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KINEMATIC VARIETIES FOR MASSLESS PARTICLES

S. RAJAN - S. SVERRISDÓTTIR - B. STURMFELS

We study algebraic varieties that encode the kinematic data for n massless
particles in d-dimensional spacetime subject to momentum conservation.
Their coordinates are spinor brackets, which we derive from the Clifford
algebra associated to the Lorentz group. This was proposed for d = 5 in the
recent physics literature. Our kinematic varieties are given by polynomial
constraints on tensors with both symmetric and skew symmetric slices.

1. Introduction

The real vector space Rd , when endowed with the Lorentzian inner product

x ⋅y = −x1y1+x2y2+ ⋯ +xnyn,

is known as d-dimensional spacetime. The Lorentz group SO(1,d−1) consists
of all d ×d matrices g such that detg = 1 and (gx) ⋅ (gy) = x ⋅ y for all x,y ∈ Rd .
The world we live in, with its three space dimensions and one time dimension,
is the case d = 4. But, also higher dimensions d ≥ 5 appear frequently in physics.

The present paper was inspired by the article [14] on amplitudes for d = 5.
We here address the problem which was raised in the footnote on page 8 in [14],
namely to find the non-linear identities between spinor helicity variables.
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We consider a configuration of n particles in d-dimensional spacetime after
complexification. The ith particle is represented by its momentum vector pi =
(pi1, pi2, . . . , pid) ∈Cd . We assume that each particle is massless, which means

pi ⋅ pi = −p2
i1 + p2

i2 + p2
i3 + ⋯ + p2

id = 0 for i = 1,2, . . . ,n. (1)

We also assume that momentum conservation ∑n
i=1 pi = 0 holds. In coordinates,

p1 j + p2 j + ⋯ + pn j = 0 for j = 1,2, . . . ,d. (2)

Thus, our parameter space consists of all solutions to the n+d equations in (1)
and (2). The pairwise inner products si j = pi ⋅ p j are known as Mandelstam in-
variants. They are invariant under the action of SO(1,d−1) on (p1, p2, . . . , pn).

In Section 2 we view the parameter space through the lens of commutative
algebra. We prove that the ideal generated by (1) and (2), denoted Id,n, is a prime
complete intersection, and we mention a Gröbner basis. The Mandelstam va-
riety consists of symmetric n×n matrices (si j) of rank ≤ d, with zeros on the
diagonal, and rows and columns summing to zero. These constraints also define
a prime ideal. This result generalizes recent findings for d = 4 in [7, Section 4].

In Section 3 we turn to the Clifford algebra Cl(1,d − 1), and we review
how this gives rise to the spinor representation of the Lie algebra so(1,d −1).
We construct the momentum space Dirac matrix P and the charge conjugation
matrix C. These matrices have format 2k×2k, for k = ⌊d/2⌋, as seen in Examples
3.2 and 3.4. Their symmetry properties are derived in (15) and Proposition 3.5.

In Section 4 we introduce the spinor brackets ⟨i j⟩ and ⟨i j k⟩. These are
polynomials in the momentum coordinates pi j and auxiliary parameters zi j; see
Example 4.2. These quantities are understood modulo the ideal Id,n in Section 2.

Section 5 is devoted to kinematic varieties given by order two brackets ⟨i j⟩.
The Grassmannian Gr(2,n) and its first secant variety arise for d ≤ 5. For d ≥ 6,
we obtain subvarieties of determinantal varieties. For d even, the structure of P
leads to the spinor helicity variety of [7], with two types of brackets ⟨i j⟩ and [i j].

In Section 6 we study the varieties of n×(n+1)×n tensors with entries ⟨i j⟩
and ⟨i j k⟩. These tensors have the symmetry properties in Theorem 4.5. We
present some theoretical results, lots of computations, and various conjectures.

2. Massless Particles with Momentum Conservation

We fix the polynomial ring C[p] in the nd variables pi j, and we write Id,n ⊂C[p]
for the ideal generated by the n quadrics in (1) and the d linear forms in (2). The
variety V(Id,n) is the parameter space for n massless particles with momentum
conservation. We show that this variety is irreducible of the expected dimension.
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Theorem 2.1. Id,n is prime and is a complete intersection, if max(n,d) ≥ 4.

Proof. We first give the proof for d ≥ 5. For d = 4 see [7, Theorem 4.5]. We
eliminate pn by solving the linear equations for pn1, . . . , pnd . This leaves the
quadric f = (∑n−1

i=1 pi) ⋅(∑n−1
i=1 pi) and the ideal J = ⟨p1 ⋅ p1, . . . , pn−1 ⋅ pn−1⟩ in the

polynomial ring C[p1, . . . , pn−1]. Our aim is to show that ⟨ f ⟩ is a prime ideal in

R = C[p1, . . . , pn−1]/J ≃
C[p1]
⟨p1 ⋅ p1⟩

⊗C
C[p2]
⟨p2 ⋅ p2⟩

⊗C ⋯ ⊗C
C[pn−1]
⟨pn−1 ⋅ pn−1⟩

.

By [10, Exercise II.6.5], Spec(C[pi]/⟨pi ⋅ pi⟩) has trivial divisor class group
for d ≥ 5, and is normal for d ≥ 3. Then, [10, Proposition II.6.2] implies that
C[pi]/⟨pi ⋅ pi⟩ is a UFD for d ≥ 5. A tensor product of UFDs over C is a UFD.
Hence R is a UFD. It therefore suffices to show that f is irreducible in R. This
holds because f is equivalent to x2

1+⋯+x2
n−1 by a linear change of coordinates.

The UFD R has Krull dimension (n−1)(d −1). Its principal ideal ⟨ f ⟩ has
height one. So, the ring C[p]/Id,n ≃ R/⟨ f ⟩ has Krull dimension (n−1)(d−1)−
1 = nd−(n+d). We conclude that the ideal Id,n is a complete intersection.

We now give the proof for d = 3 and n ≥ 4. We claim that S = C[p]/I3,n is
a normal ring, i.e. the localization Sp is an integrally closed domain for each
prime ideal p ⊂ S. To do so we apply Serre’s criterion for normality in two steps.

1. The ring R =C[p1, . . . , pn−1]/J is normal and has dimension 2n−2. The
associated primes of the principal ideal ⟨ f ⟩ all have height 1. Therefore,
S ≃ R/⟨ f ⟩ has dimension 2n−3. So, I3,n is a complete intersection ideal.
Hence S is Cohen-Macaulay and satisfies Serre’s depth condition, i.e. Sq
has depth at least 2 for every minimal prime ideal q⊂ S of height at least 2.

2. We claim that S = C[p]/(J + ⟨ f ⟩) is regular in codimension 1. To prove
this, it suffices to show that the singular locus of S has codimension at
least 2. Up to scaling the columns, the Jacobian matrix of J+ ⟨ f ⟩ equals

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 0 0 0 ⋯ 0 ⋯ 0
0 0 0 p21 p22 p23 ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
0 0 0 0 0 0 ⋯ pn−1,1 pn−1,2 pn−1,3
∑
ℓ

pℓ1 ∑
ℓ

pℓ2 ∑
ℓ

pℓ3 ∑
ℓ

pℓ1 ∑
ℓ

pℓ2 ∑
ℓ

pℓ3 ⋯ ∑
ℓ

pℓ1 ∑
ℓ

pℓ2 ∑
ℓ

pℓ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The singular locus of S is cut out by the maximal minors of this matrix.
Pick i1, i2, . . . , in−1, jk ∈ {1,2,3} with jk ≠ ik. Then we get the n×n minor

⎛
⎝

n−1

∏
t=1,t≠k

ptit
⎞
⎠
(pkik

n−1

∑
ℓ=1

pℓ jk − pk jk

n−1

∑
ℓ=1

pℓik) .



456 S. RAJAN - S. SVERRISDÓTTIR - B. STURMFELS

Since n ≥ 4, there are enough such products to cut out a locus of codimen-
sion ≥ 2 in Spec(S). This fails for n = 3. So, the ring S satisfies Serre’s
regularity condition, that is, Sp is a DVR for any prime p ⊂ S of height ≤ 1.

Serre’s depth and regularity conditions imply that S is a normal ring. Noethe-
rianity implies S is a finite product of normal domains: S ≃ S1× ⋅ ⋅ ⋅×Sr. Since S
is standard graded ring, it has no non-trivial idempotents, and therefore r = 1. In
conclusion, we have shown that S is a domain, and I3,n is a prime ideal.

Example 2.2. The hypothesis max(n,d) ≥ 4 is needed in Theorem 2.1. The
following session in Macaulay2 [9] shows that I3,3 is primary but not prime:

i1 : R = QQ[p11,p12,p13,p21,p22,p23,p31,p32,p33];

i2 : I = ideal(p11+p21+p31, p12+p22+p32, p13+p23+p33,

p11^2-p12^2-p13^2,p21^2-p22^2-p23^2,p31^2-p32^2-p33^2);

i3 : codim I, degree I

o3 = (6, 8)

i4 : isPrime I, isPrimary I

o4 = (false, true)

Remark 2.3. Fix the reverse lexicographic order on C[p] where the entries of
the n×d matrix (pi j) are sorted row-wise. We find that the reduced Gröbner
basis of Id,n stabilizes for n,d ≥ 3. Namely, the initial monomial ideal equals

in(Id,n) = ⟨ p1 j ∶ j = 1, . . . ,d ⟩ + ⟨ p2
i1 ∶ i = 2, . . . ,n⟩

+ ⟨ p21 p31, p22 p31 p32, p2
22 p31, p2

23 p2
32, p2

23 p31 p32 ⟩.

Remarkably, the last five monomial generators are independent of d and n.

Remark 2.3 suggests that it might be easy to parametrize the variety V(In).
We found that this is not the case at all. A naive idea is to express the variables
p1 j and pi1 in terms of the entries of the (n−1)×(d−1) matrix p′ = (pi j)i, j≥2.

Remark 2.4. The elimination ideal Id,n ∩C[p′] is principal. Its generator is a
large polynomial of degree 2n−1. For instance, for n= 4,d = 5, this octic has 4671
terms. This hypersurface is a notable obstruction to any naive parametrization.

For d = 4, the momentum space twistors introduced by Hodges in [11] yield
a beautiful parametrization. It would be very interesting to extend this to d ≥ 5.

Physical properties of our n particles are expressions in p1, . . . , pn that are
invariant under the action of the orthogonal group G =O(1,d −1). The ring of
G-invariants in C[p] is generated by the Mandelstam invariants si j = pi ⋅ p j. The
ideal Id,n is fixed under this action, and we are interested in the invariant ring

(C[p]/Id,n)G = C[S]/Md,n. (3)
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Here S = (si j) is a symmetric n× n matrix. Its entries are the variables in the
polynomial ring C[S]. We shall characterize the prime ideal Md,n. The variety

V(Md,n) = Spec((C[p]/Id,n)G) = V(Id,n)//G (4)

is the GIT quotient, whose points are the G-orbits of configurations (p1, . . . , pn).
We call (4) the Mandelstam variety. The case d = 4 was studied in [7, Section 4].

Theorem 2.5. Let n ≥ 2 and d ≥ 4. The Mandelstam ideal Md,n is equal to

⟨s11,s22, . . . ,snn⟩ + ⟨(d+1)×(d+1)minors of S⟩ + ⟨
n

∑
j=1

si j ∶ i = 1, . . . ,n⟩. (5)

In particular, this ideal is prime. The dimension of the Mandelstam variety equals

dim(V(Md,n)) = nd−n−d − (d
2
) = dim(V(Id,n)) − dim(O(1,d−1)). (6)

Proof. The dimension formula (6) holds because the orthogonal group acts
faithfully on the complete intersection V(Id,n). Consider the polynomials that
generate the three ideals in (5). These polynomials vanish for massless particles
in d dimensions subject to momentum conservation. It hence suffices to show
that the sum in (5) is a prime ideal and that it has the correct dimension. This
proof rests on the results for Id,n in Theorem 2.1. The details are presented for
d = 4 in the proof of [7, Theorem 4.5]. The general case d ≥ 5 is analogous.

Remark 2.6. If n≤ 3 then (5) is the maximal ideal, i.e. Md,n = ⟨si j ∶ 1≤ i< j ≤ n⟩.

3. Clifford Algebras and Spinors

Our aim is to represent the kinematic data for n particles in terms of spinors.
This encoding rests on the Clifford algebra Cl(1,d − 1), which is associated
with the matrix η = diag(−1,1, . . . ,1). This section offers an introduction to
Clifford algebras and the spin representation of SO(1,d −1). For a systematic
account see Chevalley’s book [5]. Our exposition is inspired by the article [15].

The Clifford algebra Cl(1,d−1) is the free associative algebra C⟨γ1, . . . ,γd⟩
modulo the two-sided ideal generated by γiγ j + γ jγi − 2ηi j for 1 ≤ i, j ≤ d. Its
associated graded algebra is the exterior algebra ∧∗Cd , so dimCCl(1,d−1)= 2d .
A basis is given by the square-free words γi1γi2⋯γik for 1 ≤ i1 < i2 <⋯ < ik ≤ d.

For applications in physics, one uses the representation of the Clifford al-
gebra Cl(1,d −1) by Dirac matrices [15, Section 4]. These matrices have size
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2k ×2k, where d = 2k if d is even and d = 2k+1 if d is odd. We shall define the
Dirac matrices Γ1,Γ2, . . . ,Γd recursively. Starting with d = 2 and k = 1, we set

Γ1 = [
0 1
−1 0] and Γ2 = [

0 1
1 0] . (7)

For d = 2k ≥ 4, we take tensor products of smaller Γ matrices with Pauli
matrices. Namely, if Γk−1,i is the ith Dirac matrix for d = 2k−2 then we define

Γi = Γk−1,i ⊗ [
−1 0
0 1] for 1 ≤ i ≤ d−2, (8)

Γd−1 = Id2k−1 ⊗ [0 1
1 0] , Γd = Id2k−1 ⊗ [0 −i

i 0] . (9)

When d = 2k+1 is odd, we construct the first d−1 Dirac matrices as above, and
we then add one additional Dirac matrix as follows:

Γd = −ik−1 ⋅Γ1Γ2⋯Γd−1. (10)

One checks by induction on k that this yields a representation of Cl(1,d−1).

Proposition 3.1. The Dirac matrices satisfy the Clifford algebra relations, i.e. we
have Γ1

2 = −Id2k , Γj
2 = Id2k for j ≥ 2, and ΓiΓ j +Γ jΓi = 02k for i /= j.

In what follows we work with a variant of the matrices above where the
rows and columns have been permuted to achieve a desirable block structure.
Namely, for d = 2k even, each Dirac matrix Γi is anti-block diagonal of size
2k × 2k with two blocks each of size 2k−1 × 2k−1. This corresponds to the fact
that the representation of Cl(1,d −1) is reducible when d is even. In this case,
it splits into two Weyl representations, namely the left handed and right handed
spinors [15, Section 4.2.1]. For d = 2k+1 odd, the representation is irreducible,
and we augment our basis by the diagonal matrix Γd = diag(1, . . . ,1,−1, . . . ,−1).

Consider a particle with momentum vector p ∈Cd . We define its momentum
space Dirac matrix to be the following linear combination of the Dirac matrices:

P = −p1Γ1+ p2Γ2+ p3Γ3+⋯+ pdΓd . (11)

We next write P explicitly. This illustrates the block structure mentioned above.

Example 3.2 (k = 1,2,3). We take a look at the momentum space Dirac matrices
P = P(d) for d ≤ 7. When d = 2k is even, we get the anti-block diagonal matrices

P(2) = [ 0 −p1+ p2
p1+ p2 0

] , P(4) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 p1− p2 p3− ip4
0 0 p3+ ip4 p1+ p2

−p1− p2 p3− ip4 0 0
p3+ ip4 −p1+ p2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

,
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P(6) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −p1+ p2 0 −p3+ ip4 p5− ip6
0 0 0 0 0 −p1+ p2 p5+ ip6 p3+ ip4
0 0 0 0 −p3− ip4 p5− ip6 −p1− p2 0
0 0 0 0 p5+ ip6 p3− ip4 0 −p1− p2

p1+ p2 0 −p3+ ip4 p5− ip6 0 0 0 0
0 p1+ p2 p5+ ip6 p3+ ip4 0 0 0 0

−p3− ip4 p5− ip6 p1− p2 0 0 0 0 0
p5+ ip6 p3− ip4 0 p1− p2 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix P(d) for d = 2k+1 odd is obtained from the matrix P(d−1) by adding
the diagonal matrix pd ⋅diag(1, . . . ,1,−1, . . . ,−1). For example, we have

P(5) =

⎡⎢⎢⎢⎢⎢⎢⎣

p5 0 p1− p2 p3− ip4
0 p5 p3+ ip4 p1+ p2

−p1− p2 p3− ip4 −p5 0
p3+ ip4 −p1+ p2 0 −p5

⎤⎥⎥⎥⎥⎥⎥⎦

.

We now return to arbitrary spacetime dimension d ≥ 2. It follows from
Proposition 3.1 that the momentum space Dirac matrix P satisfies the identity

P2 = (−p2
1+ p2

2+⋯+ p2
d)Id2k . (12)

This implies the formula det P = (p2
1− p2

2−⋯− p2
d)2

k−1
for the determinant of P.

Corollary 3.3. For massless particles in d dimensions, the momentum space
Dirac matrix P squares to 0 and its rank equals half of its size, i.e. rank P = 2k−1.

The Dirac representation of the Clifford algebra Cl(1,d−1) gives rise to the
spin representation of the Lie algebra so(1,d−1). We consider the commutators

Σ jk =
1
4
[Γ j,Γk]. (13)

These matrices Σ jk define a representation of so(1,d−1) because they satisfy

[Σi j,Σkl] = η jkΣil +ηilΣ jk −η jlΣik −ηikΣ jl. (14)

Indeed, these are the commutation relations satisfied by the matrices in the stan-
dard basis of the Lie algebra so(1,d−1). One obtains the spin representation of
the Lie group SO(1,d−1) on C2k

by taking the matrix exponentials exp(Σ jk).
Another important player in our story is the charge conjugation matrix C.

This is an invertible 2k ×2k matrix with entries in Z[i]. It represents an equiv-
ariant linear map from the spinor representation of so(1,d−1) to its dual repre-
sentation. The characteristic properties of the charge conjugation matrix C are:

CP = −PTC if d = 2k is even, CP = (−1)kPTC if d = 2k+1 is odd. (15)

We explicitly realize C =C(d) as a matrix whose nonzero entries are 1,−1, i,−i.
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Example 3.4 (k = 1,2,3). For d = 2,3 we take the same skew symmetric matrix:

C(2) = C(3) = [ 0 1
−1 0

] .

For d = 4,5 we obtain skew symmetric matrices with a block diagonal structure:

C(4) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎤⎥⎥⎥⎥⎥⎥⎦

, C(5) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

⎤⎥⎥⎥⎥⎥⎥⎦

.

Finally, for d = 6,7 we have the same charge conjugation matrix:

C(6) = C(7) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This is a symmetric 8×8 matrix with an anti-block diagonal structure.

The following result explains the matrix structures we saw in Example 3.4.

Proposition 3.5. The following properties hold for the charge conjugation ma-
trix C associated with particles in spacetimes of dimension d = 2k and d = 2k+1:

1. C is symmetric when k ≡ 0,3 mod 4; otherwise it is skew symmetric.

2. C is block diagonal when k ≡ 0 mod 2; otherwise it is anti-block diagonal.

3. The 2k−1 × 2k−1 blocks of C are skew symmetric when k ≡ 2,3 mod 4;
otherwise the blocks are symmetric.

Proof. The charge conjugation matrix can be written as follows:

C = Γd+1Γ4Γ6⋯Γd−2ΓdΓ1 if d ≡ 0 mod 4,
C = Γ4Γ6⋯Γ2k−2Γ2kΓ1 otherwise.

(16)

Here, we set Γd+1 = −ik−1
Γ1⋯Γd , which is analogous to (10). One can check

that this C defines an equivariant map to the dual representation and (15) holds.
The Dirac matrices are either symmetric or skew symmetric. Namely, we have

Γ
T
1 = −Γ1, Γ

T
2 = Γ2, and Γ

T
2i−1 = Γ2i−1, Γ

T
2i = −Γ2i for i ≥ 2. (17)
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First suppose d /≡ 0 mod 4. Then (17) and the Clifford algebra relations imply

CT = (−1)kΓ1Γ2kΓ2k−2⋯Γ6Γ4 = (−1)k(−1)
k(k−1)

2 C = (−1)
(k+1)k

2 C.

We conclude that the matrix C is symmetric if k ≡ 3 mod 4 and it is skew sym-
metric if k ≡ 1,2 mod 4. Now suppose that d ≡ 0 mod 4. In this case, we find

CT = (−1)kΓ1ΓdΓd−2⋯Γ6Γ4Γd+1 = (−1)k(−1)
(k+1)k

2 C = (−1)
(k+3)k

2 C.

Hence C is symmetric if k ≡ 0 mod 4; otherwise it is skew symmetric. Bearing in
mind that d ∈ {2k,2k+1}, this completes the proof of part 1 in Proposition 3.5.

All Dirac matrices Γi are anti-block diagonal, except the last one when d is
odd. Since C always has k anti-block diagonal terms, we find that C is block
diagonal if k ≡ 0 mod 2. Otherwise it is anti-block diagonal. This proves part 2.

The verification of part 3 is similar, but it is a bit more technical.

4. Spinor Brackets

We now return to our primary goal, namely to model interactions among n mass-
less particles in d-dimensional spacetime. This is based on the Dirac matrices in
Section 3. Recall that the ith particle is the vector pi = (pi1, pi2, . . . , pid). As in
Section 2, we assume that the tuple (p1, . . . , pn) ∈Cnd lies in the variety V(Id,n).

The momentum space Dirac matrix for the ith particle is defined as

Pi = −pi1Γ1 + pi2Γ2 + pi3Γ3 + ⋯ + pidΓd .

This matrix has format 2k ×2k, where k = ⌊d/2⌋, and its entries are linear forms
in pi. The rank of Pi equals 2k−1, since the particle is massless, by Corollary 3.3.
The Clifford algebra relations imply the following anti-commutator identities:

PiPj + PjPi = 2pi ⋅ p j Id2k = 2si j Id2k . (18)

For each i ∈ {1,2, . . . ,n}, we now introduce 2k−1 additional variables zi j.
These variables parameterize the column space of Pi, using the basis consisting
of the first 2k−2 and last 2k−2 columns of Pi. We fix the parameter vector

zi = (zi1, zi2, . . . , zi,2k−2 , 0, 0, . . . , 0 , zi,2k−2+1, zi,2k−2+2, . . . ,zi,2k−1 )T . (19)

Here it is assumed that k ≥ 2. In the small special case k = 1 we set zi = (zi1,0)T .
We use Dirac’s ket-notation for a general vector in the column space of Pi:

∣ i⟩ = Pi zi. (20)

The bra-notation ⟨ i ∣ is used for the corresponding row vector ∣ i⟩T . Thus ∣ i⟩ and
⟨ i ∣ are vectors that depend on d+2k−1 parameters. They represent particle i.



462 S. RAJAN - S. SVERRISDÓTTIR - B. STURMFELS

Remark 4.1. In this paper we restrict ourselves to massless particles. If particle
i is massive then its momentum vector pi satisfies the inhomogeneous equation

p2
i1− p2

i2− ⋯ − p2
id = m2

i for some constant mi.

Hence the determinant of its matrix Pi equals det Pi = m2k

i . The vector ∣ i⟩ is now
an eigenvector of Pi, by equation (12). The algebraic relations among the spinor
brackets, defined below, would involve the masses m1, . . . ,mn as parameters.
The study of such affine varieties for massive particles is left for future work.

We write C[p,z] for the polynomial ring in nd variables pi j and n2k−1 vari-
ables zi j. We view Id,n as an ideal in C[p,z]. The quantities that represent
interactions among n massless particles are certain elements in the quotient ring

Rd,n = C[p,z]/Id,n.

We know from Theorem 2.1 that Rd,n is an integral domain for max(d,n) ≥ 4.
The following elements of Rd,n are invariant under the action of the Lorentz

group SO(1,d−1). We define the spinor brackets of order two and three to be

⟨ i j ⟩ = ⟨ i ∣C ∣ j ⟩ and ⟨ i j k⟩ = ⟨ i ∣CPj ∣k⟩. (21)

Here i, j,k ∈ {1,2, . . . ,n}. Similarly, we define the ℓ-th order spinor brackets:

⟨ i1i2⋯ iℓ ⟩ = ⟨ i1 ∣CPi2⋯Piℓ−1 ∣ iℓ ⟩. (22)

Here C is the charge conjugation matrix from Example 3.4 and Proposition 3.5.

Example 4.2 (d = 3). Explicitly, the spinor brackets of order two and three are

⟨i j⟩ = [zi1 0][ pi3 pi1+ pi2
−pi1+ pi2 −pi3

][ 0 1
−1 0][

p j3 −p j1+ p j2
p j1+ p j2 −p j3

][z j1
0 ]

= −pi1 p j3zi1z j1− pi2 p j3zi1z j1+ pi3 p j1zi1z j1+ pi3 p j2zi1z j1,

⟨i jk⟩ = pi1 p j1 pk1zi1zk1+ pi1 p j1 pk2zi1zk1− pi1 p j2 pk1zi1zk1− pi1 p j2 pk2zi1zk1
−pi1 p j3 pk3zi1zk1+ pi2 p j1 pk1zi1zk1+ pi2 p j1 pk2zi1zk1− pi2 p j2 pk1zi1zk1
−pi2 p j2 pk2zi1zk1− pi2 p j3 pk3zi1zk1+ pi3 p j1 pk3zi1zk1+ pi3 p j2 pk3zi1zk1

−pi3 p j3 pk1zi1zk1− pi3 p j3 pk2zi1zk1.

These are elements of the quotient ring R3,n, so the constraints (1) and (2) hold.

Remark 4.3. The spinor brackets ⟨i j⟩ and ⟨i jk⟩ are invariant under the action
of SO(1,d−1) by left multiplication on the z-vectors and conjugation on the P-
matrices. For instance, given Σ ∈ so(1,d−1), the matrix g = exp(Σ) transforms

⟨i j⟩ = zT
i PT

i CPjz j (23)

as desired: (gzi)T (gPig−1)TC(gPjg−1)gz j = zT
i PT

i gTCgPjz j = ⟨i j⟩. Here gTCg =
C holds because CΣ = −Σ

TC implies Cexp(Σ) = exp(−Σ
T )C = exp(ΣT )−1C.
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Remark 4.4. In what follows we consider only spinor brackets with ℓ = 2,3.
Their varieties are already quite intriguing, as we shall see in Sections 5 and 6.
We do not claim that the brackets for ℓ ≥ 4 can be reduced to ℓ = 2,3. It would
be worthwhile to study such reductions from the perspective of invariant theory.

We next examine symmetries of the spinor brackets. To this end, we define

S = (⟨ i j ⟩)1≤i, j≤n = (∣1⟩, ∣2⟩, . . . , ∣n⟩)
T ⋅C ⋅(∣1⟩, ∣2⟩, . . . , ∣n⟩). (24)

This is an n×n matrix, obtained by multiplying matrices of formats n×2k, 2k×2k

and 2k ×n. Similarly, for each index j ∈ {1,2, . . . ,n} we define the n×n matrix

Tj = (⟨ i j k⟩)1≤i,k≤n = (∣1⟩, ∣2⟩, . . . , ∣n⟩)
T ⋅C ⋅Pj ⋅(∣1⟩, ∣2⟩, . . . , ∣n⟩). (25)

Theorem 4.5. The n×n matrix S has rank ≤ 2k with zeros on the diagonal. If
k ≡ 0,3 mod 4 then S is symmetric; otherwise S is skew symmetric. In symbols,

⟨ i i⟩ = 0 and ⟨ i j ⟩ = ±⟨ j i⟩ for 1 ≤ i < j ≤ n.

The n×n matrix Tj has rank ≤ 2k−1 with zeros in the jth row and column. If
d ≡ 1,2,3,4 mod 8 then Tj is symmetric; otherwise Tj is skew symmetric. Thus,

⟨ j j k⟩ = ⟨ i j j ⟩ = 0 and ⟨ i j k⟩ = ±⟨k j i⟩ for 1 ≤ i, j,k ≤ n.

The sum of the n matrices Tj is the zero matrix, i.e. T1+T2+⋯+Tn = 0.

Proof. Since C is of rank 2k, equation (24) implies that S has rank at most 2k.
Now since P2

i = 0, the vector ∣ i⟩ lies in the kernel of Pi, so ⟨ i i⟩ = ±zT
i CPi∣ i⟩ = 0.

The (skew) symmetry property of S follows from part (1) in Proposition 3.5.
We now turn to Tj. By Corollary 3.3, the 2k ×2k matrix Pj has rank 2k−1. It

follows from (25) that Tj has rank at most 2k−1. Since ∣ j ⟩ lies in the kernel of
Pj, we conclude ⟨ i j j ⟩ = ⟨ i ∣CPj ∣ j ⟩ = 0, and similar for ⟨ j jk⟩. The (skew) sym-
metry property of Tj follows from Proposition 3.5 and equation (15). Finally,
momentum conservation∑n

j=1 Pj = 0 implies the matrix identity∑n
j=1 Tj = 0.

We regard the tuple T = (T1, . . . ,Tn) as a tensor of format n× n× n. By
augmenting this with the matrix S, we obtain a tensor ST of format n×(n+1)×n.

Remark 4.6. For the ℓ-th order spinor brackets we can introduce the tensor
T (ℓ) = (⟨ i1⋯iℓ ⟩)i1,...,iℓ of size nℓ. In general, the following symmetries will hold:

⟨ i1i1i3⋯ iℓ ⟩ = ⟨ i1⋯ i ji j⋯ iℓ ⟩ = ⟨ i1⋯iℓ−2iℓiℓ ⟩ = 0 and ⟨ i1⋯ iℓ ⟩ = ±⟨ iℓ⋯ i1 ⟩.

In the latter equation, the sign is positive when ℓ is even and d ≡ 0,1,6,7 mod 8,
or when ℓ is odd and d ≡ 1,2,3,4 mod 8. Otherwise we get a negative sign.
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The next two sections are concerned with polynomial relations satisfied by
the spinor brackets. These relations define the kinematic varieties for massless
particles which are promised in our title. We offer a preview for the case in Ex-
ample 4.2. Our computations were performed with the software Macaulay2 [9].

Example 4.7 (d = 3,k = 1,n = 4). We consider four particles in spacetime for
flatlanders. The six spinor brackets of order two form a skew symmetric matrix:

S =

⎡⎢⎢⎢⎢⎢⎢⎣

0 ⟨12⟩ ⟨13⟩ ⟨14⟩
−⟨12⟩ 0 ⟨23⟩ ⟨24⟩
−⟨13⟩ −⟨23⟩ 0 ⟨34⟩
−⟨14⟩ −⟨24⟩ −⟨34⟩ 0

⎤⎥⎥⎥⎥⎥⎥⎦

.

The 24 spinor brackets of order three are the entries of four symmetric matrices:

T1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 ⟨212⟩ ⟨213⟩ ⟨214⟩
0 ⟨213⟩ ⟨313⟩ ⟨314⟩
0 ⟨214⟩ ⟨314⟩ ⟨414⟩

⎤⎥⎥⎥⎥⎥⎥⎦

, T2 =

⎡⎢⎢⎢⎢⎢⎢⎣

⟨121⟩ 0 ⟨123⟩ ⟨124⟩
0 0 0 0
⟨123⟩ 0 ⟨323⟩ ⟨324⟩
⟨124⟩ 0 ⟨324⟩ ⟨424⟩

⎤⎥⎥⎥⎥⎥⎥⎦

,

T3 =

⎡⎢⎢⎢⎢⎢⎢⎣

⟨131⟩ ⟨132⟩ 0 ⟨134⟩
⟨132⟩ ⟨232⟩ 0 ⟨234⟩

0 0 0 0
⟨134⟩ ⟨234⟩ 0 ⟨434⟩

⎤⎥⎥⎥⎥⎥⎥⎦

, T4 =

⎡⎢⎢⎢⎢⎢⎢⎣

⟨141⟩ ⟨142⟩ ⟨143⟩ 0
⟨142⟩ ⟨242⟩ ⟨243⟩ 0
⟨143⟩ ⟨243⟩ ⟨343⟩ 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

.

We are interested in the subvariety of P5×P23 parametrized by the 30 brackets.
This kinematic variety is irreducible of dimension 4 and its multidegree equals

5s5t19 + 28s4t20 + 24s3t21 + 10s2t22 + 2st23 ∈ H∗(P5×P23,Z). (26)

The prime ideal of our variety is minimally generated by the 10 linear forms in

T1 + T2 + T3 + T4 = 0, (27)

together with 54 = 1+24+29 quadrics. First, there is the Plücker quadric

⟨12⟩⟨34⟩ − ⟨13⟩⟨24⟩ + ⟨14⟩⟨23⟩ = Pfaffian(S), (28)

which ensures that S has rank two. Next, we have 24 binomial quadrics like

⟨i j k⟩⟨l jm⟩ − ⟨i jm⟩⟨l j k⟩. (29)

For each j, we have six such binomials. They are the 2×2 minors which ensure
that the matrix Tj has rank ≤ 1. Finally, we have 29 bilinear relations, such as

⟨12⟩⟨324⟩− ⟨34⟩⟨142⟩ and ⟨12⟩⟨243⟩− ⟨13⟩⟨242⟩+ ⟨23⟩⟨142⟩. (30)

These ensure that the 4×20 matrix (S,T1,T2,T3,T4) has rank ≤ 2. We obtain (30)
from the 3×3 minors of this flattening of the 4×5×4 tensor ST . Our prime ideal
is generated by (27), (28), (29) and quadrics like (30). See also Conjecture 6.2.
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5. Varieties in Matrix Spaces

The order two spinor brackets ⟨i j⟩ are the (n2) entries of an n×n matrix S which

is either symmetric or skew symmetric. The kinematic variety K(2)d,n consists of

such matrices S. This is an irreducible variety in P(
n
2)−1. We seek its prime ideal.

Theorem 5.1. For d = 3, the ideal of K(2)3,n is generated by the 4×4 Pfaffians of
a skew symmetric n×n matrix, so this kinematic variety is the Grassmannian
Gr(2,n). For d = 4,5, the ideal is generated by the 6× 6 Pfaffians of a skew
symmetric n×n matrix, and hence K(2)4,n =K

(2)
5,n is the secant variety of Gr(2,n).

Proof. For d = 3,4,5 we have k ≡ 1,2 mod 4. Theorem 4.5 tells us that S is skew
symmetric of rank ≤ 2k. Hence K(2)d,n is contained in Gr(2,n) and its secant vari-
ety respectively. To see that they are equal, we checked (using Macaulay2) that
the entries of the column vector ∣ i⟩ are algebraically independent. Thus (24) is a
generic skew symmetric n×n matrix of rank ≤ 2k. This might fail for d ≥ 6.

Remark 5.2. The dimensions of Grassmannians and their secant varieties are
well known; see e.g. [3]. For the kinematic varieties in Theorem 5.1, we have

dimK(2)3,n = 2n−4 and dimK(2)4,n = dimK(2)5,n = 4n−11 for n ≥ 4. (31)

Next we consider spacetime dimensions d = 6,7,8,9. Here k = 3,4, so S is
a symmetric n×n matrix. It still has zeros on the diagonal and rankS ≤ 2k, by
Theorem 4.5. The variety of such matrices is irreducible, and its prime ideal is
generated by the (2k+1)×(2k+1)minors. This is proved for 4×4 minors in [6,
Theorem 3.5], but the proof is the same for matrix of fixed size larger than 4.

Conjecture 5.3. For d ≡ 0,1,6,7 mod 8, the kinematic variety K(2)d,n consists of

all symmetric n×n matrices with zero diagonal and rank ≤ 2⌊d/2⌋. For d ≡ 2,3,4,5
mod 8, K(2)d,n is the variety of skew symmetric n×n matrices of rank ≤ 2⌊d/2⌋.

The determinantal varieties in Conjecture 5.3 are irreducible and their di-
mensions are known. For instance, going one step beyond (31), we would have

dimK(2)d,n = 7n−29 for d = 6,7 and n ≥ 7. (32)

To prove Conjecture 5.3, it suffices to show that the dimension K(2)d,n equals that
of the determinantal variety. Both varieties are irreducible, and the former is
contained in the latter. For instance, we verified (32) numerically for n = 7,8,9.

The difficulty in extending the proof of Theorem 5.1 to higher dimensions
d ≥ 6 is that the entries of the vector ∣ i⟩ are no longer algebraically independent.
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Remark 5.4. For d ≥ 6, the spinors ∣ i⟩ live in a proper subvariety of P2k−1. For
instance, for d = 6, the eight coordinates of ∣ i⟩ satisfy the algebraic relation

∣ i⟩∅ ⋅ ∣ i⟩123 − ∣ i⟩1 ⋅ ∣ i⟩23 + ∣ i⟩2 ⋅ ∣ i⟩13 − ∣ i⟩3 ⋅ ∣ i⟩12 = 0. (33)

For k ≥ 4, we used HomotopyContinuation.jl [1] to compute the codimen-
sion of the variety parametrized by ∣i⟩. Based on this, we conjecture the formulas

codim(2k) = 2k−1−2(k−1) and codim(2k+1) = codim(2k)−1. (34)

We now relate K(2)d,n to the spinor-helicity formalism in [8, Section 2.2]. For
this, we assume that d = 2k is even. As seen in Example 3.2, the momentum
space Dirac matrix P is anti-block diagonal with two blocks of size 2k−1×2k−1:

P = [ 0 P′

P′′ 0
] . (35)

This reflects the fact that the action of SO(1,d −1) decomposes into two irre-
ducible representations. We consider the blocks P′ and P′′ separately, and define
both angle and square spinor brackets. Let x̃i be the vector consisting of the first
2k−1 entries of zi and xi the vector consisting of the last 2k−1 entries of zi. We set

∣i⟩ = P′i xi , ⟨i∣ = ∣i⟩T and ∣i] = P′′i x̃i , [i∣ = ∣i]T .

By Proposition 3.5, the C matrix is either block diagonal or anti-block diagonal:

C = [C
′ 0

0 C′′] if k is even and C = [ 0 C′′

C′ 0
] if k is odd.

In analogy to (22), we define two types of elements in the ring Rd,n as follows:

⟨i1i2⋯iℓ⟩ = ⟨i1∣C′P′i2⋯P′iℓ−1
∣ iℓ⟩ and [i1i2⋯iℓ] = [i1∣C′′P′′i2⋯P′′iℓ−1

∣ iℓ]. (36)

Moreover, it makes sense to mix and match the brackets, so we can also define

⟨i1i2⋯iℓ] = ⟨i1∣C′′P′′i2⋯P′′iℓ−1
∣ iℓ] and [i1i2⋯iℓ⟩ = [i1∣C′P′i2⋯P′iℓ−1

∣ iℓ⟩. (37)

If k is even, then the brackets in (36) are Lorentz invariant, in the sense of
Remark 4.3. Likewise, if k is odd, then the brackets in (37) are Lorentz invariant.

We now focus on d = 4 and ℓ = 2, and we erase the z parameters by setting

xi = x̃i = (pi1+ pi2)−1/2 for i = 1,2, . . . ,n. (38)

The ⟨i j⟩ and [i j] form skew symmetric n×n matrices of rank 2 whose product
is the zero matrix. This recovers the spinor helicity variety in [7, Example 1.1]:

SH(2,n,0) ⊂ Gr(2,n)×Gr(2,n) ⊂ P(
n
2)−1×P(

n
2)−1.

It would be interesting to study the varieties given by (36) and (37) for d =
6,8, . . .. In the present paper we limit ourselves to the angle brackets in (21).
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6. Varieties in Tensor Spaces

Let K(3)d,n denote the kinematic variety of second and third order spinor brackets.

This is an irreducible subvariety of P(
n
2)−1 ×PK−1, where K = n ⋅ (n2) when the

slices Tj are symmetric, i.e. d ≡ 1,2,3,4 mod 8, and K = n ⋅(n−1
2 ) when the slices

Tj are skew symmetric; see Theorem 4.5. The prime ideal of K(3)d,n consists
of all polynomial relations among the spinor brackets ⟨i j⟩ and ⟨i j k⟩. It is Z2-
graded because ⟨i j⟩ and ⟨i j k⟩ are homogeneous elements in the Z2-graded ring
Rd,n =C[p,z]/Id,n, of degrees (2,2) and (3,2) respectively; see Example 4.2.

Points in the kinematic varietyK(3)d,n are n×(n+1)×n tensors ST . The tensor
slices S,T1, . . . ,Tn are n×n matrices which are symmetric or skew symmetric,
depending on the residue classes of k = ⌊d/2⌋ modulo 4 and d modulo 8. We
refer to [12, 13] for basics on tensors, such as rank, slices and flattenings.

Remark 6.1 (Three particles). Let n = 3 and d ≥ 4. The kinematic variety K(3)d,3
is empty since T1 = T2 = T3 = 0. To see this, we first note that ⟨i jk⟩ = 0 for i, j,k
distinct, since T1 +T2 +T3 = 0. Remark 2.6 implies PiPj +PjPi = 02k , and hence
⟨i j i⟩ = zT

i PT
i CPjPizi =±zT

i CPjP2
i zi = 0. Therefore, ⟨i jk⟩ = 0 for all i, j,k, showing

the variety is empty. The matrix S is unconstrained, and hence K(2)d,3 = P
2.

From now on we assume n≥ 4. We start with the case d = 3. Here, the matrix
S is skew symmetric and the slices Tj are symmetric. Our kinematic varietyK(3)3,n

lives in the tensor space P(
n
2)−1×Pn(n

2)−1. See Example 4.7 for the case n = 4.
To study K(3)3,n for n ≥ 5, we introduce some terminology for third order ten-

sors. Recall from [12, Chapter 2] that the multilinear rank of a tensor is the triple
of the ranks of its flattenings. A Tucker decomposition of an n1×n2×n3 tensor
T with multilinear rank (r1,r2,r3) is a factorization of T into an r1×r2×r3 core
tensor K and matrices U1,U2,U3 of sizes n1×r1, n2×r2 and n3×r3 respectively.

Conjecture 6.2. The varietyK(3)3,n has dimension 3n−8. Its points are tensors ST
of multilinear rank ≤ (2,4,2). Here S is skew symmetric of rank 2, and the Tj

are symmetric of rank ≤ 1, summing to 0, with zeros in the j-th row and column.
The prime ideal of K(3)3,n is generated by polynomials of degree ≤ 3, namely the
entries of T1 +T2 +⋯+Tn, 4 × 4 Pfaffians of S, 2× 2 minors of the Tj’s, 3× 3
minors of the flattening (S,T1, . . . ,Tn), and quadrics that are mixed Pfaffians.

We now present evidence for this conjecture. First and foremost, every n×
(n+1)×n tensor ST in the kinematic variety K(3)3,n has a Tucker decomposition
whose core tensor K has format 2×4×2. The four 2×2 slices of the core K are

K1 = [
0 1
−1 0

] , K2 = [
0 1
1 0
] , K3 = [

1 0
0 0
] , K4 = [

0 0
0 1
] .
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The corresponding factor matrices of format 2×n and 4×(n+1) are

U1 = U3 = (∣1⟩, ∣2⟩, . . . , ∣n⟩), U2 = [
1 0
0 U2

] =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0
0 −p13 ⋯ −pn3
0 p11+ p12 ⋯ pn1+ pn2
0 p11− p12 ⋯ pn1− pn2

⎤⎥⎥⎥⎥⎥⎥⎦

.

The matrices whose columns are the spinors (20) can be written as follows:

U1 = U3 = [
−1 0 0
0 1 0

] ⋅U2 ⋅

⎡⎢⎢⎢⎢⎢⎢⎣

z11 0 ⋯ 0
0 z21 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ zn1

⎤⎥⎥⎥⎥⎥⎥⎦

.

From the Tucker decomposition we see that the n×n slices of ST are

S = UT
1 K1U1 and Tj = UT

1 (−p j3K2+(p j1+ p j2)K3+(p j1− p j2)K4)U1. (39)

The 2×n matrix U1 is generic, as in the proof of Theorem 5.1. This implies that
S is a generic skew symmetric n×n matrix of rank 2. The space of symmetric
2×2 matrices has the basis {K2,K3,K4}. The parenthesized matrix in (39) has
determinant p2

j1− p2
j2− p2

j3, and hence Tj is a symmetric n×n matrix of rank ≤ 1.
More precisely, Tj is the outer product of the following vector with itself:

v j = (p j1+ p j2)−
1
2 [p j1+ p j2 −p j1+ p j2]U1 = (p j1+ p j2)−

1
2 u j U1.

Since u j is in the kernel of the 2×2 matrix Pj, the j-th coordinate of v j is zero.
Therefore the j-th row and column of Tj are zero. In summary, we have shown
that the n×(n+1)×n tensor ST has all the properties stated in Conjecture 6.2.

We now return to arbitrary spacetime dimension d ≥ 3. Our ultimate goal
is to understand K(3)d,n for arbitrary d and n. A first step is to determine the di-
mension of this kinematic variety. For small cases, we computed this using the
numerical software HomotopyContinuation.jl [1]. This computation is non-
trivial because the momenta pi must satisfy the constraints studied in Section 2.

Proposition 6.3. The dimensions of the kinematic varietiesK(3)d,n are as follows:

d/n 4 5 6 7 8 9 10 11 12
4 8 13 18 23 28 33 38 43 48
5 7 13 19 25 31 37 43 49 55
6 9 20 30 40 49 58 67 76 85
7 9 20 30 40 50 60 70 80 90
8 10 28 51 67 82 97 112 127 142
9 15 33 49 65 81 97 113 129 145
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Proposition 6.3 suggests that dimK(3)d,n is a linear function in n when d is
fixed. We note that the slope is 5,6,9,10,15,16 for d = 4,5,6,7,8,9. Following
[14], we are especially interested in the case d = 5. Proposition 6.3 suggests that
K(3)5,n has dimension 6n−17. We next characterize this variety for five particles.

Example 6.4. Fix d = 5,k = 2,n = 5. The varietyK(3)5,5 ⊂P
9×P29 is irreducible of

dimension 13 and degree 1761. Its class in H∗(P9×P29,Z) is the multidegree

80s8t17+265s7t18+430s6t19+450s5t20+320s4t21+155s3t22+50s2t23+10st24+t25.

Modulo the 10 linear forms in T1+T2+T3+T4+T5, the ideal is generated by 25
quadrics, 15 cubics and 5 quartics. Each Tj is a skew symmetric 5×5 matrix with
one zero row, so it contributes one Pfaffian ⟨i jk⟩⟨ℓ jm⟩−⟨i jℓ⟩⟨k jm⟩+⟨i jm⟩⟨k jℓ⟩.
The other 20 quadrics are bilinear Pfaffians ⟨i j⟩⟨kiℓ⟩− ⟨ik⟩⟨ jiℓ⟩+ ⟨iℓ⟩⟨ jik⟩, e.g.

4×4 Pfaffians of

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 ⟨12⟩ ⟨13⟩ ⟨14⟩ ⟨15⟩
−⟨12⟩ 0 ⟨213⟩ ⟨214⟩ ⟨215⟩
−⟨13⟩ −⟨213⟩ 0 ⟨314⟩ ⟨315⟩
−⟨14⟩ −⟨214⟩ −⟨314⟩ 0 ⟨415⟩
−⟨15⟩ −⟨215⟩ −⟨315⟩ ⟨−415⟩ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (40)

Next, we have 15 cubics which ensure that the flattening (S,T1,T2,T3,T4,T5) has
rank ≤ 4. One of them is ⟨213⟩⟨123⟩⟨435⟩−⟨213⟩⟨325⟩⟨134⟩+⟨213⟩⟨324⟩⟨135⟩
+⟨314⟩⟨123⟩⟨235⟩−⟨314⟩⟨325⟩⟨132⟩−⟨315⟩⟨123⟩⟨234⟩+⟨315⟩⟨324⟩⟨132⟩. Fi-
nally, the 5 quartic generators come from the 4×4 minors of the following slices:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⟨12⟩ ⟨13⟩ ⟨14⟩ ⟨15⟩
0 0 0 0 0
0 0 ⟨123⟩ ⟨124⟩ ⟨125⟩
0 ⟨132⟩ 0 ⟨134⟩ ⟨135⟩
0 ⟨142⟩ ⟨143⟩ 0 ⟨145⟩
0 ⟨152⟩ ⟨153⟩ ⟨154⟩ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−⟨12⟩ 0 ⟨23⟩ ⟨24⟩ ⟨25⟩
0 0 ⟨213⟩ ⟨214⟩ ⟨215⟩
0 0 0 0 0

−⟨132⟩ 0 0 ⟨234⟩ ⟨235⟩
−⟨142⟩ 0 ⟨243⟩ 0 ⟨245⟩
−⟨152⟩ 0 ⟨253⟩ ⟨254⟩ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, etc . . . (41)

We conclude this paper by summarizing what we know in general about the
kinematic varietyK(3)5,n for n≥ 4 massless particles in spacetime dimension d = 5.

The points inK(3)5,n are n×(n+1)×n tensors ST . The matrix S is skew symmetric
of rank ≤ 4 and the slices Tj are skew symmetric of rank ≤ 2, summing to 0, and
the j-th row and column of Tj is zero. We saw this in Theorem 4.5. From these
constraints we see that the 6×6 Pfaffians of S and the 4×4 Pfaffians of Tj vanish.

Our next proposition explains the mixed relations we found in (40) and the
cubics arising from the flattening (S,T1,T2,T3,T4,T5) of the 5×6×5 tensor ST .

Proposition 6.5. For each index j ∈ {1, . . . ,n}, the skew symmetric n×n matrix

(∣1⟩, . . . , ∣ j−1⟩,z j, ∣ j+1⟩, . . . , ∣n⟩)T⋅C ⋅Pj ⋅(∣1⟩, . . . , ∣ j−1⟩,z j, ∣ j+1⟩, . . . , ∣n⟩) (42)
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has the spinor brackets ⟨i j⟩ and ⟨i jk⟩ for its non-zero entries. It has rank ≤ 2 on
the kinematic variety K(3)5,n , so the 4×4 Pfaffians give bilinear ideal generators.
Furthermore, the n× (n2 + n) matrix flattening (S,T1, . . . ,Tn) of the tensor ST
has rank ≤ 4 on K(3)5,n . It contributes 6×6 Pfaffians to the ideal generators.

Proof. The statement about (42) holds because the 4× 4 matrix C ⋅Pj is skew
symmetric and its rank is 2. See (15) and Example 3.4. The bound on the rank
of (S,T1, . . . ,Tn) follows from the matrix factorizations in (24) and (25).

We also consider the n×(n+1) slices of the tensor ST obtained by fixing the
the first or last index. Numerical computations show that these matrices have
rank ≤ 3 on K(3)5,n . We also discovered that the multilinear rank of ST equals

(4,6,4). Our final question concerns the tensor rank of ST on the variety K(3)5,n .
We can prove that the tensor rank of ST is at least 5. We show this by evaluating
the Strassen invariant [13, Example 9.21] on subtensors of format 3×3×3. At
present we do not have a conjecture for the tensor rank on K(3)5,n for general n.

We conclude by expressing the hope that our tensor varieties for arbitrary d
will be of interest to physicists. Potential points of connection in the physics lit-
erature are the studies of spinor helicity for d = 6 in [4] and for d = 10 in [2]. The
case d = 10 is especially relevant for N = 4 supersymmetric Yang-Mills theory.
Perhaps some of the insights gained there can help in proving our conjectures?
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