
LE MATEMATICHE
Vol. LXXX (2025) – Issue I, pp. 409–429
doi: 10.4418/2025.80.1.17

DIFFERENTIAL EQUATIONS FOR
MOVING HYPERPLANE ARRANGEMENTS

A. PFISTER - A.-L. SATTELBERGER

We investigate Mellin integrals of products of hyperplanes, raised to an
individual power each. We refer to the resulting functions as combinato-
rial correlators. We investigate their behavior when moving the hyper-
planes individually. To encode these functions as holonomic functions in
the constant terms of the hyperplanes, we aim to construct a holonomic
annihilating D-ideal purely in terms of the hyperplane arrangement.

1. Introduction

We fix m linear forms ℓ1(x), . . . ,ℓm(x) in n variables x = (x1, . . . ,xn). They en-
code a central hyperplane arrangement in Rn. We introduce shift parameters
c1,c2, . . . ,cm, and we consider the m affine hyperplanes {x ∈Rn ∶ ℓi(x) = ci} for
i = 1, . . . ,m. We augment this by the coordinate hyperplanes {x ∈Rn ∶ x j = 0} for
j = 1, . . . ,n. The complement of Cn by this arrangement of m+n hyperplanes is
a very affine variety X that depends on the unknowns c1,c2, . . . ,cm.

Our object of study is the following generalized Euler integral [1] associated
to the m shifted linear forms,

φ(c1, . . . ,cm) = ∫
Γ

(ℓ1(x)−c1)s1⋯(ℓm(x)−cm)sm xν1
1 ⋯xνn

n
dx1

x1
∧⋯∧ dxn

xn
, (1)
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where Γ is a twisted n-cycle of X , and s ∈ (C∖{0})m and ν ∈ (C∖{1})n can
be complex. This is the Mellin transform of ∏m

i=1(ℓi − ci)si , but considered as
a function of c = (c1, . . . ,cm). We refer to the function (1) as a combinatorial
correlator. Our choice of name is a reference to the theory of cosmological cor-
relators, and in particular to the recent article [3], in which the authors study the
integral φ(c) in the special case when the linear forms ℓi range over subsums of
the coordinates x j, and ν1 =⋯ = νn = ε . In a cosmological setup, this function
measures quantities such as the strength of correlations in the first light released
in the hot big bang. The differential as well as difference equations behind cos-
mological correlator functions are tackled from an algebraic perspective in [8].

We here seek to determine differential equations that annihilate φ(c) for all
twisted cycles Γ. These equations correspond to a left ideal I ⊂ D in the m-th
Weyl algebra in the c-variables. More precisely, we aim to represent φ as a
holonomic function. It is well-known that (1) is the solution to a restricted GKZ
system [9]; but these are difficult to compute in practice. We here offer a direct,
combinatorial approach, employing the hyperplane arrangement only.

Our construction is purely combinatorial and depends on the hyperplane
arrangement only—however, not only on the matroid of the arrangement, as
shown in Section 4.6. Our main result, summarized in Theorem 3.2, is the
construction of an annihilating D-ideal of the correlator φ . It reads as follows.

Theorem 1.1. Let ℓ1, . . . ,ℓm be as in (3), and φ the correlator function (4). Let
H be the homogeneity operator (5), {Li} the operators (10) arising from the
individual hyperplanes, and {Pj} and {Qk} the operators constructed from cir-
cuits and syzygies, respectively, as was explained above. Then the left D-ideal
generated by them annihilates φ , i.e.,⟨H,{Li},{Pj},{Qk}⟩ ⊂ AnnD(s,ν)(φ) .

Section 4 showcases that indeed, in several examples, the holonomic rank
of our D-ideal attains the upper bound for the holonomic rank of the full anni-
hilating D-ideal of φ . In particular, it encodes φ as a holonomic function. Our
study also suggests a relation of the singular locus of I to the discriminantal
arrangement of the hyperplane arrangement. In Proposition 3.4, we prove that,
for line arrangements, the singular locus of our D-ideal is contained in the dis-
criminantal arrangement. While working on this article, the work [7] of Fevola
and Matsubara-Heo on Euler discriminants of complements of hyperplanes ap-
peared. Their results also recover the singularities of generalized Euler integrals.

In short, we give a combinatorial construction of an annihilating D-ideal
of φ (1). For software, we use the Dmodules package [14] in Macaulay2 [11],
the package HolonomicFunctions [13] in Mathematica, and the D-module li-
braries [2] in SINGULAR:PLURAL [5, 10]. We provide our code via GitLab at
https://uva-hva.gitlab.host/universeplus. We surmise that the methods devel-
oped here will ultimately be useful for cosmology and particle physics.

https://uva-hva.gitlab.host/universeplus/differential-equations-for-moving-hyperplane-arrangements.git
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Outline. Section 2 recalls background on the mathematical tools that we em-
ploy. In Section 3, we construct an annihilating D-ideal of the correlator func-
tion (1) purely from the hyperplane arrangement. In Section 4, we showcase our
methods with examples. Section 5 gives an outlook to future work.

2. Preliminaries

We here recall mathematical tools needed for our study. They reach from oper-
ator algebras through twisted cohomology to discriminantal arrangements.

2.1. Operator algebras

Differential operators The operators we seek for are elements of the m-th
Weyl algebra in the c-variables, denoted Dm or just D,

Dm = C[c1, . . . ,cm]⟨∂c1 , . . . ,∂cm⟩,

where ∂ci = ∂

∂ci
is the partial derivative with respect to ci. It is obtained from

the free C-algebra generated by c1, . . . ,cm,∂c1 , . . . ,∂cm , modulo the following
relations. All generators are assumed to commute, except ci and ∂ci : they obey
Leibniz’ rule, i.e., ∂cici − ci∂ci = 1 for i = 1, . . . ,m. Systems of linear PDEs are
encoded as left ideals I ⊂Dm in the Weyl algebra.

The singular locus Sing(I) ⊂ Cm of a Dm-ideal I is derived from the ini-
tial ideal of I with respect to the weight vector (0,1) ∈ R2m. It encodes where
holomorphic solutions to the system of PDEs encoded by I might have singular-
ities; we refer to [18, Definition 1.12] for the precise construction. We will also
need the rational Weyl algebra, denoted Rm =C(c1, . . . ,cm)⟨∂c1 , . . . ,∂cm⟩, for in-
stance to define the holonomic rank of a Dm-ideal I, which is the dimension of
Rm/RmI as a C(c1, . . . ,cm)-vector space. We will denote the action of operators
on a function f (c1, . . . ,cm) by a bullet; e.g., ∂ci ● f = ∂ f

∂ci
. The annihilator of a

function f (c1, . . . ,cm), denoted AnnD( f ) ∶= {P ∈Dm∣P● f = 0}, is the Dm-ideal
consisting of all P ∈Dm that annihilate f . We point out that, in order to encode f
as a holonomic function, it is sufficient to construct a subideal I ⊂AnnD( f ) such
that I has finite holonomic rank, and this is what we tackle in this article. Instead
of C, we will also use the field C(s,ν) =C(s1, . . . ,sm,ν1, . . . ,νn) for the field of
coefficients, and sometimes denote the resulting Weyl algebra by D(s,ν).

Shift operators In our construction of annihilating differential operators, we
are also going to utilize shift operators. Differential operators encode linear
PDEs; shift operators encode recurrence relations. Denoting the discrete shift
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of the variable νi by ±1 by σ
±1
νi
∶ νi ↦ νi±1, they obey σ

±1
νi

νi = (νi±1)σ±1
νi

for
i = 1, . . . ,n. Such operators are encoded as elements of the shift algebra, denoted

Sn = C[ν1, . . . ,νn]⟨σ±1
νi
, . . . ,σ±1

νn
⟩ .

In our study, we are going to construct recurrence relations for φ , both in the
ν- and s-variables, from which we will derive elements in AnnD(s,ν)(φ).

2.2. Twisted cohomology

Let f1, . . . , fm ∈C[x±1
1 , . . . ,x±1

n ] be Laurent polynomials, and denote by f = f1⋯ fm

their product. Its complement X = (Gn
m ∖V( f )) in the algebraic n-torus Gn

m =
Spec(C[x±1

1 , . . . ,x±1
n ]) is a very affine variety via the graph embedding. In slight

abuse of notation, we denote Gn
m by its closed points, (C∗)n.

We are going to consider the complex of algebraic differential forms on X ,
and twist the differential by the logarithmic form

ω = dlog(xν1
1 ⋯xνn

n ⋅
m

∏
j=1

f s j
j ) ,

i.e., our differential is

∇ω = d+(
m

∑
j=1

s j
d f j

f j
+

n

∑
i=1

νi
dxi

xi
)∧ ,

with (s,ν) ∈ Cm+n, and d denotes the total differential. The k-th cohomology
group of this complex is the k-th twisted cohomology group of X and is denoted
by Hk(X ,ω). It is generated by the forms

xa f b dxi1

xi1
∧⋯∧

dxil

xil
, (2)

where (a,b) ∈ Zn+m, and 1 ≤ l ≤ k. Any (n−1)-form φ ∈Ω
n−1(X) gives rise to

a shift relation among integrals ∫ f s+bxν+a dx
x by expressing ∇ω(φ) in terms of

the generators in (2). Relations obtained like this are called “IBP relations,” see
e.g. [1] for more details.

2.3. Relative twisted cohomology

We return to our setup of m hyperplanes in n-space as in the Introduction. Let

Xc = {(c1, . . . ,cm,x1, . . . ,xn) ∣ x1⋯xn ⋅
m

∏
i=1
(ℓi−ci) ≠ 0} ⊂ Cm×Cn
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and ∇ω = dx+dlogx(xν ⋅∏m
i=1(ℓi−ci)si), i.e.,

∇ω = dx+(
m

∑
j=1

s j
dxℓ j

ℓ j −c j
+

n

∑
i=1

νi
dxi

xi
)∧ .

As is indicated by the subscript, the differential is taken only w.r.t. the x-variables
and not the c-variables. We will need to consider relative differential k-forms,

Ω
k
Xc/Cm = ⊕

i1<⋯<ik
OXcdxi1 ∧⋯∧dxik ,

and will mean its global sections throughout. The twisted relative cohomology

Hn (Xc/Cm,ω)⊗CC(s,ν) = Ω
n
Xc/Cm(s,ν)/∇ω(Ωn−1

Xc/Cm)(s,ν)

= Dm(s,ν) ⋅[
dx1

x1
∧⋯∧ dxn

xn
]

is a holonomic Dm(s,ν)-module, with the action of ∂ci being

∂ci ● [ f (c,x) ⋅dx1∧⋯∧dxn] = [(
∂ f
∂ci
− si

ℓi−ci
⋅ f) dx1∧⋯∧dxn] .

For c generic, the holonomic rank of Hn(Xc/Cm,ω) is ∣χ(Xc)∣, the signed Euler
characteristic of Xc; cf. for instance [1, Theorem 1.1] for elaborations. Since

Dm(s,ν)/Ann(φ) ↪ Dm(s,ν) ⋅[
dx1

x1
∧⋯∧ dxn

xn
] , 1↦ [dx1

x1
∧⋯∧ dxn

xn
] ,

is an embedding of D-modules, the number of bounded regions is an upper
bound for the holonomic rank of AnnD(φ), the full annihilating D-ideal of φ .
We refer to [7, Section 5] for more details.

2.4. Discriminantal arrangements

We here follow [4, 6]. Let A be a fixed arrangement of m affine hyperplanes
in Rn that are in general position. The set of general position arrangements
whose hyperplanes are parallel to those of A, is the complement of a central
arrangement, in Rm. It is the discriminantal arrangement of A. As pointed
out in [4, Section 2], the construction also works for multiarrangements, i.e.,
hyperplanes are allowed to occur with multiplicity greater than 1. For instance,
for n = 1 and m points V(x− ci) on the line, R, the discriminantal arrangement
is the braid arrangement

V( ∏
1≤i< j≤m

(ci−c j)) ⊂ Rm .

Discriminantal arrangements will occur later on in the study of the singular
locus of our combinatorially constructed annihilating D-ideal of φ .
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3. Construction of annihilating differential operators

We now explain how to construct differential operators that annihilate the cor-
relator function. Consider m hyperplanes through the origin in affine n-space,

ℓi = a(i)1 x1+⋯+a(i)n xn , i = 1, . . . ,m . (3)

The combinatorial correlator is the function

φ(c) = ∫
Γ

(ℓ1(x)−c1)s1⋯(ℓm(x)−cm)sm xν1
1 ⋯xνn

n
dx1

x1
∧⋯∧ dxn

xn
, (4)

in c = (c1, . . . ,cm), where Γ is any twisted n-cycle. To be precise,

Γ ∈ Hn((C∗)
n /V(

m

∏
i=1
(ℓi−ci)),Lω) ,

i.e., Γ is an element of the n-th homology with coefficients in the local sys-
tem Lω of flat sections of the connection ∇−ω = d−ω∧ ; see [1] for details.

Since the correlator function is homogeneous of degree∑n
i=1 νi+∑m

j=1 s j, i.e.,
φ(λc1, . . . ,λcm) = λ

s1+⋯+sm+ν1+⋯+νn ⋅ φ(c1, . . . ,cm), one derives the following
lemma from Euler’s homogeneous function theorem.

Lemma 3.1. The combinatorial correlator function (4) is annihilated by

H ∶= c1∂c1 +⋯+cm∂cm −(
n

∑
i=1

νi+
m

∑
j=1

s j) ∈ AnnD(s,ν) (φ) , (5)

to which we are going to refer as the “homogeneity operator.”

The partial derivatives of φ with respect to the c-variables are

∂φ

∂ci
(c1, . . . ,cm) = −si ⋅∫

Γ

∏m
j=1 (ℓ j −c j)

s j

ℓi−ci
xν1

1 ⋯xνn
n

dx1

x1
∧⋯∧ dxn

xn
,

for i = 1, . . . ,m. We can therefore identify the action of backwards shifts in si,
σ
−1
si
∶ si↦ si−1, with the action of differential operator ∂ci on φ via

∂ci ●φ = −siσ
−1
si
●φ . (6)

Note that this is not an equality of operators—it holds only when applied to φ .
Moreover, for k ≤m and i1, . . . , ik distinct,

∂
k
φ

∂ci1⋯∂cik
(c1, . . . ,cm) = (−1)ksi1⋯sik ⋅∫

Γ

f s

fi1⋯ fik
xν1

1 ⋯xνn
n

dx1

x1
∧⋯∧ dxn

xn
, (7)
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so that

∂ci1
⋯∂cik

●φ = (−1)ksi1⋯sik σ
−1
si1
⋯σ

−1
sik
●φ .

For the derivatives with respect to the x-variables, one has

∂x j ●
m

∏
i=1
(ℓi−ci)si =

m

∑
i=1

sia
(i)
j (ℓi−ci)si−1∏

k≠i
(ℓk −ck)sk ,

and hence

−
m

∑
i=1

a(i)j ∂ci ●
m

∏
i=1
(ℓi−ci)si = ∂x j ●

m

∏
i=1
(ℓi−ci)si .

We exploit this for carrying out an integration by parts:

−
m

∑
i=1

a(i)j ∂ci ●φ = ∫
Γ

(∂x j ●
m

∏
i=1
(ℓi−ci)si)xν1

1 ⋯xνn
n

dx1

x1
∧⋯∧ dxn

xn

IBP= −(ν j −1)∫
Γ

m

∏
i=1
(ℓi−ci)sixν1

1 ⋯xν j−1
j ⋯xνn

n
dx1

x1
∧⋯∧ dxn

xn
.

(8)

For the second equality in (8), we use integration by parts. Since the integration
cycle does not have a boundary, the term [∏m

i=1(ℓi − ci)sixν1
1 ⋯xν j−1

j ⋯xνn
n ]∣∂Γ in

the IBP formula vanishes. We hence identify the action of inverse shifts in the
ν’s by first-order differential operators in the c’s as

(ν j −1)σ−1
ν j
●φ =

m

∑
i=1

a(i)j ∂ci ●φ . (9)

We point out the recursive nature of this “replacement rule.” For the action of ν
2
j

on φ , for instance, this implies

σ
−1
ν2

j
●φ = 1

(ν j −1)(ν j −2)
⋅

m

∑
i,k=1

a(i)j a(k)j ∂ci∂ck ●φ .

In the following two subsections, we are going to exploit (6) and (9) to construct
elements of AnnD(s,ν)(φ) from recurrence relations for φ in the s and ν’s.

3.1. Differential operators from individual hyperplanes

Consider hyperplanes ℓi(x) = a(i)1 x1 +⋯+ a(i)n xn, i = 1, . . . ,m, and φ as in (4).
Each of the ℓi’s gives rise to an operator Li ∈AnnD(φ), as we explain now. De-
noting the integrand in the correlator (4) shorthand by η = (∏m

i=1(ℓi−ci)si)xν dx
x ,

one directly reads that

∫
Γ

a(i)1 x1η +⋯+∫
Γ

a(i)n xnη −∫
Γ

ciη = ∫
Γ

(ℓi−ci)η .
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Hence

[ℓi(σν1 , . . . ,σνn)−ci]●φ = σsi ●φ .

Multiplying this identity with σ
−1
si

σ
−1
ν1
⋯σ

−1
νn

from the left yields the equality

[σ−1
si

σ
−1
ν1
⋯σ

−1
νn
ℓi(σν1 , . . . ,σνn)−ciσ

−1
si

σ
−1
ν1
⋯σ

−1
νn
]●φ = σ

−1
ν1
⋯σ

−1
νn
●φ .

Replacing σ
−1
si

and σ
−1
νi

as in (6) and (9), yields m differential operators L1, . . . ,Lm

in the c-variables of order at most n+1 that annihilate φ , namely

Li = −
∂ci

si
(

n

∑
j=1
(

m

∑
k=1

a(k)1 ∂ck ⋅ . . . ⋅
m

∑
k=1

a(k)j−1∂ck ⋅
m

∑
k=1

a(k)j+1∂ck ⋅ . . . ⋅
m

∑
k=1

a(k)n ∂ck)a
(i)
j )

+ci
∂ci

si
(

m

∑
k=1

a(k)1 ∂ck ⋅ . . . ⋅
m

∑
k=1

a(k)n ∂ck) − (
m

∑
k=1

a(k)1 ∂ck ⋅ . . . ⋅
m

∑
k=1

a(k)n ∂ck) .
(10)

Remark 3.1. We point out that IBP relations derived from the twisted differen-
tials of (n−1)-forms, as explained in Section 2.2, give rise to the trivial differ-
ential operator in AnnD(φ) only, when replacing via (6) and (9).

We summarize the findings of this subsection in

Lemma 3.2. Denote by Li, i = 1, . . . ,m, the differential operators (10) derived
from the shifted hyperplanes {ℓi−ci = 0}. Then ⟨L1, . . . ,Lm⟩ ⊂AnnD(s,ν)(φ).

3.2. Differential operators from circuits and syzygies

Let ℓ1, . . . ,ℓm be the equations of m hyperplanes through the origin in affine
n-space. We are going to explain two strategies to compute annihilating differ-
ential operators from the combinatorics of the arrangement.

Let k ≤m. For fixed {i1, . . . , ik} ⊂ [m], we are going to denote

∂î j
= ∂ci1

⋯∂ci j−1 ⋅∂ci j+1⋯∂cik
,

i.e., ∂ci j
is left out. Let pi1 , . . . , pik ,q ∈C[c1, . . . ,cm] be polynomials such that

pi1(ℓi1 −ci1)+⋯+ pik(ℓik −cik) = q .

Then the differential operator

pi1si1 ∂̂i1 +⋯+ pik sik ∂̂ik − q∂ci1
⋯∂cik

(11)

annihilates φ , which one sees as follows. One substitutes q =∑ j pi j(ℓi j − ci j),
takes out the common factor pi j ∂î j

, and replaces multiplication by (ℓi j −ci j)with
the action of σsi j

.

We hence need to find possible candidates for pi1 , . . . , pik and q, for which
we present two strategies; one uses circuits, and the other one uses syzygies.
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Circuits Collect the coefficients of the lines ℓi = a(i)1 x1 +⋯+a(i)n xn as in (3),
i = 1, . . . ,m, in the n×m matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣

a(1)1 a(2)1 ⋯ a(m)1
⋮ ⋮ ⋮

a(1)n a(2)n ⋯ a(m)n

⎤⎥⎥⎥⎥⎥⎥⎦

. (12)

Let C = {i1, . . . , ik} ⊂ [m] be a subset of dependent columns of A. Its corre-
sponding submatrix of A is AC = [a(i1)∣a(i2)∣⋯∣a(ik)]. We collect a basis of the
kernel of AC as columns of a matrix KC. We are going to denote it shorthand
as KC = ker(AC). Every column of KC gives one possible choice for pi1 , . . . , pik ,
while q is [ci1 ci2 ⋯ cik] multiplied by this column. We are going to denote the
set of resulting order-k differential operators (11) as {Pj}. In the case that C is a
circuit, the resulting operator is unique up to a scalar, and we denote it by PC.

Note that, for generic arrangements, it is sufficient to consider relations aris-
ing from circuits ofA, since every non-minimal dependent subset of columns of
A contains a circuit. Let C = {i1, . . . , ik, ik+1} be a dependent set, such that every
subset of size k is a circuit, and denote a generator of the kernel of AC∖{ik+1}
by KC∖{ik+1}. Similarly, denote by KC∖{i1} a generator of the kernel of AC∖{i1}.
SinceAC∖{ik+1} andAC∖{i1} are circuits, their kernels are one-dimensional. The
kernel of AC is generated by a vector of the form (KC∖{ik+1},0) and a vector
of the form (0,KC∖{i1}) (w.l.o.g., put 0 in the first entry, otherwise reorder).
Since they are linearly independent, they form a basis of the two-dimensional
kernel KC. The operators constructed as in (11) then left-factor out ∂ik+1 and ∂i1 ,
respectively, hence are left multiples of operators arising from circuits of A.

Syzygies We now consider the case q = 0 and are going to construct suit-
able pi j ’s via a syzygy computation over the polynomial ring in the x- and
c-variables. We here start with the case k = m, i.e., {i1, . . . , ik} = [m]. To the
coefficient matrix A as in (12), we attach the negative of the identity matrix Ik
below, and then compute syzygies of this matrix with the help of Macaulay2.
To be precise, we aim for syzygies in the c-variables, independent of the xi’s.
For computations, we set the degree of the c-variables to 0, and that of the x-
variables to 1, and then compute a basis of the degree-0 part of the syzygies. A
sample code is provided Section 4.7. The output of that computation is a matrix
S = (S1∣⋯∣Sr) with entries in C[c1, . . . ,cm], where each column Si of S gives a
possible choice for pi1 , . . . , pik . Then, for j = 1, . . . ,r, the differential operator

Q j = (Si)1si1 ∂̂i1 +⋯+(Si)ksik ∂̂ik (13)

yields an operator of order m−1 in AnnD(φ). One can repeat the same strat-
egy for any {i1, . . . , ik} ⊆ [m] for any k ≤ m. Note that this yields non-trivial
differential operators only for k sufficiently large.
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We summarize our findings of Section 3 in

Theorem 3.2. Let ℓ1, . . . ,ℓm be as in (3), and φ the correlator function (4). Let
H be the homogeneity operator (5), {Li} the operators (10) arising from the
individual hyperplanes, and {Pj} and {Qk} the operators constructed from cir-
cuits and syzygies, respectively, as was explained above. Then the left D-ideal
generated by them annihilates φ , i.e.,

⟨H,{Li},{Pj},{Qk}⟩ ⊂ AnnD(s,ν)(φ) .

We end this section by pointing out a possible connection to reciprocal linear
spaces. To an n×m matrixA, one associates the linear space LA = {x⊺A ∣x ∈Cn}
in Cm. The reciprocal linear space of A is the algebraic variety of entry-wise
reciprocals of non-zero points of LA,

RA = {(y−1
1 , . . . ,y−1

m ) ∣y ∈ LA∩(C∖{0})m} ,

where the Zariski closure in Cm is meant. A circuit of A is a minimally depen-
dent subset of columns of A. They give rise to a universal Gröbner basis of the
defining ideal ofRA as follows.

Theorem 3.3 ([16, Theorem 4]). Let C be a circuit and collect a basis of its
kernel as columns of a matrix KC. For the i-th column (Ki

c)c∈C of KC, let

f i
C = ∑

c∈C
Ki

c ∏
c′∈C∖{c}

yc′ . (14)

The set { f i
C ∣C is a circuit of A} is a universal Gröbner basis of the ideal ofRA.

The degree of the variety RA is the β -invariant of the matroid of A, and
for A real, it equals the number of bounded regions enclosed by a generic dis-
placement of the hyperplanes, cf. Varchenko’s theorem [19, Theorem 1.2.1]. We
point out the structural resemblance of the syzygy operators Q j (13) to the ele-
ments (14) of the universal Gröbner basis. We believe it would be worthwhile to
understand this relation better and investigate if there is a relation that is similar
to the close interplay of GKZ systems and toric varieties.

3.3. Upper bound for the singular locus for lines in the plane

Let n=2 and consider m lines ℓi =aix+biy, i=1, . . . ,m such that aib j−a jbi ≠0 for
any i ≠ j. Denote by I the Dm(s,ν)-ideal generated by H,{Li},{Pj}, and {Qk}.
A set-theoretic upper bound of the singular locus of I is given as follows.
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Proposition 3.4. For m lines in the plane as above, the singular locus of the D-
ideal I = ⟨H,{Li},{Pj},{Qk}⟩ is contained in the variety defined by the discrim-
inantal arrangement of the line arrangement enhanced by the coordinate axes.

Proof. Encode the m lines in the matrix

Am = [
a1 a2 ⋯ am

b1 b2 ⋯ bm
] .

The discriminantal arrangement is given by the maximal minors of the matrix

[ Id2 Am

0 0 −c1 −c2 ⋯ −cm
] .

Hence, the discriminantal arrangement consists of the factors

(1) ci for 1 ≤ i ≤m,

(2) aic j −a jci and b jci−bic j for 1 ≤ i < j ≤m, and

(3) (a jbk −akb j)ci+(akbi−aibk)c j +(aib j −a jbi)ck for 1 ≤ i < j < k ≤m.

They correspond to the minors of submatrices containing (1) two columns,
(2) one column, and (3) no column of the identity matrix. We are going to prove
that each of them is contained in the saturated ideal in(0,1)(I)∶⟨∂c1 , . . . ,∂cm⟩∞.
Note that the initial ideal of I w.r.t. (0,1) ∈R2m is an ideal in the graded Weyl al-
gebra, the polynomial ring gr(0,1)(Dm(s,ν)) =C(s,ν)[c1, . . . ,cm][∂c1 , . . . ,∂cm].
Denote by J the gr(0,1)(Dm(s,ν))-ideal generated by the initial forms of our op-
erators, i.e., J = ⟨in(0,1)(H),{in(0,1)(Li)},{in(0,1)(Pj)},{in(0,1)(Qk)}⟩. Clearly,
one has the inclusion J ⊂ in(0,1)(I).

For {i, j,k} a circuit, the operator Pi jk is

Pi jk = ((a jbk −akb j)ci+(akbi−aibk)c j +(aib j −a jbi)ck)∂ci∂c j ∂ck

−(a jbk −akb j)si∂c j ∂ck +(akbi−aibk)s j∂ci∂ck +(aib j −a jbi)sk∂ci∂c j ,

and its initial form is

in(0,1)(Pi jk) = ((a jbk −akb j)ci+(akbi−aibk)c j +(aib j −a jbi)ck)∂ci∂c j ∂ck .

We have in(0,1)(H) = c1∂c1 +⋯+cm∂cm , and the initial form of Lk is

in(0,1)(Lk) = ( ∑
1≤i< j≤m

(aib j +a jbi)ck∂ci∂c j + ∑
1≤i≤m

aibick∂
2
ci
)∂ck .

In particular, we can directly see from the Li’s and Pj’s that the minors of the
first and third type, respectively, are contained in the singular locus. For factors
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of the second type, we will, w.l.o.g., consider a1c2 −a2c1. We will show that
is equivalent to 0 in the quotient ring gr(0,1)(Dm(s,ν))/J, and hence contained
in J. Let us denote by ∂ the product ∂c1⋯∂cm . In the quotient ring,

0 ≡ in(L1) ≡ in(L1)∂ = ( ∑
1≤i< j≤m

(aib j +a jbi)c1∂ci∂c j + ∑
1≤i≤m

aibic1∂
2
ci
)∂c1∂

= ( ∑
1<i< j≤m

(aib j +a jbi)c1∂ci∂c j ∂c1 + ∑
1< j≤m

a1b jc1∂
2
c1

∂c j

+ ∑
1< j≤m

a jb1c1∂
2
c1

∂c j + ∑
1< j≤m

a jb jc1∂c1∂
2
c j
+a1b1c1∂

3
c1
)∂ .

Using in(0,1)(H), one obtains a1b1c1∂
3
c1
≡− ∑

1< j≤m
a1b1c j∂

2
c1

∂c j , and similarly, we

have ∑
1< j≤m

a1b jc1∂
2
c1

∂c j ≡ − ∑
1< j≤m

∑
i≠ j

a1b jci∂c1∂ci∂c j − ∑
1< j≤m

a1b jc j∂c1∂
2
c j

. So,

in(0,1)(Lk) ≡ ( ∑
1<i< j≤m

(aib j +a jbi)c1∂c1∂ci∂c j − ∑
1< j≤m

∑
i≠ j

a1b jci∂c1∂ci∂c j+

+ ∑
1< j≤m

a jb1c1∂
2
c1

∂c j − ∑
1< j≤m

a1b jc j∂c1∂
2
c j
+

+ ∑
1< j≤m

a jb jc1∂c1∂
2
c j
− ∑

1< j≤m
a1b1c j∂

2
c1

∂c j)∂ .

Using the circuit operators, we can write c j in terms of c1 and ci for any i ≥ 2:

c j ≡
−(aib j −a jbi)c1−(b1a j −b ja1)ci

a1bi−aib1
.

Substituting via that, one can show each sum term in in(0,1)(Lk) factors out
the term (a2c1 − a1c2), and that after factoring out, the remaining term is in
the C(s,ν)[∂c1 , . . . ,∂cm]-ideal generated by ∂c1 , . . . ,∂cm—independent of the c’s.
The statement now follows from the definition of the singular locus.

4. Examples

We here showcase our methods for point and line arrangements, including the
two-site chain modeling a single exchange process in cosmology [3], and a hy-
perplane arrangement in C3. We address bottlenecks of our construction so far,
and make the dependency of our D-ideal on the hyperplane arrangement man-
ifest. Unless stated otherwise, our computations in this section were carried in
SINGULAR, with C(s,ν) as the field of coefficients, so that the results hold true
for generic (s,ν). We begin with points on a line.
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4.1. Points on the line

LetA2 = [1 2] encode two copies of the origin on the complex line, so that we
consider {x = c1} and {2x = c2}. There is one circuit operator

P = (−2c1+c2)∂1∂2− s2∂1+2s1∂2 ,

the homogeneity operator H, and two operators constructed from the points:

L1 = −
1

s1(ν1−1)
c1∂

2
c1
− 2

s1(ν1−1)
c1∂c1∂c2 +

s1+ν1−1
s1(ν1−1)

∂c1 +
2

ν1−1
∂c2 ,

L2 = −
1

s2(ν1−1)
c2∂c1∂c2 −

2
s2(ν1−1)

c2∂
2
c2
+ 1

ν1−1
∂c1 +

2s2+2ν1−2
s2(ν1−1)

∂c2 .

All together, these operators generate a holonomic D-ideal of holonomic rank 2
whose singular locus is

V(c1c2(2c1−c2)) .

Let nowA3 = [1 2 3] be three points in C. There is one syzygy operator,
five from the circuits, the homogeneity operator, and three corresponding to the
points. The holonomic D-ideal generated by these operators has rank 3. Its
singular locus is

V(c1c2c3(3c2−2c3)(2c1−c2)(3c1−c3)) .

In general, let us consider m points on a line, so that ℓi = aix, i = 1, . . . ,m.
The corresponding coefficient matrix then is Am = [a1 ⋯ am].

For m > 2, the circuit operators are

Pi j = (s jai∂ci − sia j∂c j)−(aic j −a jci)∂ci∂c j ,

where i, j = 1, . . . ,m. For m > 3, the syzygy operators are

Qi jk = (a2
kc j −a jakck)si∂c j ∂ck +(−a2

kci+aiakck)s j∂ci∂ck +(a jakci−aiakc j)sk∂ci∂c j ,

where i, j,k = 1, . . . ,m. Finally, we have the following operators coming from
the points:

Li = −
ai

si
∂ci +

ci

si(ν1−1)
∂ci(a1∂c1 +⋯+am∂cm)−

a1

ν1−1
∂c1 −⋯−

am

ν1−1
∂cm .

Lemma 4.1. Denote by I the Dm-ideal generated by the Pi j’s, Qi jk’s, Li’s, and
the homogeneity operator H from (5). Then rank(I) ≤m.
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Proof. We aim to determine the dimension of Rm/RmI as a C(c)-vector space.
First, we use the operator H to write [∂cm] ∈ Rm/RmI as a C(c)-linear combina-
tion of ∂c1 , . . . ,∂cm−1 , and 1. Secondly, for i ≠ j <m, we use the circuit operators
to write ∂ci∂c j as a linear combination of ∂ci and ∂c j . Finally, for i<m, we exploit
the operators L1, . . . ,Lm to write ∂

2
ci

as a linear combination of 1,∂c1 , . . . ,∂cm and
∂ci∂c j for every pair i≠ j ≤m. Hence, 1,∂c1 , . . . ,∂cm−1 also generate every ∂

2
ci

.

The factors of the discriminantal arrangement are (a jci − aic j)i< j and ci,
since we extend the arrangement by the coordinate hyperplanes (here, the ori-
gin). We have the following relation to the singular locus of our D-ideal.

Lemma 4.2. The singular locus of the Dm-ideal I is contained in the discrimi-
nantal arrangement of A enhanced by the origin.

Proof. By taking the initial form of the operators Pi j and Li w.r.t. the weight
vector (0,1) ∈ R2m, respectively, one reads that (aic j − a jci)∂ci∂c j ∈ in(0,1)(I)
and ci

si(ν1−1)∂ci(a1∂c1+⋯+am∂cm) ∈ in(0,1)(I). By eliminating the ∂ci’s, one reads

that the singular locus of I is contained in V(∏i< j (aic j −a jci) ⋅∏m
i=1 ci).

4.2. Moving two lines in the plane

We here consider the lines ℓ1(x,y) = 3x+5y and ℓ2(x,y) = 7x−3y in the plane.
We do not have any operators arising from syzygies or circuits here. To the two
lines, we associate the shift operators

3σ
−1
ν2

σ
−1
s1
+5σ

−1
ν1

σ
−1
s1
−c1σ

−1
ν1

σ
−1
ν2

σ
−1
s1
−σ
−1
ν1

σ
−1
ν2

,

7σ
−1
ν2

σ
−1
s2
−3σ

−1
ν1

σ
−1
s2
−c2σ

−1
ν1

σ
−1
ν2

σ
−1
s2
−σ
−1
ν1

σ
−1
ν2

,

from which we deduce the differential operators L1,L2 via (6) and (9). For
generic s1,s2,ν1,ν2, they generate a holonomic D-ideal of holonomic rank 7.
Extending the D-ideal by H from (5) yields holonomic rank 3, the number of
bounded chambers. Its singular locus is V(c1c2(3c1 +5c2)(7c1 −3c2)), which
coincides precisely with the discriminantal arrangement.

4.3. Lines parallel to the coordinate axes

Consider the two lines ℓ1 = x and ℓ2 = y in the plane. Shifted by ci each, they en-
close one bounded region with the coordinate axes—a quadrilateral. Again, we
do not have any non-trivial syzygies or circuits here, so that our only operators
arise from the lines themselves. They are

L1 = −
c1

s1(ν1−1)
∂

2
c1
+ s1+ν1−1

s1(ν1−1)
∂c1 , L2 = −

c2

s2(ν2−1)
∂

2
c2
+ s2+ν2−1

s2(ν2−1)
∂c2 ,
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and together, they generate a holonomic D2-ideal of holonomic rank 4. Ex-
tending the D-ideal by H (5) yields holonomic rank 1. The singular locus of
I = ⟨H,L1,L2⟩ is the union of the coordinate axes, which coincides with the dis-
criminantal arrangement. Its associated D-module D(s,ν)/I recovers the direct
image D-module of D(s,ν)/J under the projection to the c-coordinates, where
J denotes the D-ideal generated by the four operators

(c1−x)x∂x+xs1+(x−c1)(ν1−1) , (c2−y)y∂y+ys2+(y−c2)(ν2−1) ,
(c1−x)∂c1 − s1 , (c2−y)∂c2 − s2 ,

which annihilate the integrand of the correlator. For the definition of direct
images of D-modules, see [12, Section 1.5].

4.4. Moving three lines in the plane

Consider the lines encoded by the columns of A3 = [3 7 1
5 −3 −2]. We obtain one

circuit operator

P = s1∂c2∂c3 − s2∂c1∂c2 +4s3∂c1∂c2 −(c1−c2+4c3)∂c1∂c2∂c3 ,

no syzygy operator, and one operator Li for each of the three lines. Together
with the operator H from (5), they generate a holonomic D3-ideal of holonomic
rank 6. Again, the singular locus of this D3-ideal coincides with the discrimi-
nantal arrangement of A3 enhanced by the coordinate axes. Its factors are

c1, c2, c3, 3c1+5c2, 7c1−3c2, 2c1+5c3 ,

c1−3c3, 2c2−3c3, c2−7c3, c1−c2+4c3 .

4.5. An example from cosmology

The cosmological two-site chain encodes a single exchange process and gives
rise to three lines in the plane, namely ℓ1 = x+y, ℓ2 = x, and ℓ3 = y, cf. [3, (1.7)].
The correlator function is

φ(c) = ∫
Γ

(ℓ1−c1)s1(ℓ2−c2)s2(ℓ3−c3)s3xν1yν2
dx
x

dy
y
.

The only differential operator arising from the circuits of A2-site = [1 1 0
1 0 1] is

P = (c1−c2−c3)∂c1∂c2∂c3 +(−s1∂c2∂c3 + s2∂c1∂c3 + s3∂c1∂c2) .
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From the lines themselves, we read three differential operators of order 3 in Ann(φ):

L1 = −
1

s1(ν1−1)(ν2−1)
c1∂

3
c1
− 1

s1(ν1−1)(ν2−1)
c1∂

2
c1

∂c2

− 1
s1(ν1−1)(ν2−1)

c1∂
2
c1

∂c3 −
1

s1(ν1−1)(ν2−1)
c1∂c1∂c2∂c3+

+ s1+ν1+ν2−2
s1(ν1−1)(ν2−1)

∂
2
c1
+ s1+ν2−1

s1(ν1−1)(ν2−1)
∂c1∂c2+

+ s1+ν1−1
s1(ν1−1)(ν2−1)

∂c1∂c3 +
1

(ν1−1)(ν2−1)
∂c2∂c3 ,

L2 = −
1

s2(ν1−1)
c2∂c1∂c2 −

1
s2(ν1−1)

c2∂
2
c2
+ 1

ν1−1
∂c1 +

s2+ν1−1
s2(ν1−1)

∂c2 ,

L3 = −
1

s3(ν2−1)
c3∂c1∂c3 −

1
s3(ν2−1)

c3∂
2
c3
+ 1

ν2−1
∂c1 +

s3+ν2−1
s3(ν2−1)

∂c3 .

Together with the circuit operator and the operator H, they generate a holonomic
D3-ideal of holonomic rank 4 whose singular locus is

V (c1c2c3(c1−c2)(c1−c3)(c1−c2−c3)) ⊂ C3 .

It coincides exactly with the discriminantal arrangement of the central arrange-
ment {ℓ1,ℓ2,ℓ3} enhanced by the coordinate axes.

It turns out that in this example, our combinatorially constructed D-ideal
coincides with a certain integration D-ideal, see [17, (5.8)] for the definition.
For that, observe that the following operators annihilate the integrand of φ :

(ℓ1−c1)(ℓ2−c2)x∂x− s1(ℓ2−c2)x− s2(ℓ1−c1)x−(ν1−1)(ℓ1−c1)(ℓ2−c2) ,
(ℓ1−c1)(ℓ3−c3)y∂y− s1(ℓ3−c3)y− s3(ℓ1−c1)y−(ν2−1)(ℓ1−c1)(ℓ3−c3) ,

(ℓ1−c1)∂c1 + s1 , (ℓ2−c3)∂c2 + s2 , (ℓ3−c3)∂c3 + s3 .

Denote by J the D-ideal generated by them, and denote by πc the projection
onto C3 in the c-variables. Using Macaulay2, one computationally confirms
that for random s and ν’s, the direct image D-module πc+(D/J) is concentrated
in degree 0 and is of the form D/N, with N the D-ideal generated by

N1 = c1∂c1 +c2∂c2 +c3∂c3 −(ν1+ν2+ s1+ s2+ s3) ,
N2 = c3∂c1∂c3 +c3∂

2
c3
− s3∂c1 −(s3+ν2−1)∂c3 ,

N3 = c2∂c1∂c2 +c2∂
2
c2
− s2∂c1 −(s2+ν1−1)∂c2 .

The holonomic rank of N is 4, and it coincides with our D-ideal.
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In the cosmological setup, one sets s1 = s2 = s3 =−1, and ν1 = ν2 =∶ ε is related
to the expansion rate of the universe. Explicitly, our operators then become

H = c1∂c1 +c2∂c2 +c3∂c3 −(2ε −3) ,
P = (c1−c2−c3)∂c1∂c2∂c3 +(∂c2∂c3 −∂c1∂c3 −∂c1∂c2) ,

L1 =
1

(ε −1)2
⋅ [c1∂

3
c1
+c1∂

2
c1

∂c2 +c1∂
2
c1

∂c3 +c1∂c1∂c2∂c3

−(2ε −3)∂ 2
c1
−(ε −2)∂c1∂c2 −(ε −2)∂c1∂c3 +∂c2∂c3] ,

L2 =
1

ε −1
(c2∂c1∂c2 +c2∂

2
c2
+∂c1 −(ε −2)∂c2) ,

L3 =
1

ε −1
(c3∂c1∂c3 +c3∂

2
c3
+∂c1 −(ε −2)∂c3) ,

and (after substituting ε → ε +1, to match notation) recover the restricted GKZ
system for the cosmological correlator of the two-site chain as computed in [3].

Remark 4.1 (Double exchange process). For the three-site chain, one obtains
six hyperplanes ℓ1, . . . ,ℓ6 in R3, encoded by

A3-site =
⎡⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0
1 1 1 0 1 0
1 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
,

see [3, (2.29)]. The GKZ system of the associated generalized Euler integral
∫ ∏6

i=1(ℓi − ci)xν dx
x , when leaving the coefficients of all ℓi generic, has holo-

nomic rank 30. The D-ideal ⟨H,{Li},{PC}C a circuit,{Qk}⟩, for fixed coefficients
determined by A3-site, has holonomic rank 30 as well, which we computed in
Macaulay2 for randomly chosen values of ν and s. The integrand of the cosmo-
logical correlator function is ∏i≠5(ℓi− ci)−1+∏i≠6(ℓi− ci)−1. Using our meth-
ods, one could, in principle, compute annihilating D5-ideals for each of the
summands separately, and then compute an annihilating D5-ideal for their sum.

4.6. Different representations of a uniform matroid

The example in this section shows that our D-ideal does not depend only on the
matroid, but on the hyperplane arrangement itself. Consider the two matrices

A2-site = [
1 1 0
1 0 1

] and B = [ 1 1 0
−1 0 1

] .

They give rise to the same matroid, namely the uniform matroid U2,3 of rank 2
on 3 elements. To relate the resulting D3-ideals, we are going to use that

B = diag(−1,1) ⋅A2-site ⋅diag(−1,−1,1) . (15)
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The kernel of B is spanned by [−1,1,−1]⊺, which gives rise to the operator

P = (c1−c2+c3)∂1∂2∂3+(−s1∂c2∂c3 + s2∂c1∂c3 − s3∂c1∂c3) .

The three lines encoded by B, i.e., ℓ1 = x, ℓ2 = y, ℓ3 = x−y, induce the operators
L1,L2,L3. We can pass from the operators for A2-site to the operators for B as
follows. First, for the operators coming from the lines, we can use the equal-
ity (15). This operation will transform the lines ofA2-site into the lines of B, and
hence the operators as well. For the circuit, if we multiply the kernel [1−1−1]⊺
of A2-site by the 3×3 matrix in (15), we get the kernel [−1 1−1]⊺ of B, so we
can deduce the circuit operators of B from the operators of A2-site.

Together, the operators H,L1,L2,L3, and P generate a holonomic D3-ideal
of holonomic rank 4. Its singular locus is

V (c1c2c3(c1−c2)(c1+c3)(c1−c2+c3)) ⊂ C3 .

Its factors again coincide precisely with the discriminantal arrangement of B.

4.7. Moving five lines in the plane

We revisit the three lines from Section 4.4 and add two more lines via

A5 = [
3 7 1 1 3
5 −3 −2 −1 1

] .

Any generic displacement of this line arrangement encloses 15 bounded regions
together with the coordinate axes. The kernel ofA5 is spanned by the columns of

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 1
−12 4 16
24 −7 −32
−5 1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So, the operators

P0 = (−c1+12c3−24c4+5c5)∂c1∂c2∂c3∂c4∂c5+
+(s1∂c2∂c3∂c4∂c5 −12s3∂c1∂c2∂c4∂c5 +24s4∂c1∂c2∂c3∂c5 −5s5∂c1∂c2∂c3∂c4) ,

P1 = (−4c3+7c4−1c5)∂c1∂c2∂c3∂c4∂c5+
+(4s3∂c1∂c2∂c4∂c5 −7s4∂c1∂c2∂c3∂c5 + s5∂c1∂c2∂c3∂c4) ,

P2 = (−c2−16c3+32c4−3c5)∂c1∂c2∂c3∂c4∂c5+
+(s2∂c1∂c3∂c4∂c5 +16s3∂c1∂c2∂c4∂c5 −32s4∂c1∂c2∂c3∂c5 +3s5∂c1∂c2∂c3∂c4)

annihilate φ . For computing the syzygies, we run the following code in Macaulay2:
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k = 5; R = QQ[c_1..c_k, Degrees => {k:0}]; S = R[x,y]

A = matrix{{3,7,1,1,3},{5,-3,-2,-1,1}}

B = (-id_(QQ^k)) || A

L = (vars R | vars S) * B

basis(0, syz L) -- find solutions only in the c’s

This provides a matrix

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4c3−7c4+c5 c2−4c4−c5
4c3−7c4+c5 0 −c1−3c4+2c5
−4c2+16c4+4c5 −4c1−12c4+8c5 0
7c2−16c3−11c5 7c1+12c3−11c5 4c1+3c2−11c5
−c2−4c3+11c4 −c1−8c3+11c4 c1−2c2+11c4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

from which we derive the following operators in AnnD5(φ):

Q0 = ((4c3−7c4+c5)s2∂c1∂c3∂c4∂c5 +(−4c2+16c4+4c5)s3∂c1∂c2∂c4∂c5+
+(7c2−16c3−11c5)s4∂c1∂c2∂c3∂c5 +(−c2−4c3+11c4)s5∂c1∂c2∂c3∂c4) ,

Q1 = ((4c3−7c4+c5)s1∂c2∂c3∂c4∂c5 +(−4c1−12c4+8c5)s3∂c1∂c2∂c4∂c5+
+(7c1+12c3−11c5)s4∂c1∂c2∂c3∂c5 +(−c1−8c3+11c4)s5∂c1∂c2∂c3∂c4) ,

Q2 = ((c2−4c4−c5)s1∂c2∂c3∂c4∂c5 +(−c1−3c4+2c5)s2∂c1∂c3∂c4∂c5+
+(4c1+3c2−11c5)s4∂c1∂c2∂c3∂c5 +(c1−2c2+11c4)s5∂c1∂c2∂c3∂c4) .

We repeat the operations for any {i1, ..., ik} ⊆ [5] for k = 4,5. For, k = 3,
Macaulay2 returns only the zero vector; hence, this does not contribute to any
operator. There are also the operators L1, . . . ,L5 constructed from the lines and
the homogeneity operator H. We computed for several randomly chosen values
of s,ν that, all together, they generate a D5-ideal of holonomic rank 15. The
computation of the singular locus did not terminate.

Remark 4.2. We observed in all of our examples that the two D-ideals
⟨H,{Li},{Pj},{Qk}⟩ and ⟨H,{Li},{Pj}⟩ coincide.

5. Outlook

In this article, we tackled the combinatorial encryption of Mellin integrals of
individual powers of hyperplanes as holonomic functions in the constant terms
of the hyperplanes. Our presentation so far is a case study from which several
interesting follow-up questions and paths for future research arise. We provided
a combinatorial construction of an annihilating D-ideal for the combinatorial
correlator function. Our examples of line arrangements in the plane suggest that
they might compute restrictions of GKZ systems.
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Since our annihilating D-ideal does not depend on the matroid of the hy-
perplane arrangement only, one should check if and how our combinatorially
obtained D-ideal can be extended by utilizing the logarithmic derivation mod-
ule of the arrangement. We also plan to investigate to what extent the observed
interplay of the singular locus of our D-ideal and the discriminantal arrange-
ment of the central arrangement, and that of the holonomic rank of our D-ideal
and the β -invariant of the matroid hold true.

Functions of a highly similar structure are Igusa zeta functions, for which
one has evaluation formulae in the p-adic case [15]. It would be worthwhile to
check if these formulae can be generalized beyond the p-adic case.
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