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1. Introduction.

By classi�cation of space curves, one could mean to enumerate and de-
scribe (dimension, singularities, etc...) the irreducible components of H (d, g),
the Hilbert scheme of (smooth, irreducible) curves of degree d , genus g of P

3;
also one would like to have a fairly complete description (postulation, genera-
tors and syzygies, multisecants, etc...) of the generic curve of each irreducible
component.

As it is well known, this program is hopeless!
The Hilbert scheme of space curves is highly reducible (see for example
[20]) and there are de�nitely too many components to look out. The only
thing we can (hope to) do is to establish general laws and to carry on the
complete classi�cation only for some �distinguished� (to be de�ned) irreducible
components. In the last few years there have been many results in these
directions. We won�t report on these results.

It could be however that our initial program could be carried on for smooth
codimension two subvarieties of P

n if n is big enough. Indeed, according to
Hartshorne�s conjecture, every smooth, codimension two subvariety of Pn, n ≥

6, should be a complete intersection.
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There are good reasons to believe that the classi�cation of codimension
two subvarieties of Pn gets simpler and simpler as n grows. In the �rst section
of this survey we will recall some of these good reasons, then we will brie�y
review the state of the art.

This survey doesn�t pretend to be complete and I apologize in advance if,
by lack of time or space or just by ignorance, I miss some relevant contribution.

It is a pleasure to thank the organizers for the wonderful atmosphere of the
conference.

2. Some general facts..

Here we will review some general facts which tend to indicate that the
classi�cation of codimension two subvarieties of Pn gets simpler as n grows.

We work over an algebraically closed �eld of characteristic zero. The
characteristic zero assumption is important since the basic assumption is that
we are dealing with smooth subvarieties.

2.1. Linear normality..

Since the expected dimension of the secant variety, Sec(X ), of X ⊂ P
n is

2 · dim(X ) + 1, every curve can be embedded in P3 and this is what makes the
classi�cation of space curves so complex. However, this count of parameters
also shows that, a priori, we cannot expect to get, by projection from a higher
space, a smooth codimension two X ⊂ P

n if n ≥ 4. In fact a �rst important
result in this direction is Severi�s theorem on surfaces in P4 ([34]):

Theorem 2.1. (Severi). Let S ⊂ P4 be a smooth, non degenerate surface. Then
S is linearly normal (i.e. h0(OS(1)) = 5) except if S is a (projected) Veronese
surface.

This theorem has many striking consequences and must be regarded as the
��rst� theorem on surfaces in P4.
One of the most beautiful result in projective algebraic geometry is Zak�s
solution of Hartshorne�s conjecture on linear normality; it is the ideal and
complete generalization of the above theorem. We refer to [36]. Concerning
the codimension two case, as a special case of Zak�s theorem, we have:

Theorem 2.2. (Zak). Let X ⊂ P
n be a smooth, codimension two subvariety. If

n ≥ 5, then X is linearly normal.
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Clearly this is a strong restriction for the existence of smooth codimension
two subvarieties

2.2. The second Chern class of the normal bundle..

Another important fact concerning codimension two subvarieties X ⊂ P
n

is the presence, when n ≥ 4, of the second Chern class of the normal bundle of
X in Pn . Indeed NX is a rank two vector bundle on X and if dim(X ) ≥ 2, we
can consider its second Chern class c2(NX ). By the �self-intersection formula�:
i∗(c2(NX )) = X 2 where i : X �→ Pn is the inclusion map ([23] Appendix A,
sec. 3). Now we can compute c2(NX ) in another way, using the exact sequence:

0 → T X → TP
n
|X → NX → 0

comparing these two expressions of c2(NX ), we get an important relation among
the invariants of X . For instance if S ⊂ P

4 is a smooth surface, we get the
famous �double points formula� (see [23] Appendix A, Ex. 4.1.3).

d(d − 5) − 10(π − 1) + 12χ = 2K 2

This formula can be seen as an analogous of the formula giving the genus of
a smooth plane curve. Clearly this formula imposes strong restrictions on the
invariants of a smooth surface in P

4.
There is another important reason which brings into play the second Chern

class of the normal bundle. Assume S ⊂ � ⊂ P
4, S a smooth surface and �

a degree s hypersurface. The inclusion S ⊂ � yields O(−s) → IS and by
restriction to S we get: OS(−s) → N∗

S . In other words the inclusion S ⊂ �

de�nes a section σ of N∗
S (s). The zero locus of this section is the intersection

of S with Sing(�), the singular locus of � . If σ vanishes in codimension
two, we have µ := deg(σ )0 = c2(N

∗
S (s)) and a short computation gives:

π − 1 =
d(d+s2−4s)−µ

2s
. In particular if µ = 0, then π is the genus of a complete

intersection ( d
s
, s). In fact this is the starting point to prove:

Theorem 2.3. Let � ⊂ Pn be an hypersurface. If n ≥ 4, then Pic(�) � Z.H .
In particular let X ⊂ P

n, n ≥ 4 be a codimension two subscheme. If
X ⊂ � and if X is a Cartier divisor on � , then X is the complete intersection
of � with another hypersurface.

This theorem was �rst proved by Severi ([35]), a modern version of
Severi�s proof can be found in [13]; of course this is a special case of Lefschetz�s
theorem.
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It follows for example that if S ⊂ P4 is a smooth, non complete intersection
surface, then S must meet the singular locus of every hypersurface containing it.
This is another big difference with the case of curves in P

3 (for every C ⊂ P
3,

if n is big enough, there exists a smooth surface of degree n containing C).
We will �nd this type argument (see Lemma 3.2) all along these notes.

2.3. Topology (Barth-Larsen theorem)..

In 1970 Barth ([7]) discovered that the topology of low codimension
subvarieties in Pn is similar to the topology of complete intersections. In the
codimension two case we have (see [24] Thm. 2.2):

Theorem 2.4. (Barth-Larsen). Let X ⊂ Pn be a smooth, codimension two
subvariety.

1. If n ≥ 5, then h1(OX ) = 0
2. If n ≥ 6, then Pic(X ) � Z.H

This marvelous result has been the main motivation for Hartshorne�s
conjecture ([24]:

Conjecture 1. Let X ⊂ P
n be a smooth subvariety of dimension m. If m > 2n

3
,

then X is a complete intersection.

In the codimension two case, this gives m ≥ 7. But one consequence
of Theorem 2.4 is the connection between codimension two subvarieties and
rank two vector bundles. Indeed, if Pic(X ) � Z.H , then ωX � OX (e) for
some integer e and, by Serre�s construction, we can associate a rank two vector
bundle to X :

0 → O → E → IX (e + n + 1) → 0

Now, as it is well known, E splits if and only if X is a complete intersection.
Conversely, if E is a rank two vector bundle on Pn , then for k >> 0, E(k) has
a section vanishing along a smooth (irreducible) codimension two subvariety.
In conclusion the existence of indecomposable rank two vector bundles on Pn

is equivalent to the existence of smooth, codimension two, subcanonical (i.e.
ωX � OX (e)) subvarieties; if n ≥ 6, thanks to Theorem 2.4, the �subcanonical
condition� is automatically satis�ed. So we see that there exists a non split
rank two vector bundle on P

n , n ≥ 6, if and only if there exists a smooth, non
complete intersection, codimension two subvariety.

So far, attempts to construct indecomposable rank two vector bundles on
Pn , n ≥ 5, have failed (here, as usual, we are assuming ch(k) = 0; if ch(k) > 0,
things are different). Moreover, there is, essentially, only one known, non split,
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rank two vector bundle on Pn , n > 3; it is the Horrocks-Mumford bundle on
P4, arising from abelian surfaces ([27]). Since in the last 30 years, none has
been able to construct an indecomposable rank two vector bundle on P

n , n ≥ 5,
some people start thinking that this is due the fact that, simply, such bundles do
not exist!

Conjecture 2. Every rank two vector bundle on P
n
k , n ≥ 5 (and ch(k) = 0)

splits.
Equivalently, every smooth codimension two subcanonical subvariety X ⊂

P
n is a complete intersection.

This is a slightly modi�ed version of the original conjecture ([13]). At the
moment little is known on this conjecture.

3. Surfaces in P4.

3.1. Surfaces of non general type.

The breakthrough in the classi�cation of surfaces in P
4 is Ellingsrud-

Peskine�s theorem ([21]):

Theorem 3.1. (Ellingsrud-Peskine). There are only �nitely many irreducible
components of the Hilbert scheme containing smooth surfaces of non general
type.

It follows that the degrees of surfaces of non general type are bounded
(in fact this is almost equivalent to the theorem): there exists d0 such that
deg(S) ≤ d0 for every smooth surface of non general type S ⊂ P4. Braun and
Fløystad ([11]) re�ned the proof of Ellingsrud and Peskine to give an effective
bound (d0 ≤ 105); then many authors gave some further re�nements and, it
seems, that at the moment the best result (if you accept computer-aided proofs)
is: d0 ≤ 52 (see [14] and the bibliography therein). However a better bound is
conjectured:

Conjecture 3. If S ⊂ P4 is a smooth surface of non general type, then
deg(S) ≤ 15.

Why 15? Well, on one hand there exist smooth surfaces of non general
type of degree 15, on the other hand in the past ten years none has been able to
construct such a surface of degree > 15, that�s it! (for construction of smooth
surfaces in P4, see [14]). For example, at the time of this writing, no rational
surface of degree d > 12 is known.
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We should also mention that the classi�cation of surfaces of degree at most
ten is fairly complete (see [5], [31]).

Observe that curves of non general type are rational and elliptic curves. Of
course the classi�cation of rational and elliptic space curves is much more en-
volved (there are in�nitely many irreducible components in the Hilbert scheme
Hilb(P3)).

Just a few words about the proof of Theorem 3.1. First one shows that
d ≤ 90 or h0(IS(5)) �= 0; so we have only to worry about surfaces lying on
hypersurfaces of degree ≤ 5. Then, as observed by Braun and Fløystad, to get a
bound is a question of Castelnuovo�s theory; i.e. to relate the invariants of S , C
and � (C a general hyperplane section of S , � a section of C). To get a better
bound is a question to understanding the relationships between the generators of
I(S), I(C) and I(�). In any case, the crucial ingredient is the following ([21],
Lemme 1):

Lemma 3.2. Let S ⊂ P
4 be a smooth surface with s(S) = σ . Set µ :=

c2(NS (−σ)) = d(d + σ(σ − 4)) − σ(2π − 2). Then: 0 ≤ µ ≤ (σ − 1)2d .

This lemma shows again the importance of the second Chern class of the
normal bundle, we will meet it again in these notes.

3.2. Surfaces on low degree hypersurfaces..

The proof of Theorem 3.1 shows that most of the problem of classifying
surfaces of non general type is concentrated on surfaces lying on hypersurfaces
of low degree, so we turn to the question (of independant interest) of the
classi�cation of such surfaces. The �rst step is quite classical:

Lemma 3.3. Let S ⊂ P
4 be a smooth surface. If h0(IS(2)) �= 0, then S

is arithmetically Cohen-Macaulay (a.C.M.); more precisely S is a complete
intersection if d is even and is linked to a plane if d is odd.

Proof. Assume S ⊂ Q , Q an irreducible hyperquadric. If S ∩ Sing(Q) = ∅,
then S is a Cartier divisor on Q and, by Theorem 2.3, S is the complete
intersection of Q with another hypersurface (and d is even). If S ∩ Sing(Q) �=

∅, pick p ∈ S ∩ Sing(Q); a general hyperplane through p cut S along a smooth
curve, C , which lies on a quadric cone K . Since C passes through the vertex of
K , C is linked to a line by the complete intersection of K with another surface
(and d is odd). This implies that S is linked to a plane in a complete intersection
Q ∩ � . �
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The case of hypercubics is much more involved. In [4], Aure established
the classi�cation of smooth surfaces on cubic hypersurfaces with only isolated
singularities, then this result has been extended by Koelblen ([28]) to arbitrary
cubic hypersurfaces:

Theorem 3.4. (Koelblen). Let S ⊂ P
4 be a smooth surface. Assume S ⊂ �

where � is an irreducible cubic hypersurface. Then one of the following occurs:

1. S is a.C.M. and is linked, on � , to an a.C.M. surface of degree ≤ 3 which
is a cone if � is a cone and which is smooth otherwise

2. S is linked, on � , to a Veronese surface
3. S is linked, on � , to a quintic elliptic scroll.

In fact this theorem follows from a more general result, namely the classi-
�cation of locally Cohen-Macaulay surfaces lying on normal hypercubics (see
[28], Thm. 1.5): one has the same statement as above. The proof is rather long
and technical.
Using Theorem 3.4 one easily deduces:

Corollary 3.5. Let S ⊂ P
4 be a surface of non general type. If h0(IS(3)) �= 0,

then deg(S) ≤ 8.

For partial results on surfaces on hyperquartics with isolated singularities,
see [18] where it is proved, among others, that a surface of non general type
lying on such an hyperquartic has degree ≤ 27.

3.3. Surfaces of general type..

Of course there are plenty of smooth surfaces in P4 (just use liaison), in
general they will be of general type (as indicated by the name), what can be
said about them? One of the most tantalizing conjecture in projective algebraic
geometry concerns precisely these surfaces:

Conjecture 4.

1. There exists an integer M such that if S ⊂ P4 is a smooth surface, then
q(S) ≤ M.

2. M = 2 should do the job

At the moment, very little is known about this conjecture. Here are a few
remarks:
Part 1 of the conjecture is true for surfaces of non general type (but we are still
far from getting M = 2 in this case).
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Certainly M ≥ 2 because there exist abelian surfaces (related to the Horrocks-
Mumford bundle) with q = 2.
The easiest way to construct smooth surfaces is by liaison. If S is a smooth
surface and if IS(a) and IS(b) are generated by global sections, and if Fa , Fb

are general hypersurfaces containing S , then Fa ∩ Fb will link S to a smooth
surface T ([29]). One may hope, starting from a known S to construct surfaces
with big irregularity. This doesn�t seem to work too well:

Lemma 3.6. If IS(a) is generated by global sections, then h1(IS(m)) = 0 if
m ≥ 2a − 4.
With notations as above, if b > a, then q(T ) = 0.

Proof. If IS(a) is generated by global sections, we link S to a smooth surface,
S �, by a complete intersection, U , of type (a, a). The exact sequence of liaison
is: 0 → IU → IS → ωS �(5 − 2a) → 0. Twisting by 2a − 5 + t , t ≥ 1, since
h1(ωS �(t)) = 0 by Kodaira, we get h1(IS(2a − 5 + t)) = 0.
By the exact sequence of liaison q(T ) = h1(ωT ) = h1(IS(a + b − 5)), so
q(T ) = 0 if b > a. �

So there is little room left (a = b) to apply this naive plan. Of course one
can have S linked to a smooth surface by a complete intersection of type (a, b)

without IS(a), nor IS(b) being globally generated.

3.4. Subcanonical surfaces..

De�nition 3.7. A smooth surface S ⊂ P
4 is said to be subcanonical if ωS �

OS(e) for some integer e.

The interest of these surfaces is that, through Serre�s correspondance, they
yield rank two vector bundles:

0 → O → E → IS(e + 5) → 0

where E is a rank two vector bundle with c1(E) = e + 5, c2(E) = d .

By adjunction, if C is a general hyperplane section of S, ωC � OC(e + 1),
this shows that: 2π − 2 = d(e + 1). Since C ⊂ P3 is non degenerate, π ≥ 1,
hence e ≥ −1.

We have K 2 = (eH )2 = e2d and the double points formula gives:
12χ = d(2e2 + 5e − d + 10)

Since ω⊗n
S � OS(ne), if e ≥ 1, S is of general type (in particular we have

Yau�s inequality: K 2 ≤ 9χ ).
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Lemma 3.8. Let S ⊂ P4 be a smooth subcanonical surface, if h0(IS(3)) �= 0,
then S is a complete intersection.

Proof. If h0(IS(2)) �= 0, this follows from Lemma 3.3 (S is a CM and
subcanonical hence a complete intersection).

We may assume that S ⊂ � where � is an irreducible cubic. By Theorem
3.3, S is a CM or linked on � to surface T which an elliptic scroll or a Veronese
surface. In the �rst case we are done. Assume S linked to T by a complete
intersection, U , of type (3, b), b ≥ 3. The exact sequence of liaison gives:

0 → IU (3) → IT (3) → ωS(5 − b) → 0

It follows that h0(OS(5− b + e)) = h0(ωS(5 − b)) = h0(IT (3)) − h0(IU (3)).
We have h0(IT (3)) = 7 if T is a Veronese (resp. 5 if T is an elliptic scroll), it
follows that: 1 < h0(OS(5 − b + e)) < 15, this implies 5 − b + e = 1 and by
Severi�s theorem (Thm 2.1), we see that the only possibility is: T is a Veronese
surface and b = 3. So e = 1 and since d + 4 = 9 by liaison, d = 5, looking at
the hyperplane section C of S we see that this is impossible. �

Let�s review quickly what is known on the classi�cation of subcanonical
surfaces.

Lemma 3.9. If e = −1, then S is a complete intersection (2,2).

Proof. If ωS � OS(−1), then pg = 0 and q = h1(OS) = h1(ωS(1)) = 0 by
Kodaira. So χ = 1 and plugging into the double points formula yields d = 4.
We conclude by looking at the hyperplane section. �

The case e = 0 is more interesting:

Lemma 3.10. If e = 0 then d = 6 and S is a complete intersection (2,3), or
d = 10 and S is an abelian surface (pg = 1 and q = 2).

Proof. If ωS � OS , by Kodaira, χ(OS(1)) = h0(OS(1)). By Severi�s theorem
(Thm 2.1) and Riemann-Roch, we get χ = 5 − d

2
. Plugging into the double

points formula gives d = 6 or d = 10. If d = 6, we conclude by looking at the
hyperplane section C of S . If d = 10, then χ = 0 and since pg = 1, we get
q = 2, so S is an abelian surface. �

As it is well known there exist abelian surfaces of degree 10 in P4: they
arise from the Horrocks-Mumford bundle ([27]) (it seems by the way that
Commessatti was aware of the existence of such surfaces):

0 → O → E(3) → IS(5) → 0
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where c1(E) = −1, c2(E) = 4; all the bundles arising this way are stable and
projectively equivalent. The Horrocks-Mumford bundle is (essentially) the only
known, non split, rank two vector bundle on P

n , n ≥ 4. Nowaday there are so
many papers on the Horrocks-Mumford bundle, that the interested reader should
make a search on the web to get a complete list of references.

The next case, e = 1, has been solved by Ballico-Chiantini ([6]):

Theorem 3.11. (Ballico-Chiantini). Let S ⊂ P4 be a smooth surface. If
ωS � OS(1), then S is a complete intersection.

Proof. We have h0(OS(1)) = 5 by Thm 2.1, q = h1(OS(1)) and h2(OS(1)) =

h0(ωS(−1)) = 1, so χ(OS(1)) = 6 − q . It follows that χ = 6 − q . By Yau�s
inequality: d ≤ 9(6 − q) which implies q ≤ 5. By the double points formula:
72 − 12q = d(17 − d), so d < 17 and, after some short computations, we see
that the possible cases are: a) q = 0, χ = 6 and d = 8 or d = 9, b) q = 1,
χ = 5 and d = 5 or d = 12.

Since χ(OS(3)) = h0(OS(3)) by Kodaira, by Riemann-Roch: h0(OS(3)) =

3d + χ . So if d �= 12, we have h0(IS(3)) �= 0 and we conclude with Lemma
3.8. So we may assume d = 12. From Serre�s correspondance we have:
0 → O → E(3) → IS(6) → 0, where E is a rank two bundle with c1(E) = 0
and c2(E) = 3. If h0(IS(3)) �= 0 (E not stable), we conclude with Lemma 3.8.
If h0(IS(3)) = 0, then E is stable and we conclude with [8] where it is proved
that there exist no stable rank two bundles with c1 = 0 and c2 = 3 on P4. �

In fact Ballico-Chiantini proved something more, namely ([6], Prop. 3):

Proposition 3.12. There exists no semi-stable rank two vector bundle on P4

with c1 = 0 and c2 = 3.

The existence of non semi-stable rank two vector bundles with c1 = 0 and
c2 = 0 is still an open problem.

If e > 1, little is known (see [15] for partials results in the case e = 2).

4. Threefolds in P
5.

For the classi�cation of low degree threefolds, see [10], [33].

4.1. Threefolds of non general type..

The analogous of Ellingsrud-Peskine�s theorem holds for threefolds in P5:
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Theorem 4.1. (Braun-Ottaviani-Schneider-Schreyer). There exists an integer B
such that if X ⊂ P5 is a threefold of non general type, then deg(X ) ≤ B.

Proof. See [12]. �

As far as I know, no effective bound is known. Observe that the theorem
above doesn�t follows from Ellingsrud-Peskine�s theorem, since a general hy-
perplane section of X will be, in most cases, a surface of general type.

By Barth-Larsen�s theorem if X ⊂ P
5 is a smooth threefold, then

h1(OX ) = 0. This implies that if S is a general hyperplane section of X ,
then S ⊂ P

4 is a smooth surface with q(S) = 0 (look at the exact sequence:
0 → OX (−1) → OX → OS → 0 and use Kodaira to get h2(OX (−1)) =

h1(ωX (1)) = 0).

4.2. Subcanonical threefolds..

In this section X ⊂ P
5 will denote a smooth subcanonical threefold of

degree d with ωX � OX (e). A general hyperplane section of X will be a
smooth surface S ⊂ P

4 with ωS � OS(e + 1) and q(S) = 0.

Theorem 4.2. (Ballico-Chiantini). If e ≤ 2, then X is a complete intersection.

Proof. See [6]. �

Theorem 4.3. If h0(IX (4)) �= 0, then X is a complete intersection.

Proof. If h0(IX (3)) �= 0, we conclude with Lemma 3.8, if X lies on an
irreducible hyperquartic, this follows from [19]. �

Remark 4.4.
1. We will come back on Theorem 4.3 in the next section. The part

h0(IX (3)) �= 0 is also a particular case of a theorem by Ran ([32], see
also Theorem 5.5).

2. Combining Theorems 4.2 and 4.3, one can prove that a smooth subcanon-
ical threefold in P

5 of degree d ≤ 23 is a complete intersection. The �rst
unknown case is d = 24 and e = 3.

5. Codimension two subvarieties in P
n, n ≥ 6.

This is the general case of Hartshorne conjecture, since by Barth-Larsen�s
theorem every smooth, codimension two X ⊂ Pn , n ≥ 6, has Pic(X ) � Z · H ,
hence is subcanonical, i.e. ωX � OX (e) for some integer e.
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5.1. k-linear normality.

As a special case of a theorem of Evans-Grif�th ([22]) and Horrocks (if
n = 3), we have:

Theorem 5.1. Let E be a rank two vector bundle on P
n , n ≥ 3, then E splits if

and only if H 1
∗ (E) = 0.

Corollary 5.2. Let X ⊂ Pn , n ≥ 6, be a smooth codimension two subvariety,
then X is a complete intersection if and only if X is projectively normal (i.e.
h1(IX (m)) = 0, ∀m ∈ Z).

Remark 5.3. Recall that X is said to be k-normal if h1(IX (k)) = 0. By Zak�s
theorem, with assumptions as in the corollary, X is 1-normal. By Theorem 5.1,
a possible approach to Hartshorne�s conjecture is to prove k-normality for every
k.

There are many vanishing theorems for codimension two subvarieties in
Pn . The �rst one is of course Zak�s theorem: h1(IX (1)) = 0 if n ≥ 5.
Concerning quadratic normality we have: h1(IX (2)) = 0 if n ≥ 10 ([17],
[2]); also: hr (OX (t)) = 0 if r ≥ 1 and n ≥ 6t + r (t ≥ 1) (see [2]). For
precise statements we refer the interested reader to the following papers (and
their references): [30], [17], [2], [1], [3].

5.2. Rank two vector bundles..

Another approach to Hartshorne�s conjecture is through rank two vector
bundles. Observe that althought, at the end, the conclusion from the vector
bundles side or from the smooth subvarieties side should be equivalent, one
cannot immediately translate results from one side to another. Indeed, given a
vector bundle, E , it is hard in general to decide for which k, E(k) will have a
section vanishing along a smooth codimension two subvariety.

A �rst general result was obtained, using vector bundles techniques, by
Barth-Van de Ven in [9] where they gave a linear bound f (n) for the degree of a
non complete intersection X ⊂ Pn of codimension two (i.e. if deg(X ) ≤ f (n),
then X is a complete intersection). A few years later, Z. Ran ([32]) proved what
has to be considered, till now, the best general result from the �vector bundles
side�:

Theorem 5.4. (Ran).

1. Let E be a rank two vector bundle on Pn and assume E has a section
vanishing in codimension two, then:
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if c1(E) ≥ c2(E )

α
+ α, for some α ≤ n − 2 or if c2(E) ≤ n − 2, then E

splits.

2. Let X ⊂ P
n be a smooth, codimension two subvariety of degree d , with

ωX � OX (e).
If e ≥ d

n−2
− 3 or if d ≤ n − 2, then X is a complete intersection.

Of course 2) is a direct consequence of 1).
The main ingredient in Ran�s proof is the following fact: take a general point
P ∈ P

n \ X and set �P
k+1 = {r ∈ G(1, n)/P ∈ r and r is a k + 1-secant line to

X }, then, if k ≤ n − 2, deg(�P
k+1) = e(0) · · ·e(k), where e(t) = c2(E(−t)), E

being the rank two vector bundle associated to X .
Taking this fact for granted, let�s outline the proof of the theorem. The

assumption c1(E) ≥ c2(E)/α +α, implies e(α) ≤ 0 and that E is not stable. If
k = min{l/h0(E(l − c1)) �= 0}, then k ≤ c1(E)/2 and E(k − c1) has a section,
s , vanishing in codimension two. If (s)0 = Z , then deg(Z ) = e(k−c1) = e(k);
so e(k) ≥ 0. We have k ≤ n − 2, indeed since k ≤ c1(E)/2, e(k) ≥ 0 and
e(α) ≤ 0, by looking at the graph of e(t), we see that k ≤ α. On the other
hand, since E is not stable, h0(IX (k)) �= 0. This implies �P

k+1 = ∅ (every
k + 1-secant to X is contained in a degree k hypersurface containing X ). This
implies that there exists i ≤ k such that e(i) = 0 (recall that k ≤ n − 2).
Since e(k) ≥ 0 and k ≤ c1(E)/2, necessarly (look at the graph of e(t)) i = k;
therefore deg(Z ) = e(k) = 0, and E splits.

Observe that Ran�s theorem deals with non stable vector bundles. In fact it
seems easier to attack the conjecture for non stable bundles.

As pointed out in [6], Ran�s theorem has the following consequence:

Theorem 5.5. Let X ⊂ Pn be a smooth, subcanonical, codimension two
subvariety. If h0(IX (n − 2)) �= 0, then X is a complete intersection.

Using Ran�s theorem, Ballico and Chiantini proved ([6]) that if e ≤ 0,
then X is a complete intersection; they also gave a quadratic lower bound on
the degree of a non complete intersection. Ran�s theorem has been re�ned, in
various ways, by Holme and Schneider ([26]) and Holme ([25]), we refer to
those papers for precise statements �on the vector bundles side�, for smooth
codimension two subvarieties we may summarize the main known results as
follows:

Theorem 5.6. Let X ⊂ Pn, n ≥ 6, be a smooth codimension two subvariety.

1. If e ≤ n + 1, then X is a complete intersection (here, as usual: ωX �

OX (e))
2. If deg(X ) < (n − 1)(n + 5), then X is a complete intersection
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3. If h0(IX (n − 2)) �= 0, then X is a complete intersection
4. If n = 6 and deg(X ) ≤ 62, then X is a complete intersection.

The �rst two items are from [26], the third is Theorem 5.5 and the fourth
is from [26], [25].

A new ingredient introduced in [26], [25] is a careful study of the
Schwarzenberger conditions, these are conditions that the Chern classes of a
topological complex vector bundle have to satisfy. The Schwarzenberger condi-
tions are as follows: write c1 = α + β , c2 = αβ with α, β ∈ C, then:

�
α − 1 + m

m

�

+

�
β − 1 + m

m

�

∈ Z, m = 2, · · · , n

This gives strong conditions on the Chern classes and introduces the next topic.

5.3. Numerically complete intersections varieties..

As already said, a careful study of the Schwarzenberger conditions will
eliminate many (c1, c2) for rank two vector bundles on P

n (especially if n is
big enough), but, of course, you want never throw away values of the type
c1 = a + b, c2 = ab, a, b integers, since the bundle O(a) ⊕ O(b) exists!
So, it could happen that in some range the only possible values are of this kind,
thus to prove the conjecture in that range it will be enough to show that every
numerically split bundle (i.e. a bundle E with c1(E) = a + b, c2(E) = ab)
actually splits. This motivates the following:

De�nition 5.7. A smooth (irreducible) codimension two X ⊂ Pn is said to
be numerically a complete intersection (n.c.i.) of type (a, b) if X has the
same characters as a complete intersection of type (a, b): deg(X ) = ab and
ωX � OX (a + b − n − 1).

Remark 5.8.

1. There exist n.c.i. curves in P
3 which are not complete intersections.

2. From Theorem 5.4 it follows that if X is n.c.i. of type (a, b), a ≤ b with
a ≤ n − 2, then X is a complete intersection.

Lemma 5.9. Let X ⊂ Pn, n ≥ 4, be a smooth codimension two subvariety
of degree d with ωX � OX (e). Set s := min{m/h0(IX (m)) �= 0}. Then:
d ≤ s(n − 1 + e) + 1
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Proof. 1. Apply Lemma 3.2 to a section of X with a general P4. �

For a more precise statement, see [19], Lemma 2.2.

Proposition 5.10. Let X ⊂ P
4 be a smooth codimension subvariety. Assume X

is n.c.i. of type (a, b), a ≤ b, then:

1. If b > a(a − 3) + 3, X is a complete intersection.
2. If a ≤ n − 1, X is a complete intersection.

Proof. See [19], Corollary 2.3. �

5.4. Further results..

To prove Hartshorne�s conjecture in codimension two it is enough to prove
that every rank two bundle on P5 (or P6 if you want to work in a more natural
range: there you have Pic(X ) � Z · H for free) splits. In spite of many
efforts this doesn�t seems to be a big simpli�cation. Here we present a new
approach to the problem, taken from [19], which at the moment yields only a
slight improvement of Theorem 5.5 when n = 5 or n = 6 ([19], Theorem 1.1):

Theorem 5.11.

1. Let X ⊂ P5 be a smooth, subcanonical threefold, if h0(IX (4)) �= 0, then
X is a complete intersection.

2. Let X ⊂ P
6 be a smooth codimension two subvariety of degree d . If

h0(IX (5)) �= 0 or if d ≤ 73, then X is a complete intersection.

Idea of the proof: To �x ideas take n = 6 and assume X ⊂ P
6 is smooth

of codimension two with e >> s and d > s2 (the bundle corresponding to X
will be unstable), so X ⊂ � , where � is a reduced, irreducible hypersurface
of degree s . The starting point is Theorem 2.3; according to that theorem, if
X is not a complete intersection, we must have X ∩ Sing(�) �= ∅, we try to
investigate this intersection. Consider the rank two bundle associated to X :

0 → O → E → IX (e + 7) → 0

We see that E(−e − 7 + s) has a section vanishing in codimension two:

0 → O → E(−e − 7 + s) → IZ (−e − 7 + 2s) → 0

where Z ⊂ P6 is a locally complete intersection subscheme of degree d(Z ) =

c2(E(−e − 7 + s)) = d − se + s2 − 7s and with ωZ � OZ (−e − 14 + 2s).
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We observe three facts:

1. X and Z are bilinked on � , in particular Z ⊂ �

2. Moreover X ∩ Z = Jac(�)∩ X (Jac(�) is the subscheme de�ned by the
partials of �)

3. Z is a very bad guy: every irreducible component of Zred appears with
multiplicity in Z .

The �rst two facts are standard from vector bundles techniques (see [19],
Lemma 2.7) and the third follows from the assumption e >> s ([19] Lemma
2.6).

So we wonder if Z ⊂ Jac(�)? or more simply if Zred ⊂ Sing(�)?

Assume for a moment that Zred ⊂ Sing(�). Consider a section with
a general P

3, we have the following situation: C, Y ⊂ F ⊂ P
3, where

C := X ∩ P3, Y := Z ∩ P3 and F := � ∩ P3 is an irreducible surface of
degree s containing Yred in its singular locus.

Now observe that C is linearly normal ([19] Lemma 2.8).
To simplify further, assume Y0 := Yred smooth, irreducible. If deg(Y0) is big
enough, we are done. Indeed, in general, a surface F ⊂ P

3 containing an
integral curve of �high� degree in its singular locus won�t be �linearly normal�,
i.e. F will be the projection of a surface F̃ ⊂ P

4; this contradicts the linear
normality of C . The argument applies for example if s = 4 and deg(Y0) ≥ 2 or
s = 5 and deg(Y0) ≥ 4. So we are left with the cases where deg(Y0) is small;
these cases are handled by ad-hoc arguments (by the way observe that Lemma
5.9 gives a bound on deg(Z )).

It remains to show Zred ⊂ Sing(�).
If this is not the case, then Y ⊂ F is a mutiple structure on Y0 and dim(Y0 ∩

Sing(F)) ≤ 0. But we have pa(Y ) very negative (because e >> s). This
sounds strange, because the singularities,which are isolated on Y0, will increase
the degree of the sub-line bundle of NY0

de�ned by F , equivalently the genus
of the resulting double structure on Y0 will increase ( a double line on a smooth
quadric has genus−1, whereas a double line on a quadric cone has genus 0).
We wonder if this will be the case also for multiplicity m structures, m > 2; in
fact we have ([19] Proposition 3.1):

Proposition 5.12. Let C ⊂ S ⊂ P3 be an integral Gorenstein curve of degree
d , arithmetic genus g, lying on the irreducible surface S of degree s. Assume
dim(C ∩ Sing(S)) ≤ 0 and let Cm be the unique loc. C.M. multiplicity
m structure on C contained in S. Then pa(Cm) ≥ µ(d, g, s, m), where
µ(d, g, s, m) := 1 + m2(g − 1) − (s − 4)d m(m−1)

2
.
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Observe, that if C ⊂ S , S a smooth surface of degree s , then the arithmetic
genus of mC ⊂ S is µ(d, g, s, m).

So, if pa(Y ) < µ(d, g, s, m), it must be Yred ⊂ Sing(F); since pa(Y ) <<

0 in our case, we are done. �

This approach, as it stands, seems dif�cult to generalize, some new ingre-
dients are needed, however, this type of considerations could be of some help.
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