been proven to be a positive
geometry [20], as introduced in [1]. Here the amplituhedron An,2,2 is a set of
lines in P3 that can be written as a product of a totally non-negative line in
Pn−1 with a fixed totally positive matrix. This condition translates to lines in P3

intersecting the cyclic polytope defined by Z in a specific way. More generally,
loop amplituhedra are sets of linear subspaces intersecting a tree amplituhedron.
For one loop and k = 1, we are once again interested in describing some set of
linear subspaces stabbing a cyclic polytope. See Section 2.3 for more details.

In this paper we consider a generalization of these questions. Given a full-
dimensional polytope P in projective space Pn−1 and given a positive integer
k < n, how can we characterize the k-stabbing set P[k] of k-dimensional lin-
ear subspaces intersecting the polytope P? In order to characterize this set we
introduce a hyperplane arrangement in the Grassmannian Gr(k,n) defined by
the Schubert varieties describing subspaces intersecting (n−k−1)-dimensional
faces of the polytope P. We divide the set of linear subspaces intersecting P into
stabbing chambers, based on the families of faces of the polytope they inter-
sect. In Theorem 3.1 we show that each stabbing chamber is defined by some
Chow forms having fixed sign. This allows us to provide inequalities defining
the semialgebraic set P[k] by requiring that the sign condition is satisfied by the
Chow forms of the boundaries of at least one (n−k−1)-dimensional face of P,
Theorem 4.1. In Section 5 we focus on special classes of polytopes and study
the relation of our stabbing sets with other important semialgebraic subsets of
Grassmannians.

Earlier work studying hyperplane intersections of a given polytope with the
goal of optimizing quantities such as the volume or the number of k-faces of
such a section has been carried out in [5]. The slicing chambers studied there are
examples of the stabbing chambers we study in Section 3. Hyperplanes slicing
cyclic polytopes have also been studied in the context of the amplituhedron [14].
Our aim is to generalize both settings to general polytopes being “stabbed” with
subspaces of any dimension.

2. Schubert arrangements and Chow forms

We start by recalling the definitions of the main objects of our interest, Grass-
mannians and Schubert divisors. We then show how to associate a Schubert
arrangement to a polytope. Finally, we study in more detail the loop amplituhe-
dron and explain the relations to the problem we are considering.
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2.1. Grassmannians and Schubert divisors

In this paper, the field is fixed to be R. Given a vector space V ⊆ Rn of dimen-
sion k , the image P(V ) ⊆ Pn−1 of V under the equivalence map defining the
projective space is a linear space of dimension k− 1. By abuse of notation we
denote this space by V , but always refer to the dimension in affine space.

Notation 2.1. For any positive integers k,n with k ≤ n, we use the following
notation: [n] = {1, . . . ,n},

([n]
k

)
= {I ⊆ [n] such that |I|= k}.

The Grassmannian Gr(k,n) is the set of k-dimensional linear subspaces of
Rn. It can be realized as a projective variety inside P(

n
k)−1 via the Plücker em-

bedding. Such an embedding can be realized in two ways, corresponding to
different parameterizations of points in Gr(k,n).

• If V ∈ Gr(k,n) is the row-span of a k × n matrix M, the dual Plücker
coordinates are defined as the k×k maximal minors of the matrix M. For
I ∈

([n]
k

)
, we will denote by qI the dual Plücker coordinate labeled by I.

• If V ∈ Gr(k,n) is the kernel of an (n−k)×n matrix N, the primal Plücker
coordinates are defined as the (n−k)×(n−k) maximal minors of the ma-
trix N. For J ∈

( [n]
n−k

)
, we will denote by pJ the primal Plücker coordinate

labeled by J.

In both cases a vectors of Plücker coordinates are well-defined points in P(
n
k)−1

and they do not depend on the choice of the matrix. Moreover, primal and dual
Plücker coordinates satisfy the following equality as points in projective space:

(qI)I∈([n]k )
= ((−1)sign(I)p[n]\I)I∈([n]k )

,

where sign(I) = sign(σI) with σI such that if I = {i1 < · · · < ik} and [n] \ I =
{ j1 < · · ·< jn−k}, then σI = (i1 . . . ik j1 . . . jn−k).

Definition 2.2. The totally non-negative Grassmannian Gr≥0(k,n) (resp. totally
positive Grassmannian Gr>0(k,n)) is the semialgebraic subset of Gr(k,n) given
by points V ∈ Gr(k,n) whose non-zero dual Plücker coordinates have all the
same sign (resp. whose dual Plücker coordinates are all non-zero and have all
the same sign). A totally non-negative matrix (resp. totally positive matrix) is
any matrix representing an element of the totally non-negative Grassmannian
(resp. totally positive Grassmannian).

We are interested in studying semialgebraic sets inside the Grassmannian
Gr(k,n). In order to characterize and describe such sets, we will make use of
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well-studied subvarieties of the Grassmannian, Schubert varieties. An intro-
duction to the topic can be found in [10]. In particular, we are interested in
Schubert divisors in Gr(k,n), i.e. Schubert varieties of codimension 1. These
are varieties inside Gr(k,n) given by points intersecting non-trivially a fixed
(n− k)-dimensional linear space W . We denote such a Schubert divisor by HW .

Schubert divisors are defined by one linear equation in the Plücker coordi-
nates of Gr(k,n). Indeed,

HW =

{
V ∈ Gr(k,n) | det

(
V
W

)
= 0

}
,

where we are identifying the spaces V and W with respectively a k× n and a
(n− k)× n dual representing matrices. The equation defining the variety HW

can also be seen as the Chow form of the linear space W , i.e. the unique equa-
tion that vanishes exactly when the input subspace V intersects the fixed sub-
space W . We denote the Chow form of W by CW . Suppose W has dual Plücker
coordinates given by (qI(W ))I∈( [n]

n−k)
and let (pI)I∈( [n]

n−k)
and (q[n]\I)I∈( [n]

n−k)
be re-

spectively the primal and the dual Plücker coordinates on Gr(k,n). Then, by
Laplace expansion, the Chow form CW has equation

CW = ∑
I∈( [n]

n−k)

(−1)sign(I)qI(W )q[n]\I

= ∑
I∈( [n]

n−k)

qI(W )pI.
(1)

where the first polynomial lies in C
[
qJ | J ∈

([n]
k

)]
and the second polynomial

lies in C
[
pI | I ∈

( [n]
n−k

)]
. Chow forms are well-studied objects, which are defined

in general for irreducible projective varieties. For an introduction, see [7].

Definition 2.3. A Schubert arrangement in Gr(k,n) is a finite collection of
Schubert divisors, H= {H1, . . . ,Hd}.

The study of Schubert arrangements was introduced in [18] and has appli-
cations in algebraic statistics and particle physics.

2.2. The Schubert arrangement of a polytope

The main object of study is the set of linear spaces of a given dimension which
intersect a projective polytope. In this context, a polytope P⊂Pn−1 is the convex
hull of finitely many points v1, . . . ,vm ∈ Rn, i.e.

P =

{
m

∑
i=1

civi | ci ≥ 0

}
.
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Equivalently, P is the image under the projection map Rn → Pn−1 of a cone over
a polytope P′ ⊂ H, for some hyperplane H not containing the origin.

Definition 2.4. Let P ⊆ Pn−1 be a full-dimensional polytope and let 1 ≤ k ≤ n.
The set of k-dimensional linear spaces intersecting the polytope P is denoted by

P[k] = {V ∈ Gr(k,n) |V ∩P ̸= /0},

and called the k-stabbing set of P.

In the following we will use the terms “intersecting” and “stabbing” in-
terchangeably, while the term “slicing” will be used to denote codimension 1
spaces intersecting the given polytope. We first study an open subset of P[k],
containing spaces intersecting the polytope in a generic way.

Definition 2.5. Let P ⊆ Pn−1 be a full-dimensional polytope and let 1 ≤ k ≤
n. The set of k-dimensional linear subspaces intersecting P only in faces of
dimension n− k and bigger is denoted by

P[k]
max = {V ∈ P[k] |V ∩G = /0 for all G face of P with dim(G)< n− k}.

and is called maximally k-stabbing set of P.

We characterize the spaces P[k] and P[k]
max using a natural Schubert arrange-

ment associated to this polytope, defined as follows.

Definition 2.6. Let P ⊆ Pn−1 be a full-dimensional polytope and let 1 ≤ k ≤ n.
The Schubert arrangement

Hk
P = {HV |V = span(F) for F an (n− k−1)-dimensional face of P}

is called the k-face Schubert arrangement of P.

Note that P[k]
max ⊇ P[k] \Hk

P, that is, k-dimensional subspaces V that stab the
polytope P and are not contained in any Schubert divisor from the k-face Schu-
bert arrangement of the polytope are maximally stabbing the polytope.

In particular, P[k] and P[k]
max are characterized in terms of the sign vector of

the Chow forms defining the Schubert arrangement. Unlike in the case of cyclic
polytopes, which arises frequently in applications to physics, general polytopes
do not come with a natural order on the vertices. In order to have a consistent
sign characterization of the set P[k], we fix the following setup.

Setup 2.7. Let P ⊆ Pn−1 be a full-dimensional polytope and fix 1 ≤ k ≤ n. Fix
an order G1, . . . ,G f on the (n− k−1)-dimensional faces of P. For each face Gi
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choose n−k linearly independent vertices vi
1, . . . ,v

i
n−k. Let Mi be the (n−k)×n

matrix containing vi
1, . . . ,v

i
n−k in its rows, in the given order. Define the Chow

form of Gi to be
CGi = ∑

I∈( [n]
n−k)

qI(Mi)pI.

The vector of Chow forms of P is Ck
P = (CG1 , . . . ,CG f ).

With this definition, the vector of Chow forms defines a point in projective
space whenever evaluated on a point of Gr(k,n).

Lemma 2.8. For k,n,P fixed as above, the vector of Chow forms Ck
P(V ) ∈ P f−1

for every V ∈ Gr(k,n), where f is the number of (n− k−1)-dimensional faces
of P.

Proof. We need to show that there is no V such that Ck
P(V ) = 0. In other words,

we need to show that there is no linear space V intersecting every linear span of
(n−k−1) faces. We proceed by induction over n. For the base case let n= 3, so
P ⊂ P2 is a planar full dimensional polytope. For k = 1, then Ck

P(V ) = 0 if and
only if V is a point in Pn contained in all linear span of edges of a 2 dimensional
polytope. For k = 2, V is a line containing all vertices of P. Both cases are not
possible due to the full-dimensionality of P.

Assume by induction that the vector of Chow forms Ck
P(W ) is not zero for

any ℓ < n−1 dimensional polytope P and for all W ∈ Gr(k, ℓ) with k < ℓ. Sup-
pose by contradiction that there exist some (n−1)-dimensional polytope P and
V ∈ Gr(k,n) with Ck

P(V ) = 0. Since V is not contained in span(F) for every
(n − k − 1)-dimensional face F , there exists an (n − k − 1)-dimensional face
F ′ of P such that V ∩ span(F) has dimension smaller than k. Then, Ck

F(V ∩
span(F)) = 0, contradicting the induction hypothesis.

Finally, it is easy to see that the vector Ck
P(V ) is well-defined in projective

space, that is, evaluations of Ck
P at different representative of the same linear

space V differ by a scalar multiple, by applying eq. (1).

We will be interested in comparing the signs of points in a projective space.
Formally, given v ∈ PN with homogeneous coordinates (v0, . . . ,vN), we define
sign(v) ∈ {+,0,−}N+1 to be the vector defined by

sign(v)i =


+ if vi > 0
0 if vi = 0
− if vi < 0.

Let α,β ∈ {+,0,−}N+1 be two sign vectors. We denote by −α the sign vector
obtained by swapping all the signs. We say that α ≡ β if α = β or α =−β . De-
note by SN the set of sign vectors {+,0,−}N+1 modulo the equivalence relation.
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The set SN has a partial order defined as follows. Two sign vectors α,β ∈ SN

are such that α ≤ β if αi = βi for each i = 0, . . . ,N such that αi ̸= 0. That is,
α ≤ β if α can be obtained from β by adding some zeroes.

2.3. Loop amplituhedra and stabbed polytopes

In this section we review in more detail the definitions of tree and loop ampli-
tuhedra and explain the relations with the question we are answering. In order
to do so, we start by recalling the definition of the loop Grassmannian, as intro-
duced in [1].

Definition 2.9. Given a sequence k := (k1, . . . ,kL) of positive integers, the L-
loop Grassmannian Gr(k,n;k) is the family of collections of subspaces VS ⊂Rn

indexed by S, where S := {s1, . . . ,sl} is a subset of k with kS := ks1 + · · ·+
ksl ≤ n− k, such that dimVS = k+ kS and VS ⊂ VS′ for S ⊂ S′. The totally non-
negative loop Grassmannian Gr≥0(k,n;k) is the subset of collections of totally
non-negative subspaces, where a subspace V ⊂ Rn is totally non-negative if all
its nonzero Plücker coordinates have the same sign.

This generalization of the totally non-negative Grassmannian allows us to
define the loop amplituhedron.

Definition 2.10. Let Gr≥0(k,n;k) be a totally non-negative loop Grassmannian
with ℓ := k1 = · · · = kL. A totally positive Z ∈ Mat(n,k +m) with k + Lℓ ≤
k+m ≤ n defines a map

Z̃ : Gr≥0(k,n;k)→ Gr(k,k+m;k)

by mapping each subspace individually. The loop amplituhedron A(k,n,m;ℓ,L)
is the image of the totally non-negative loop Grassmannian Gr≥0(k,n;k) under
this map.

If we don’t require Z to be totally positive, the image of the potentially
rational map Z̃ is called a loop-Grasstope.

Remark 2.11. For a totally positive matrix Z, the map Z̃ is well-defined for
non-negative subspaces of arbitrary dimension [15] and respects incidences, so
it is a well-defined map into the target loop Grassmannian. More generally,
grasstopes have been studied in detail for the m = 1 case [17].

The most studied case is the tree amplituhedron, i.e. without any loops. As
seen in the introduction and studied more in detail in Section 5.1, amplituhedra
can be interpreted as a set of lines stabbing a cyclic polytope. Here we show
that higher loop amplituhedra are also related to stabbing sets.
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Let us focus on the 1-loop amplituhedron. The L = 1 loop Grassman-
nian Gr(k,n;(ℓ)) is also known as the partial flag variety Fℓ(k,k+ ℓ) of par-
tial flags V1 ⊂ V2, where dim(V1) = k and dim(V2) = k + ℓ. The loop am-
plituhedron A(k,n,m;ℓ,1) is then given as a subset of the product of tree ampli-
tuhedra Ak,n,m and Ak+ℓ,n,m. For k = 1 and L = 1, the 1-loop amplituhedron
A(1,n,m;ℓ,1) ⊂ Fℓ(1,1+m) ⊂ Gr(1,1+m)×Gr(1+ ℓ,1+m) is a subset of the
incidence correspondence

IP×P[ℓ] ⊂ Gr(1,1+m)×Gr(1+ ℓ,1+m),

where P is the cyclic polytope A(1,n,m;0,0) ⊂ Gr(1,1+m) ∼= Pm. In particular,
there is a projection of the loop amplituhedron into the ℓ-stabbing set of the
cyclic polytope

π : A(1,n,m;ℓ,1) → P[ℓ].

In order to understand the loop amplituhedron, characterizing the image of π is
necessary, as well as understanding its fibers.

Example 2.12. Let k = 2, n = 4, m = 2, L = 1, ℓ = 1 and Z = Id. Then, the
image of the 1-loop amplituhedron A(1,4,2;1,1) in P[k] consists of totally non-
negative lines intersecting the simplex ∆ ⊂ P3. A element V in Gr(k,n) is totally
non-negative, if and only if every vector v ∈V viewed as a sequence of numbers
changes sign at most k−1 times, [13, Theorem 1.6]. Hence the line V ∈Gr(2,4)
is totally non-negative, and thus in the image of π , if and only if it does not pass
through points with one of the following sign vectors

(+,+,−,+),(+,−,+,+),(+,−,+,−),(+,−,−,+).

3. Stabbing sets and Chow forms

In this section we will describe how sign vectors characterize the sets P[k] and
P[k]

max. First, we restrict to study the set P[k]
max. We do this by decomposing the set

based on how the k-subspace intersects the polytope. We then show that each
piece of this decomposition can be described by fixing some signs in the vector
of Chow forms.

3.1. Chamber decomposition of P[k]
max

Consider the chamber decomposition of P[k]
max defined as follows. For V ∈ P[k]

max,
the associated chamber contains all the k-dimensional subspaces of Rn that stab
the polytope in the same (n− k)-dimensional faces. Formally, let

SP(V ) =

{
W ∈ Gr(k,n)

∣∣∣∣W ∩ relint(F) ̸= /0 ⇐⇒ V ∩ relint(F) ̸= /0
for all (n− k)-dim. faces F of P

}
.
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These sets are called stabbing chambers of P. Given a stabbing chamber SP(V ),
we say that SP(V ) is determined by faces F1, . . . ,Fr of P if V stabs them and only
them among all the (n− k)-dimensional faces of P. We denote by FP(V ) =
{F1, . . . ,Fr} the set of determining faces of a stabbing chamber.

Clearly, stabbing chambers define a decomposition of P[k]
max, that is, for every

V,W ∈ P[k]
max, the corresponding chambers SP(V ) and SP(W ) are either equal or

disjoint. In Theorem 3.1 we prove that stabbing chambers of P can be charac-
terized by the signs of some of the Chow forms associated to P. Formally, given
a stabbing chamber SP(V ) with determining faces FP(V ), denote by

Ck
P|F(V ) = (CG | G is a facet of F for some F ∈ FP(V )).

Fixing the sign of this sub-vector of Chow forms describes the stabbing chamber
of V .

Theorem 3.1. The following holds:

SP(V ) = {W ∈ Gr(k,n) | sign(Ck
P|F(V )(V ))≡ sign(Ck

P|F(V )(W ))}.

Proof. Let V ∈P[k]
max with determining faces of the corresponding chamber given

by FP(V ) = {F1, . . . ,Fr}. Let W ∈ SP(V ), we want to prove that the vector of
Chow forms evaluated at W has the same sign vector as the one of V when
restricting to the facet of the determining faces.

The intersection V ∩P is a (k−1)-dimensional polytope given as the convex
hull of V ∩Fi = vi, for i = 1, . . . ,r ≥ k. Then V can be represented as a k× n
matrix containing k of the vectors vi as its rows. Without loss of generality, we
can assume that these are the first k points vi. We will denote this matrix by V .
We want to show that we can move the points vi to the points of intersection
W ∩Fi without changing the signs of the Chow forms.

Let wi =W ∩Fi and consider the matrix

U1
t :=


(1− t)v1 + tw1

v2
...

vk

 .

For every t ∈ [0,1], the space defined by the matrix U1
t lies in Gr(k,n), by con-

vexity of the polytope. Hence the map t 7→U1
t is a well-defined path in Gr(k,n).

Moreover, (1− t)v1 + tw1 ∈ relint(F1) for each t ∈ [0,1]. The Plücker coordi-
nates are linear in t along this path. Hence, each Chow form of the facets of F1
is non-zero on each Ut , for t ∈ [0,1]. Since the Chow forms are continuous and
linear in the Plücker coordinates, this implies that their sign does not change
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in the path from V = U1
0 to U1

1 . Repeat the same operation for i = 2, . . . ,k by
defining

U i
t :=



w1
...

wi−1
(1− t)vi + twi

vi+1
...

vk


.

In each path we never cross any boundaries of Fi, hence the sign of the Chow
forms are fixed for every facet of Fi. By repeating the same operation for any
k-subset of the determining faces F1, . . . ,Fr we obtain the desired result, i.e.

sign(Ck
P|F(V )(V )) = sign(Ck

P|F(V )(W )).

Suppose now that the sign characterization is true for some W ∈ Gr(k,n)
and assume by contradiction that W ̸∈ SP(V ). Then there exists some face Fi ∈
FP(V )\FP(W ). Without loss of generality, we can assume that i = 1. Let wi =
W ∩span(Fi) and define the matrices U1

t as above. We can choose representative
of wi such that the signs of CP(V )|F(V ) and CP(W )|F(V ) are the same in affine
space. By assumption, the intersection of U1

t with span(F1) moves outside of
F1, hence there exists a t0 ∈ [0,1] such that U1

t0 intersects a facet G of F1. Since
the Plücker coordinates of Ut are linear in t and the Chow forms are linear in
the Plücker coordinates of Gr(k,n), CG(U1

t ) changes sign along the path for
t ∈ [0,1]. Since we defined w1 to be the intersection of W with span(F1), the
sign of CG will stay fixed as we perform the paths defined by U2

t , . . . ,U
k
t . Hence

we obtain that sign(CG(W )) is different (in affine space) from sign(CG(V )),
against the hypothesis. It follows that W ∈ SP(V ).

Note in particular that there is a dense subset of each stabbing chamber
SP(V ) which is given by the union of finitely many regions in the complement
of the k-face Schubert arrangement of P. As a corollary of the proof of the pre-
vious theorem we obtain the following result about the topology of the stabbing
chambers of P.

Corollary 3.2. The closure of the stabbing chambers cl(SP(V )) of the Schubert
arrangement Hk

P in P[k] are contractible.

Proof. By the proof of 3.1, for W ∈ SP(V ) and V ∈ P[k]
max there is a path from V

to W where the sign(Ck
P|F(V )) stays constant.
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Figure 1: A visual representation of Example 3.4. We can see that the line V
stabs the simplex and the line W doesn’t. Moreover we can see the points that
the path constructed in the proof of Theorem 3.1 would follow. These exit the
polytope without crossing any divisor in the Schubert arrangement considered.

Remark 3.3. An interesting problem in the context of Schubert arrangements is
counting the number of components in its real region. In general, these regions
are not uniquely defined by the sign vector of the defining equations. See for
example [18, Chapter 5], where it is possible to observe that Theorem 3.1 might
fail if the Schubert arrangement does not come from the faces of a polytope. For
more details about the number of regions in real and complex Schubert arrange-
ment, their connection to ML-degrees and a study of their Euler characteristic
see [6, 18].

Example 3.4 ([18, Example 5.2]). Consider the four lines l1, . . . , l4 ⊂ P3 with
respective Chow forms p12, p14, p23, p34. They are not the linear spans of the
edges of a convex polytope, but they are the linear spans of four of the edges of
the simplex ∆ ∈ P3, so Theorem 3.1 does not apply. Consider the two lines V
and W spanned by

V =

(
1 0 1 1
0 1 2 1

)
, W =

(
1 0 1 −1
0 1 −2 1

)
.

The line V stabs the simplex ∆ through the facets 134 and 234, and W does not
intersect ∆. The sign vector (p12, p14, p23, p34) = (+,+,−,−) of V and W are
equal. By Theorem 3.1 we know that the signs of V and W on p13, p24 must be
different. This is indeed the case. See Figure 1 for a visual representation of a
move from V to W .

Since Schubert arrangements arising from polytopes are not generic, we ex-
pect them to have nice properties. In particular, we conjecture that the following
holds.
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Conjecture 3.5. Given a full-dimensional polytope P ⊆ Pn−1, the number of
cells in its k-face Schubert arrangement inside of P[k] is equal to the number of
sign vectors realized by V ∈ P[k] \Hk

P.

3.2. Recovering P[k] from P[k]
max

This section is dedicated to the study of the k-stabbing set of a polytope P and its
relation to the maximally k-stabbing set. In particular, we can recover all points
intersecting P in small dimension faces from the closure of the maximally k-
stabbing set.

Proposition 3.6. Let P ⊆ Pn be a full-dimensional polytope and fix 0 ≤ k ≤ n.
Then

P[k] = cl(P[k]
max).

Proof. First, if V ∈ cl(P[k]
max), then clearly V will intersect the polytope P, that

is, V ∈ P[k].
Conversely, suppose V ∈P[k]\P[k]

max, that is, V intersects P in at least one face
F of dimension smaller than n−k. Consider two distinct cases. In the first case,
suppose that V ∩P has infinitely many points. Choose k linearly independent
points u1, . . . ,uk on P∩V , so that V is the span of u1, . . . ,uk. Let p ∈ relint(P).
Then the space

Uε = rowspan

u0 + ε p
...

uk + ε p

 ∈ Gr(k,n)

for 0< ε ≪ 1 and Uε ∈P[k]
max for a choice of p generic enough. Since limε→0Uε =

V , it follows that V is in the closure of P[k]
max.

In the second case, suppose that V ∩P = {u1}. Since P is full-dimensional
polytope, there exists a sequence of spaces Wm intersecting P in infinitely many
points and converging to V as m goes to infinity. Since by the previous step each
of the Wm lies in cl(P[k]

max) and the closure is idempotent, then V ∈ cl(P[k]
max).

The closure operations translates to the sign description as explained in the
following theorem.

Proposition 3.7. Let P ⊆ Pn be a full-dimensional polytope and fix 0 ≤ k ≤ n.
For every V ∈ Gr(k,n), we have that V ∈ P[k] if and only if there exists W ∈ P[k]

max
such that

sign(Ck
P(V ))≤ sign(Ck

P(W )).
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Proof. If V ∈ P[k], then sign(Ck
P(V ))≤ sign(Ck

P(W )) for some W ∈ P[k]
max.

Conversely, let V and W be such that sign(Ck
P(V ))≤ sign(Ck

P(W )) and W ∈
P[k]

max. If V and W have the same nonzero sign vector on the boundary of an
(n− k)-dimensional face of P, then V ∈ P[k], by proof of Theorem 4.1. If that
is not true, then every (n− k)-dimensional face F of P has a facet GF such that
CGF (V ) = 0. Since by Lemma 2.8, the vector of Chow form is not zero, we can
choose a face F of P such that Ck

P(V ) is not zero on every boundary of F , i.e. V
is not contained in the linear span of F .

Now consider the path in Gr(k,n) obtained as follows. Let v1 and w1 be
the intersections of V and W with span(F), respectively. Consider, similarly to
proof of Theorem 3.1, the path defined by

Ut :=


(1− t)v1 + tw1

w2
...

wk

 ,

which is linear in Plücker coordinates. The Chow form Ck
P(Ut)|G is linear in the

Plückers along the path Ut and Ck
P(Ut)|G = 0 exactly at t = 0. We now want to

show that v1 is contained in G. Assume span(G)∩V = v1 is not inside P. Then,
the path (1−t)v1+tw1 in Pn is contained in F at t = 1 and not contained at t = 0.
As the face F is a convex polytope itself, the path passes through a facet G′ of
F at some t0 ∈ (0,1). The chow form of G′ evaluated at Ut is also linear and
evaluates to 0 at t0. Thus, Ck

P(Ut)|G′ changes sign along Ut . Extending the path
to Ũt as done in theorem 3.1. by moving the remaining wi to vi, the Chow form
Ck

P(Ũt)|G′ does not change sign along this path, as it is piecewise linear and
never zero. Hence, Ck

P(V )|G′ and Ck
P(W )|G′ have different sign, contradicting

the assumption. We conclude that v1 is in G and thus V ∈ P[k].

Not all the sign vectors obtained from a sign(Ck
P(W )) for some W ∈ P[k]

max by
adding some zeroes will be realized. A trivial example is the zero vector that by
Lemma 2.8 is never realizable. Another example is a Chow vector which is zero
on all faces bounding two faces such that the intersection of their linear span has
dimension smaller then k. Note that for the stabbing sets of simplices, studying
the realizability of sign vectors of Chow forms of P corresponds to studying
realizablity of oriented matroids.

4. Equations defining P[k]

Using the properties of the k-stabbing set of P studied in the previous section
we can construct equations defining P[k] as a semialgebraic subset of Gr(k,n).
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The description we want to define relies on the fact that, in order to know
whether a k-subspace V stabs the polytope we need to check less conditions then
the ones prescribed by Theorems 3.1 and 3.7. In fact, in order to describe the
spaces stabbing a given (n− k)-dimensional face of P, we only need to fix the
signs vector of the Chow forms of the boundaries of that face.

Theorem 4.1. Let P,k,n be fixed as in Setup 2.7. A k-subspace V ∈ Gr(k,n)
intersects the polytope P if and only if there exists W ∈ P[k]

max and an (n− k)-
dimensional face F of P such that

sign(Ck
P(V )|F)≤ sign(Ck

P(W )|F).

Proof. If V intersects the polytope P then by Theorem 3.7 we know that there
must exist such a space W ∈ P[k]

max.
Conversely, suppose that given V ∈ Gr(k,n) there exists W ∈ P[k]

max such that
sign(Ck

P(V )|F) ≡ sign(Ck
P(W )|F), for some (n− k)-dimensional face F of P.

Suppose by contradiction that V does not stab P. Let FP(W ) be the fam-
ily of (n− k)-dimensional faces of P intersected by W . Let FP(W ) = {F =
F1,F2, . . . ,Fr} and define wi = Fi∩W and vi = span(Fi)∩W . Construct matrices
U i

t as in the proof of Theorem 3.1, which define a path from W to V . Along
this path there exists i0 ∈ {0, . . . ,k} and t0 such that U i

t intersects P for t < t0
and i ≤ i0 and U i

t does not intersect P for t > t0 and i ≥ i0. We have i0 > 1
since in the first move we do not change any sign, hence we stay in the same
stabbing chamber. Moreover, for i > 1, the position of the space U i

t with respect
to the face F is not changed. Hence the spaces along the path U i

t can only exit
the polytope through the face F , that is, U i0

t0 ∩P is contained in F . This is only
possible if some of the Chow forms of the boundaries of F go to zero on U i0

t0
and eventually change sign. This is against the assumption that V and W have
the same signs along the boundaries of F , hence V stabs the polytope.

Finally, if W ∈ P[k]
max is such that sign(Ck

P(V )|F)< sign(Ck
P(W )|F), for some

(n−k)-dimensional face F of P, then applying the previous point we obtain that
V intersects P in the face F with arguments similar to the ones given in the proof
of Theorem 3.7. Hence V ∈ P[k].

Given a full-dimensional polytope P ⊆ Pn, the following procedure pro-
duces the set of inequalities defining the set P[k] inside the Grassmannian Gr(k,n).

Procedure 4.2. Let P ⊆ Pn be a full-dimensional polytope and fix 1 ≤ k ≤ n.
Define the Chow forms of P according to Setup 2.7.

1. For each (n− k)-dimensional face F of P define the point vF as the sum
of the vertices of F . In particular vF ∈ F .
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2. Let F1, . . . ,Fk be (n− k)-dimensional faces of P that are not contained
in a k-dimensional face of P. Evaluate the vector of Chow forms Ck

P on
VF1,...,Fk = span(vF1 , . . . ,vFk). The set of V ∈ Gr(k,n) that intersect P in Fi

is given by

{V ∈ Gr(k,n) | sign(Ck
P(V )|Fi)≤ sign(Ck

P(VF1,...,Fk)|Fi)}.

3. Repeat the process until all the (n− k)-dimensional faces of P have been
considered. The set P[k] is the union of these semialgebraic sets.

Remark 4.3. If k = 1, we are interested in studying the set of points intersect-
ing the polytope. This construction recovers the hyperplane description of a
polytope.

More interestingly, if k = n−1, then we recover the construction introduced
in [5]. In this case the stabbing chambers correspond to slicing chambers. Bran-
denburg, De Loera and Meroni studied optimization problems on what is the
best way to slice a polytope.

Example 4.4. Consider the octahedron P = conv(v12,v13,v14,v24,v23,v34)⊆ P3

where vi j = ei + e j, for {ei}i∈[4] standard basis vectors. Fix k = 1, that is, we
want to study the set of lines intersecting the octahedron.

The first set is to define the Chow forms we are interested in studying. As-
sociate to an edge vi j − vik with j < k the Chow form defined by the matrix E i j

ik
with rows vi j,vik. That is, if Ci j

ik = ∑I∈([4]2 )
qI(E

i j
ik )pI , the vector of Chow forms

of the octahedron is defined by

Ck
P =

(
C12

13 ,C12
14 ,C12

23 ,C12
24 ,C13

23 ,C13
14 ,C13

34 ,C14
24 ,C14

34 ,C23
24 ,C23

34 ,C24
34
)
.

If we are interested in the set of lines passing through the face defined by
v12,v13,v23 then we can compute the sign vector of the Chow forms evaluated at

V = rowspan
(

2 2 2 0
0 2 2 2

)
.

This gives rise to the following sign vector:(
− ,−, + , 0, − ,+, 0,+,−, − , + , −

)
,

where the signs highlighted in blue correspond to boundaries of the face defined
by v12,v13,v23 and the signs highlighted in red correspond to boundaries of the
face defined by v23,v24,v34, the other face stabbed by V . See Figure 2.

The set of lines stabbing the octahedron in the face conv(v12,v13,v23) is
exactly the set of V ∈ Gr(k,n) such that sign

(
Ck

P(V )|E12
13 ,E

12
23 ,E

13
23

)
≡ (−,+,−).

This description extends to every facet of the octahedron, as proved in Proposi-
tion 5.2.



488 S. SEEMANN - F. ZAFFALON

Figure 2: The line V from Example 4.4 stabbing the octahedron and the sign
condition on the boundaries of the stabbed faces.

5. How to stab a simplicial polytope

We now focus on studying the k-stabbing sets of a special class of polytopes,
called simplicial polytopes.

Definition 5.1. Let 1 ≤ ℓ < n. A polytope P ⊆ Pn−1 is said to be ℓ-simplicial if
all the ℓ-dimensional faces of P are simplices.

In particular, cyclic polytopes, simplicial polytopes and (n− k)-neighborly
polytopes are (n− k)-simplicial. Spaces of dimension k stabbing an (n− k)-
simplicial polytope have the following explicit characterization.

Proposition 5.2. Let 1 ≤ k ≤ n and let P ⊆ Pn−1 be a full-dimensional (n− k)-
simplicial polytope. Suppose P has m vertices v1, . . . ,vm. If F is an (n− k)-
dimensional face of P given by the convex hull of some vertices indexed by
S ∈

( [m]
n−k+1

)
, with S = {s1 < .. . < sn−k+1}, then V ∈ Gr(k,n) intersects F if and

only if

sign(CS\sn−k+1(V ),CS\sn−k(V ), . . . ,CS\s1(V ))≡ (+,−, . . . ,(−1)n−k)

Proof. Let F1, . . . ,Fk−1 be faces of P such that F,F1, . . . ,Fk−1 do not lie on a
facet of P. By Theorem 4.1, V intersects P in F if and only if the Chow forms of
the facets of F evaluated on V have the same sign as W = span(vF ,vF1 , . . . ,vFk−1).
Represent W with a matrix containing the above points in its rows in this order.
Then for any 1 ≤ i ≤ n− k+1 we have that

CS\si(W ) = det
(
vt

si
|vt

F1
| . . . |vt

Fk−1
|vt

s1
| . . . |vt

si−1
|vt

si+1
| . . . |vt

sn−k+1

)
.
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The Chow forms CS\si(W ) and

det
(
vt

F1
| . . . |vt

Fk−1
|vt

s1
| . . . |vt

sn−k+1

)
.

differ by a sign factor given by (−1)k+i−1. Since the second term does not
depend on i, we obtain the sign characterization in the statement.

If k = n− 1, then we can apply the description given by Proposition 5.2
to any polytope. As a consequence, an hyperplane H ∈ Gr(n− 1,n) stabs a
polytope P in an edge E = conv(v1,v2) if and only if

sign(Cv1(H),Cv2(H)) = (+,−).

This corresponds to requiring that the vertices v1 and v2 are on two different
half-spaces defined by H, as expected.

Corollary 5.3. The slicing set of a polytope P is

P[n−1] = {V ∈ Gr(n−1,n) | var(Cn−1
P (V ))≥ 1}.

5.1. Amplituhedra and stabbing sets

We will now study the relation between amplituhedra and stabbing sets of poly-
topes. The first example we will consider is that of the totally non-negative
Grassmannian. This set can be described as on of the stabbing chambers of
the standard simplex, given by spaces intersecting faces defined by consecutive
vertices.

Proposition 5.4. The following holds:

Gr≥0(k,n)⊆ cl

S∆n

e1 + e2 + · · ·+ en−k+1
...

ek + ek+1 + · · ·+ en


 ,

where e1, . . . ,en are the canonical basis of Rn.

Proof. Let W be the k-dimensional space defined by the matrix in the right-
hand side of the equality and let V ∈ Gr≥0(k,n). The vector of Chow forms
of the simplex ∆n is given by ((−1)sign(I)qI)I∈([n]k )

. Therefore sign(Ck
∆m
(V )) ≤(

(−1)sign(I)
)

I∈([n]k )
. Let Fi be the (n− k)-dimensional face of ∆n given by the

convex hull of ei,ei+1, . . . ,ei+n−k. By construction W stabs ∆n in F1, . . . ,Fk. By
Proposition 5.2, we obtain that

(sign(CFi\{v j}(W ))) j=i,...,n−k+i = (−1)sign({i,...,n−k+i}\{ j}).

Therefore the sign vector of V and W coincide on the boundaries of the faces
F1, . . . ,Fk, hence V ∈ cl(S∆n(W )).
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Remark 5.5. In general the inclusion is strict. For example the set of lines stab-
bing the 3-dimensional simplex in the faces conv(e1,e2,e3) and conv(e2,e3,e4)
is given by points whose non-zero Plücker coordinates different from q23 have
the same sign.

For more general amplituhedra, we will obtain that they are subsets of the
stabbing set of a cyclic polytope. Recall that cyclic polytopes are polytopes
isomorphic to the convex hull of m points on the n-dimensional moment curve.
The combinatorial equivalence class is the same independently of the choice of
points on the moment curve, hence any such polytope is denoted by C(m,n).
C(m,n) is a full-dimensional polytope in Pn−1 with a natural order on the ver-
tices given by their order on the moment curve. Any polytope with an order
on the vertices such that the corresponding matrix lies in the totally positive
Grassmannian is a cyclic polytope [21].

A complete description of the combinatorial structure of the cyclic polytope
is given by Gale’s evenness condition [11]. In particular, the cyclic polytope
C(m,n) is a simplicial polytope. Moreover, any n-subset S ⊆ [m] forms a facet
of C(m,n) if and only if S satisfies Gale’s evenness condition: if i < j are in
[m]\S, the number of k ∈ S with i < k < j is even.

Recall that a point in the amplituhedron is given by C ·Z where Z is the fixed
totally positive n×(k+m) matrix and C ∈Gr≥0(k,n). Since C stabs the simplex
∆n, we can represent C with a k×n matrix containing only non-negative entries
in its first row. Hence C ·Z contains in its first row a point in the cyclic polytope
defined by Z, i.e. An,k,m ⊆C(n,k+m)[k].

The amplituhedron has been described in terms of sign characterization
in [2]. There it is conjectured that An,k,m is equal to the set An,k,m of spaces
V ∈ Gr(k,k+m) such that:
(C12...(m−1)m(V ), . . . ,C12...(m−1)n(V )) has k sign flips,
(−1)kC1(i1 i1+1)...(im2 im2+1)(V )> 0, C(i1 i1+1)...(im2 im2+1)n(V )> 0 if m is odd

C(i1 i1+1)...(im2 im2+1)(V )> 0 if m is even

where m2 = ⌊m
2 ⌋ and all indices are distinct. In the context of the amplituhedron,

Chow forms defined by faces of the cyclic polytope are (a subset of) twistor
coordinates and they are denoted by ⟨i1 . . . im⟩ = Ci1...im . The sign description
has been proven to be equivalent to the original definition of the amplituhedron
only in the cases m = 1 [14], m = 2 [19].

Remark 5.6. Combining the sign description description of the amplituhedron
and Proposition 5.2 we obtain that if m = 2 and V ∈ An,k,2 =An,k,2, then V stabs
the cyclic polytope C(n,k+ 2) in

⌈ k
2

⌉
faces of the form conv(v1,vi,vi+1) with

1 < i < n−1.
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The requirement for the sign flips in the definition of An,k,m to be exactly k is
maximal, that is, it is not possible to have more than k sign flips. Spaces defined
by requiring a smaller amount of sign flips have been studied for m = 4 in [8].

6. Open problems

There are still many open problem related to the k-stabbing set of a polytope
and its relations to positive geometries. Below, we highlight two directions that
we think would be particularly interesting to explore in future research.

Polytopal Schubert arrangements. Arrangements of Schubert divisors from
faces of polytopes are highly non-generic due to the incidence relations among
the faces of the polytope. We therefore expect them to have nicer properties than
generic hypersurface arrangements. Examples from [18] show that the regions
in a Schubert arrangement might not be contractible, and that different regions
can have the same sign vector, see Example 3.4.

Question 6.1. What can be said about the topology of connected regions of
the k-face Schubert arrangement of a polytope? Is there a combinatorial inter-
pretation for the Euler characteristic of such a Schubert arrangement? Is the
number of sign vectors realized by points in Gr(k,n)\Hk

P equal to the number
of connected regions of the arrangement?

Breiding, Sturmfels and Wang [6] recently introduced an algorithm based
on Morse theory to compute regions in the complement of a hypersurface ar-
rangement. This has been implemented in Julia [4], in the package chambers.jl.

Question 6.2. Is there a more efficient algorithm to compute the number of
components in the k-face Schubert arrangement of a polytope?

Positive geometries. The relations between amplituhedra and the k-stabbing set
P[k] leads to a natural question: Is the set P[k] a positive geometry? In order to
answer this question, a deep understanding of the boundary structure of P[k] is
necessary. This structure is related to the face poset of the polytope P. For ex-
ample, for lines stabbing a 3-dimensional polytope, codimension 1 boundaries
are given by lines stabbing the polytope in one point of an edge, codimension
2 boundaries are given by lines lying on a 2-dimensional face of the polytope
or through a vertex, codimension 3 boundaries are lines through an edge and a
vertex of the same face and, finally, codimension 4 boundaries are given by the
lines spanned by edges. More generally, an answer to the following questions
would be necessary.

Question 6.3. What is the face stratification of the set P[k] and how is it related
to boundary poset of P? In which setting is the stabbing set P[k] a positive
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geometry? What would the canonical form of P[k] be and how it be related to
the canonical form of the polytope or the loop amplituhedron?
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