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EXPERIMENTS WITH GORENSTEIN LIAISON

ROBIN HARTSHORNE

Dedicated to Silvio Greco in occasion of his 60-th birthday.

We give some experimental data of Gorenstein liaison, working with
points in P

3 and curves in P
4, to see how far the familiar situation of liaison,

biliaison, and Rao modules of curves in P
3 will extend to subvarieties of

codimension 3 in higher P
4 .

1. The Problem.

For curves in projective three-space P
3
k , the usual theory of liaison and

biliaison is well understood [9]. We will recall some of the basic facts, and then
explore to what extent these results may generalize to liaison classes of varieties
of higher codimension, such as curves in P

4. Our method is to run experiments
in various special cases, and look for examples which may indicate how the
general situation will be.

First we recall the situation in P
3
k . A curve will be a pure one-dimensional

locally Cohen-Macaulay closed subscheme of P
3. Two curves C1 and C2 are

linked if there exists a complete intersection curve D such that D = C1 ∪ C2
set-theoretically, and

IC1 ,D
∼= Hom(OC2 , OD)

IC2 ,D
∼= Hom(OC1 , OD).

AMS Classi�cation: 14H50, 14M07.
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The equivalence relation generated by linkage is called liaison. An even number
of linkages generates the equivalence relation of even liaison or biliaison.

We say that C2 is obtained from C1 by an elementary biliaison of height h
if there is a surface S in P

3 containing C1 , and C2 ∼ C1 + hH on S , where ∼

denotes linear equivalence, and H is the hyperplane section. Here we use the
theory of generalized divisors [3], so that any curve on any surface in P

3 can be
regarded as a divisor.

Then it is known that an elementary biliaison is an even liaison, and the
equivalence relation generated by elementary biliaisons is the same as even
liaison [3, 4.4].

Some of the main results of liaison theory for curves in P
3 are contained in

the following theorem.

Theorem 1.1. For curves in P
3
k , we have

a) Two curves C1,C2 are in the same liaison equivalence class if and only if
their Rao modules M(Ci ) = H 1

∗ (ICi (n)) are isomorphic, up to dualizing
and shifting degrees. They are in the same biliaison equivalence class if
and only if M(C1) and M(C2) are isomorphic up to shift of degrees.

b) For each �nite-length graded module M0 over the homogeneous coordi-
nate ring R = k[x0, x1, x2, x3], there exists a smooth irreducible curve C
in P

3 and an integer h, such that M(C) ∼= M0(h).
c) For any �nite length M0 �= 0, there is a minimum h for which there exist
curves C0 with M(C0) = M0(−h). These are calledminimal curves, and
the familyL0(M0) of minimal curves for M0 is an irreducible subset of the
Hilbert scheme .

d) (The Lazarsfeld-Rao property): Any other curve C in the biliaison class
associated to the module M0 can be obtained by a �nite number of
ascending (i.e. h ≥ 0) elementary biliaisons, plus a deformation, from
a minimal curve C0 in the biliaison class.

e) For anymodule M and any postulation character γ , the subset Hγ,M of the
Hilbert scheme of curves with postulation character γ and Rao module M
is irreducible (provided it is non-empty). (For a curve C with homogeneous
coordinate ring R(C) = R/IC , we de�ne the postulation character γC
to be the third difference function of the negative of the Hilbert function
φ(�) = dimk R(C)� of C.)

For proofs of these results, see [12] for a), b), and [9] for c), d), and e).

A curve C is arithmetically Cohen-Macaulay (ACM) if its homogeneous
coordinate ring R(C) is a Cohen-Macaulay ring. The ACM curves form a
special case of the above theorem that requires slightly modi�ed statements.
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Theorem 1.2.

a) A curve C is ACM if and only if its Rao module is 0. The ACM curves form
one biliaison equivalence class.

b) Any ACM curve can be obtained from a line by a �nite number of ascending
elementary biliaisons, plus a deformation.

c) The postulation character γ of an ACM curve is positive in the following
sense: γ (0) = −1; if s0 is the least integer ≥ 1 for which γ (s0) ≥ 0,
then γ (n) ≥ 0 for all n ≥ s0. Conversely, for every positive postulation
character, there exists an ACM curve with that character.

d) If the ACM curve C is integral, then its postulation character is connected,
meaning that {n ∈ Z | γ (n) > 0} is an interval in Z. Conversely, for every
connected positive character, there is a smooth irreducible ACM curve with
that character.

e) For any positive γ , the set of ACM curves with postulation character γ is
an irredicible subset of the Hilbert scheme.

For proofs, see [1], [2], and [9].

Now our problem is to what extent do these results extend to curves in P
4,

or more generally to subschemes of codimension ≥ 3 in any projective space ?

First of all, it is clear that the de�nition of liaison given above using
complete intersections (which we denote by CI-liaison) is too restrictive. This
has been made abundantly clear in the work of [7] � see the report of R. Miró-
Roig in this volume [11]: there are other invariants besides the Rao module for
CI-liaison in codimension 3, and using these, one can construct many examples
of curves in P

4 having the same Rao module, but not in the same CI-liaison
class.

Therefore we will take Gorenstein liaison to be the natural generalization
of CI-liaison to higher codimension. We state the de�nitions for curves in P

4,
though the generalization to subschemes of any dimension in any P

4 is obvious
[10].

A curve D in P
4 is arithmetically Gorenstein (AG) if its homogeneous

coordinate ring R(D) = R/ID is a Gorenstein ring, where now R =

k[x0, x1, x2, x3, x4] is the coordinate ring of P
4. Two curves C1,C2 in P

4 are
G-linked if there exists an AG curve D satisfying the same conditions as in the
de�nition of liaison for curves in P

3 above. The equivalence relation generated
by G-linkage is G-liaison. The equivalence relation generated by even numbers
of G-linkages is even G-liaison.

A curve C2 is obtained from C1 by an elementary G-biliaison of height
h if there exists an ACM surface X in P

4 satisfying also G1 (Gorenstein in
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codimension one), containing C1 , such that C2 ∼ C1 + hH on X , where again
H is the hypersurface section of X .

It is easy to see that a G-biliaison is an even G-liaison [10, sec. 5.4]. The
authors of [7] are fond of speaking of G-liaison �as a theory of divisors on
arithmetically Cohen-Macaulay schemes,� and indeed, most of their examples
of G-liaison can also be accomplished by elementary G-biliaisons. However,
the relation between these two notions is not yet clear, so we pose it as a
question.

Question 1.3. Is the equivalence relation generated by elementary G-biliaisons
equivalent to even G-liaison ?

This is true for CI-liaison in any codimension [3, 4.4], hence for G-liaison
in codimension 2, but is already unknown for curves in P

4.
It is easy to see that evenly G-linked curves have the same Rao module, up

to twist [10, 5.3.3], but the converse is unknown:

Question 1.4. If two curves C1,C2 in P
4 have isomorphic Rao modules, up to

shift in degrees, are they in the same G-liaison class ? In particular, are any two
ACM curves in the same biliaison class ?

(This is equivalent to asking if every ACM curve is glicci, an acronym for
�Gorenstein liaison class of a complete intersection.�)

For a given �nite-length graded module M �= 0, it is easy to see there is a
minimum twist M(h0) for which there are curves with Rao module M(h0) [10,
1.2.8]. These are called minimal curves. Migliore has observed [10, 5.4.8] that
the set of minimal curves for a given M may not be irreducible, so we state

Problem 1.5. For a given module M �= 0, describe the set of minimal curves
for the module M . Are they all in the same even G-liaison class ?

As an analogue of the Lazarsfeld-Rao property, we ask

Question 1.6. If C is a curve with Rao module M �= 0, can C be obtained by
a �nite number of ascending elementary G-biliaisons from a minimal curve for
the module M ? For ACM curves we ask, can any ACM curve be obtained by a
�nite number of ascending elementary G-biliaisons from a line ?

And lastly,

Question 1.7. Does the set of curves with given Rao module M and postulation
character γ form an irreducible subset of the Hilbert scheme ?
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In spite of the optimism of some of the researchers mentioned in the
references, my expectation is that many of these questions will have negative
answers. The purpose of this talk is to give negative answers to a couple of
these questions, and to propose potential counterexamples to some others. We
refer to the paper [4] for more details of results only stated here, and further
references.

2. Points in P
3.

Closed subschemes of dimension zero of P
3 form the �rst non-trivial case

of codimension 3 schemes in a P
4. Any such scheme is ACM, so the questions

to consider are:
a) is every such scheme glicci ?

and
b) can any such scheme be obtained from a single point by a sequence of

ascending G-biliaisons (on ACM curves in P
3) ?

Since the structure of arbitrary zero-dimensional subschemes can be quite
complicated (unlike the case of zero-schemes in P

2, the Hilbert scheme of zero-
schemes of degree d in P

3 for �xed d may not even be irreducible! [6]), we
decided to consider only reduced zero-schemes, i. e., �nite sets of points, in
general position. Here general positionwill always mean for a suitable Zariski-
open subset of the Hilbert scheme, possibly subject to the condition of lying in
a given curve or a given surface. We begin by studying points on low degree
surfaces. It is easy to show

Proposition 2.1. Any set of n general points in P
2 can be obtained by a �nite set

of ascending biliaisons (in this case CI-biliaison is equivalent to G-biliaison)
from a point. [4, 2.1]

Similarly, using the ACM curves on a nonsingular quadric surface, one can
show

Proposition 2.2. Any set of n general points on a (�xed) nonsingular quadric
surface Q ⊆ P

3 can be obtained from a single point by a �nite number of
ascending biliaisons (by ACM curves on Q). [4, 2.2]

On a nonsingular cubic surface the situation is more complicated.

Proposition 2.3. A set of n general points on a (�xed) nonsingular cubic
surface X ⊆ P

3 can be connected by G-liaisons through sets of general points
of other degrees on X to a single point. In particular a set of n general points
on X is glicci [4, 2.4]
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However, in the proof, we were not able to accomplish this using ascending
biliaisons only. We had to use ascending and descending liaisons and biliaisons.
For example, to treat 18 general points, one has to link up to 20, then 28 points,
before linking down in many steps to a single point.

Corollary 2.4. Any set of n ≤ 19 general points in P
3 is glicci.

Proof. Indeed, n ≤ 19 general points lie on a nonsingular cubic surface P
3.

Our experience in these results is that points lying on surfaces of lowdegree
1, 2, or 3, are manageable, but these methods fail for sets of points on higher
degree surfaces. This is consistent with the examples of ACM curves in P

4,
proved to be glicci by [7, sec. 8]: they lie on rational ACM surfaces which are
all contained in hypersurfaces of degree 1, 2, or 3. So we propose a problem for
the �rst case not falling under the above results.

Problem 2.5. If Z is a set of 20 points in general position in P
3, is Z glicci ?

Can Z be obtained by ascending G-biliaisons from a point ?

3. ACM curves in P
4.

Following the principle of the previous section, we focus our attention on
general curves, usually integral or nonsingular, and suf�ciently general in their
component of the Hilbert scheme. Using elementary geometry of curves on the
cubic scroll, the Del Pezzo surface of degree 4, and the Castelnuovo surface of
degree 5, we �nd:

Proposition 3.1. For each possible degree d and genus g of a nondegenerate
integral ACM curve in P

4 of degree d ≤ 9, the Hilbert scheme Hd,g of such
curves is irreducible, and a general such curve can be obtained by ascending
G-biliaisons from a line. In particular, these curves are glicci. [4, 3.4]

A similar argument, using curves on the Bordiga surface of degree 6, gives
the same result for ACM curves with (d, g) = (10, 6).

Example 3.2. For (d, g) = (10, 9) the Hilbert scheme of smooth ACM curves
in P

4 has two irreducible components. To see this, �rst consider a nondegenerate
smooth (10,9) curve C in P

4. Since h0(OC(2)) = 12, we �nd h0(IC(2)) ≥ 3.
It follows that C is contained in an irreducible surface of degree 3, which must
be either a cubic scroll or the cone over a twisted cubic curve in P

3.
We represent the cubic scroll S as P

2 with one point blown up. If � is
the total transform of a line in P

2, and e is the class of the exceptional line,
we denote a divisor D = a� − be by (a; b). Then S is embedded in P

4
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by H = (2; 1). In this notation there are two types of smooth (10,9) curves,
C1 = (6; 2) and C2 = (7; 4). Note that each of these is obtained by G-biliaison
from a line on S : C1 ∼ L1 + 3H where L1 = (0; −1) and C2 ∼ L2 + 3H
where L2 = (1; 1). Hence both types are ACM.

The two types are distinguished by the following properties:

a) their self-intersection on S : C2
1 = 32 while C2

2 = 33.
b) their trisecants: since S is an intersection of quadric hypersurfaces, any

trisecant to Ci must lie in S . The lines in S are of types L1, L2 above. So
we see that C1 has no trisecants, while C2 has in�nitely many trisecants of
type L2.

c) their gonality: C2 is trigonal (a g
1
3 is cut out by the trisecants) while C1 is

not trigonal.
d) their multisecant planes. Let π be a plane containing the conic � of type

(1;0) on S . Then C1 · π = 6 and C2 · π = 7. The pencil of hyperplanes
through π cuts out a g14 on C1 and a g

1
3 on C2, computing the gonality of

each curve .

Because each of these curves is contained in a unique cubic scroll, if Ct
is a family of smooth (10,9) curves, then it is contained in a family St of cubic
surfaces. Hence the self-intersection of Ct on St is constant in a family, and we
conclude that neither type can specialize to the other. Hence the Hilbert scheme
of smooth curves H10,9 has two irreducible components, represented by the two
types C1 and C2 .

In contrast to the situation in P
3 (where for example, the Hilbert scheme

of smooth curves of (d, g) = (9, 10) has two disconnected components), our
two components of H10,9 in P

4 have a common intersection, formed by smooth
(10,9) curves lying on the singular cubic surface S0, the cone over a twisted
cubic curve in P

3. In a family St of smooth cubic scrolls, with limit S0, both
classes of lines L1, L2 have as limit a ruling L0 of the cone S0. So the two
divisor classes C1,C2 both tend to the singular divisor class L0 + 3H on S0. It
is easy to see this divisor class on S0 contains smooth curves. Then, imitating
the proof of [5, 2.1], cf. [5, 1.6], one can show that every smooth (10,9) curve
on S0 is a limit of �at families of curves of either type C1 or type C2 on cubic
scrolls.

Note �nally, since OC(2) is already nonspecial, it is easy to see that the
postulation of all ACM (10,9) curves is the same, so we have an example where
the Hilbert scheme of ACM curves with a �xed postulation is not irreducible,
answering Question 1.7 above.

To show that this example is not an isolated phenomenon, we prove the
following.
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Theorem 3.3. Let X be a smooth ACM surface in P
4, let C0 ⊆ X be a curve,

and assume either:

a) X is rational,
or

b) C0 ∼ aH + bK for a, b∈ Z, where H is the hyperplane class, and K the
canonical divisor on X . Then for m >> 0, the set of curves C ∼ C0+mH
on X , together with their deformations Ct ⊆ Xt as X moves in the family
of ACM surfaces Xt , forms an open subset of an irreducible component of
the Hilbert scheme of curves in P

4.

Proof. For m >> 0, each such curve C will lie on a unique such Xt , so the
dimension of the family of these curves will be equal to the dimension of the
linear system |C| on X , which is equal to h0(NC/X ), where N denotes normal
bundle, plus the dimension of the family of ACM surfaces X , which is equal
to h0(NX/P4) by [1]. (Here the hypothesis a) or b) of the statement guarantees
that when we deform X , the divisor class C extends to the deformed surface.)
On the other hand, we know that the dimension of the family of these curves is
≤ h0(NC/P4 ) by the differential study of the Hilbert scheme.

Now from the exact sequence

0 → NC/X → NC/P4 → NX/P4 ⊗ OC → 0

we �nd
h0(NC/P4 ) ≤ h0(NC/X ) + h0(NX/P4 ⊗ OC).

On the other hand, consider the exact sequence

0 → NX/P4(−C) → NX/P4 → NX/P4 ⊗ OC → 0 .

Since C ∼ C0 + mH , it follows from duality and Serre vanishing that
hi (NX/P4(−C)) = 0 for i = 0, 1 and for m >> 0. Hence h0(NX/P4) =

h0NX/P4 ⊗ OC) for m >> 0.
Putting these inequalities together, we �nd that h0(NX/P4) is equal to the

dimension of the family of curves in question. We conclude from this that they
form an open subset of a (generically reduced) irreducible component of the
Hilbert scheme.

Example 3.4. We can use this theorem to make more examples of non-
irreducible Hilbert schemes of curves with given postulation and Rao module.

A �rst example is furnished by the families C1 + mH and C2 + mH on
the cubic scroll, where C1,C2 are the curves of Example 3.2. For given m, they
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will have the same degree, genus, and postulation; each forms an open set of an
irreducible component of the Hilbert scheme, but the two families are different
because the curves have a different self-intersection on S .

For another example , let X be a Bordiga surface, represented as P
2 with

10 points P1, . . . , P10 blown up, where the notation (a; b1, . . . , b10) represents
the divisor a�−

�
biei , and the embedding is given by H = (4; 110). Consider

the divisors
L1 = (0; 09, −1)
L2 = (1; 13, 07)
L3 = (2; 17, 03).

On a general Bordiga surface, L1 is a line, and L2, L3 are not effective. But
if P1, P2, P3 are collinear, we get a special smooth Bordiga surface on which
L2 is represented by a line. If P1, . . . , P7 lie on a conic, we get another
special Bordiga surface on which L2 is represented by a line. It follows that
Ci ∼ Li +mH are ACM curves with the same postulation on a general Bordiga
surface, for i = 1, 2, 3, and m >> 0.

By the theorem, each of these Ci forms an (open set of) an irreducible
component of the Hilbert scheme. Since L2i = −1, L22 = −2, L23 = −3, the Ci
have different self-intersection, so the components are distinct.

Problem 3.5. Find a way to distinguish the irreducible components of the
Hilbert scheme of ACM curves in P

4 with given degree, genus, and postulation.
For example, would any of the properties suggested in a),b),c),d) of Example
3.2 force the family to be irreducible ?

Example 3.6. Our last experiment with ACM curves is the �rst case of an ACM
curve not contained in a cubic hypersurface, namely smooth ACM curves with
(d, g) = (20, 26).

There are such curves de�ned by the 4 × 4 minors of a 4 × 6 matrix of
general linear forms. These determinantal curves are glicci, by a theorem of [7]
and form an irreducible family of dimension ≤ 69 [7, 10.3].

Allowing these determinantal curves to move in linear systems on smooth
ACM surfaces X of degree 10 and sectional genus 11, we get a family of curves
of dimension ≤ 74, whose general member can be obtained by ascending G-
biliaisons from a line, and hence is glicci [4, 3.9].

On the other hand, the differential study of the Hilbert scheme shows that
every irreducible component of smooth curves of (d, g) = (20, 26) must have
dimension ≥5d + 1 − g = 75.

By a subtle study of the dimensions of linear systems of curves on the
ACM surface of degree 10 mentioned above, we show that a general curve in the
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Hilbert scheme of (20,26) curves cannot be obtained by ascending G-biliaisons
from a line [4, 3.9]. This gives a negative answer to the second half of Question
1.6. What remains is a problem.

Problem 3.7. Is an ACM curve with (d, g) = (20, 26) in P
4 glicci ?

4. Curves on P
4 with Rao module M �= 0.

Here the questions to investigate are whether all curves with Rao module
M belong to the same G-liaison class; what do the minimal curves look like; and
can an arbitrary curve with Rao module M be obtained from a minimal curve
by ascending Gorenstein biliaisons. As yet, there is very little experimental
evidence for these questions, but what little there is shows that the situation is
quite complicated.

We �rst consider the case M = k, of dimension one in one degree only.
We can describe completely the minimal curves in this case, which have M = k
in degree 0.

Proposition 4.1. For every d ≥ 2 there are minimal curves in P
4 with Rao

module M = k in degree 0. For each d these curves form an irreducible family.
The general member of the family is a disjoint union of a line and a plane curve
of degree d − 1 in general position in P

4. Furthermore, all of these minimal
curves are in the same G-liaison class. [4, 4.1]

To begin the study of other curves with Rao module M = k, we look at
smooth curves of low degree and genus. They exhibit many different behaviors.

Example 4.2. Every smooth nondegenerate (d, g) = (5, 0) curve in P
4 lies on

a cubic scroll, has M = k in degree 1, and is obtained by G-biliaison from a
minimal curve of degree 2, namely two skew lines [4, 4.3].

Example 4.3. Smooth nondegenerate (6,1) curves in P
4 form an irreducible

family. They have M = k in degree 1. They fall into two types. The general
curve C1 lies on a Del Pezzo surface, and is obtained by a G-biliaison from two
skew lines. This curve has two trisecants. The special curve C2 lies on a cubic
scroll, and is obtained by G-biliaison from a minimal curve of degree 3. It has
in�nitely many trisecants. So in this case the two types are distinguished by
which minimal curve they come from under G-biliaison [4, 4.4].
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Example 4.4. Smooth nondegenerate (7,2) curves form an irreducible family,
whose general member has M = k in degree 1. In this case the general member
of the family can be obtained by two different routes from minimal curves: one
route is G-biliaison on the Del Pezzo surface from a minimal curve of degree 3;
the other is a G-biliaison on the Castelnuovo surface from a minimal curve of
degree 2 [4, 4.5].

Example 4.5. Next we consider smooth nondegenerate (11,7) curves in P
4.

They form an irreducible family, whose general member has M = k in degree
2. There are such curves on a Bordiga surface, obtained by G-biliaison in two
steps: from two skew lines to a smooth (5,0) curves on a cubic scroll, then to
the (11,7) curve on the Bordiga surface. However, we can show by counting
dimensions that the general (11,7) curve does not lie on a Bordiga surface,
and cannot be obtained by ascending G-biliaisons from a minimal curve. This
provides a negative answer to the �rst part of Question 1.6 above [4, 4.7]. There
remains a problem.

Problem 4.6. Is a general (11,7) curve in P
4 in the G-liaison class of two skew

lines ?

Minimal curves in P
4 with Rao module Ma = R/(x0, x1, x2, x3, x

a
4 ) for

a ≥ 2 have been studied by Lesperance [8]. He shows

Proposition 4.7. For a ≥ 2, there are minimal curves with Rao module Ma of
every degree d ≥ a+1. A reduced minimal curve is one of the following (where
we denote by P the point (0, 0, 0, 0, 1).)
a) A disjoint union of a line and a plane curve of degree a in P

3, where P is
the point of intersection of the line and the plane.

b) A disjoint union of plane curves of degrees a, b, with a ≤ b, where P is the
point of intersection of the two planes, and P does not lie on either curve.

c) A disjoint union of plane curves of degrees a, b, with b ≥ 1, where P is
the point of intersection of the two planes, but this time P lies on the curve
of degree b. (For b = 1, we recover type a) above.)

d) A disjoint union of a line and an ACM curve in P
3, where P is the point of

intersection of the line and the P
3, and a is the least degree of a surface in

P
3 containing the ACM curve, but not containing P.

Example 4.8. In particular, the set of minimal curves of a given degree may not
be irreducible. The �rst example is a = 2, degree 4, where there are minimal
curves of type b), a union of two conics, and type d), a union of a line and a
twisted cubic curve, which form two irreducible families [8, 4.5].
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A more serious problem arises with the question of G-liaison. Lesperance
is able to show that most of the minimal curves described in Proposition 4.7 are
in the same G-liaison class as the �rst (type a). However there remains an open
question, of which we state the �rst case.

Problem 4.9. Let C1 be a disjoint union of two conics of type b) above, and
let C2 be a disjoint union of a line and a twisted cubic curve, of type d) above.
Then both have Rao module M2. Are they in the same G-liaison class ?

Example 4.10. Applying G-biliaison on a Del Pezzo surface, we can rephrase
Problem 4.9 in terms of smooth curves with (d, g) = (8, 3).

On the Del Pezzo surface X , note that the divisor class (1; 1, 04) is a
conic, and two such are disjoint. So we can take C1 = (2; 2, 04) on X , and
let D1 = C1 + H = (5; 3, 14). This is a smooth (8,3) curve.

On the other hand, (1; 05) is a twisted cubic, and (0; 04, −1) is a line not
meeting it, so we can take C2 = (1; 04, −1), and D2 = C2 + H = (4; 14, 0).
This is another smooth (8,3) curve.

The curves of type D1, D2 both have Rao module M2, but neither type can
specialize to the other, because each lies in a unique Del Pezzo surface, and on
that surface, their set of intersection numbers with the sixteen lines are (18, 38)
for D1 and (0, 14, 26, 34, 4) for D2.

Note also that the Hilbert scheme of smooth (8,3) curves in P
4 is irre-

ducible, but the general curve has Rao module M = k in degree 1, and does not
lie on a Del Pezzo surface. Thus our two families of curves are locally closed
irreducible subsets of H8,3.

Both types of curves D1, D2 have self-intersection 12. However, the two
types can be distinguished by

a) their intersections with the 16 lines on X (mentioned above)

b) their multisecants: C1 has trisecant lines, but no quadrisecant, while C2
has a quadrisecant line

c) their multisecant planes: let π be the plane containing the conic (2; 0, 14)
in X . Then C1 · π = 6 while C2 · π = 5.

d) their gonality: C1 is hyperelliptic, with a g12 cut out by the hyperplanes
through π , while C2 has gonality 3, and a g

1
3 is cut out by the hyperplanes

through π

e) the point P (determined by the Rao module) lies on the surface X for type
D2, but does not lie on X for type D1.

Now we can rephrase Problem 4.9 as
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Problem 4.11. Do the two types of smooth (8,3) curves with Rao module M2

(described above) belong to the same G-liaison class ?

5. Conclusion.

For ACM curves in P
4, we have shown that the family of ACM curves

with given degree, genus, and postulationmay not be irreducible (3.2); we have
given examples of ACM curves that cannot be obtained by ascendingGorenstein
biliaison from a line (3.6); and we have proposed examples of ACM curves that
may not be glicci (3.7).

For curves withRao module M �= 0, we have described theminimal curves
in two cases, illustrating their complexity (4.1),(4.7); we have given examples of
curves that cannot be obtained from a minimal curve by ascending G-biliaisons
(4.5); and we have proposed examples of curves with the same Rao modules
that may not be in the same G-liaison class (4.6), (4.9).

We have seen by example that certain families of curves with the same
Rao module can be distinguished by the least degree of an ACM surface
containing the curve, or their self-intersection on an ACM surface of least degree
containing the curve, or their multisecant lines, or their multisecant planes, or
their gonality. What is lacking at this point is a better understanding of how
these geometrical properties of the curve in its embedding behave under the
operation of Gorenstein liaison.
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