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PROUDFOOT-SPEYER DEGENERATIONS OF
SCATTERING EQUATIONS

B. BETTI - V. BOROVIK - S. TELEN

We study scattering equations of hyperplane arrangements from the per-
spective of combinatorial commutative algebra and numerical algebraic
geometry. We formulate the problem as linear equations on a reciprocal
linear space and develop a degeneration-based homotopy algorithm for
solving them. We investigate the Hilbert regularity of the corresponding
homogeneous ideal and apply our methods to CHY scattering equations.

1. Introduction

Consider n+ 1 hyperplanes in Cd , defined by ℓ0(x) = 0, . . . , ℓn(x) = 0. Here,
ℓi ∈ C[x1, . . . ,xd ] are affine-linear functions in d variables. The following loga-
rithmic potential function serves as the scattering potential in CHY theory [8]:

Lu(x) = logℓu0
0 ℓu1

1 · · ·ℓun
n = u0 logℓ0 +u1 logℓ1 + · · ·+un logℓn. (1)

This function depends on parameters u = (u0, . . . ,un) which take complex val-
ues. Motivated by the physics application, see for instance [8, 13, 19], we are
interested in solving its critical point equations for generic u:

∂Lu

∂x1
= · · · = ∂Lu

∂xd
= 0. (2)
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Notice that these equations are invariant under scaling the linear forms ℓi by
non-zero constants; they only depend on the arrangement A=V (ℓ0 · · ·ℓn)⊂Cd

and are given by well-defined rational functions on its complement X =Cd \A.
We refer to (2) as the scattering equations of the hyperplane arrangement A.

We collect the coefficients of ℓ0, . . . , ℓn in a matrix L∈C(d+1)×(n+1) such that

L⊤ =
(
−b A

)
and (ℓ0(x), . . . , ℓn(x)) = (1,x1, . . . ,xd) ·L.

Here A has size (n+1)×d, and ℓi(x) is the i-th entry of Ax−b (counting starts
at zero). With this notation, we can rewrite the scattering equations (2) as

A⊤diag(u)y = 0 and y ∈ imφ , (3)

where φ : X → Pn is the morphism x 7→ (ℓ−1
0 (x) : · · · : ℓ−1

n (x)) and diag(u) is
an (n+ 1)× (n+ 1) diagonal matrix with diagonal entries u0, . . . ,un. From an
algebro-geometric perspective, it is natural to relax the condition y ∈ imφ by
replacing the image of φ with its closure in the projective space Pn. This is the
reciprocal linear space associated to the row span of L, denoted by RL.

In the terminology of Proudfoot and Speyer [16], reciprocal linear spaces
are spectra of broken circuit rings. Their geometric properties are encoded by
the matroid M(L) represented by L. This includes dimension, degree, singular
locus and a nice stratification of RL [16, 17]. Reciprocal linear spaces appear
naturally in regularized linear programming [9]. A key geometric feature for our
purposes is the fact that RL admits a Gröbner degeneration to a reduced union
of coordinate subspaces. On the algebraic side, a universal Gröbner basis for the
vanishing ideal I(RL) degenerates to a set of generators for a square-free mono-
mial ideal J. We call this a Proudfoot-Speyer degeneration of RL. Our paper
turns such degenerations into practice. We develop a homotopy algorithm for
solving (3) which starts by solving linear equations on V (J). This requires only
combinatorics and linear algebra. Next, we lift the solutions in V (J) through the
degeneration to the solutions of (3) in RL. Here is an example with d = 2,n = 3.

Example 1.1. The function Lu(x) = xu0
1 xu1

2 (2−x1 −2x2)
u2(2−2x1 −x2)

u3 uses

L =

0 0 2 2
1 0 −1 −2
0 1 −2 −1

 . (4)

The scattering equations are two rational function equations in two unknowns:

u0

x1
− u2

2− x1 −2x2
− 2u3

2−2x1 − x2
=

u1

x2
− 2u2

2− x1 −2x2
− u3

2−2x1 − x2
= 0.
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In coordinates yi = ℓ−1
i , the system of equations (3), replacing imφ with RL, is

u0y0 −u2y2 −2u3y3 = u1y1 −2u2y2 −u3y3 = 0,
y1y2y3 − y0y2y3 − y0y1y3 + y0y1y2 = 0.

(5)

The last equation defines the cubic surface RL ⊂ P3. After fixing generic values
for u, the first two equations define a line Lu in P3. This line hits imφ ⊂RL in
three points. Their pre-images under φ are the three solutions to the scattering
equations of A (see Figure 1). A Proudfoot-Speyer degeneration of RL is

y1y2y3 − t1 y0y2y3 − t2 y0y1y3 + t3 y0y1y2 = 0.

For t = 1, this is the equation for RL. For t = 0, this defines the union of three
coordinate planes V (J), where J = ⟨y1y2y3⟩. Our line Lu hits each of these
planes in a single point. These points are easily computed by solving linear
equations. As t varies from 0 to 1, the points in Lu ∩V (J) move to the solutions
of (5). A homotopy algorithm tracks the points numerically as t → 1. ⋄

The data from Example 1.1 are particularly nice. In general, it might be
necessary to vary the linear space Lu = {y : A⊤ diag(u)y = 0} throughout the
homotopy, and Lu ∩RL may contain more points than the solution set of (3).
That is, for certain choices of L, the scattering equations always have solutions
on the boundary RL \ imφ , see Theorem 3.4. Generically, this does not happen.

Theorem 1.2. For generic L∈C(d+1)×(n+1) and generic u∈Cn+1, the Proudfoot-
Speyer homotopy described in Section 4 is optimal, meaning that the number of
solution paths tracked equals the number of solutions to (2) in X .

In algebraic statistics, the scattering equations (2) appear in maximum like-
lihood estimation for discrete linear models. In that context, one assumes that
ℓ0(x)+ · · ·+ℓn(x) = 1. The model is the intersection of the n-dimensional prob-
ability simplex with the image of the parametrization x 7→ (ℓ0(x), . . . , ℓn(x)). The
function Lu(x) is the log-likelihood function corresponding to an experiment in
which state i ∈ {0, . . . ,n} was observed ui times. Computing the maximizer of
Lu(x) is a standard way of infering which distribution in the model best explains
the data. We elaborate on the statistics application in Section 2.

In algebraic terms, viewing the scattering equations as linear equations on RL

means that we interpret the linear forms A⊤ diag(u)y as elements of the homo-
geneous coordinate ring of RL. They generate an ideal denoted by

Iu =
〈
∑

n
j=0ai ju j y j | i = 1, . . . ,d

〉
⊂ C[RL] = C[y0, . . . ,yn]/I(RL).

The complexity of computing the solutions in RL algebraically, e.g., using
Gröbner bases, is governed by the regularity of Iu ⊂ C[RL]. This is classical
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for homogeneous equations on projective space [1]. For equations on arithmeti-
cally Cohen-Macaulay projective varieties, such as RL [16, Proposition 7], see
[3, Theorem 5.4]. The following result bounds the Hilbert regularity.

Theorem 1.3. Let L ∈ C(d+1)×(n+1) be of rank d + 1. Let L ⊂ Pn be a lin-
ear subspace of dimension n− d which intersects RL in degRL many points,
counting multiplicities, and let I(L) be its ideal in C[RL]. The Hilbert function
HFL∩RL(q) = dimCC[RL]q/I(L)q equals degRL for all q ≥ d.

The outline is as follows. Section 2 recalls the basics on scattering equa-
tions and reciprocal linear spaces. Section 3 makes the genericity condition
in Theorem 1.2 precise by characterizing when the number of solutions to (2)
agrees with the degree of RL. Section 4 describes our homotopy algorithm and
its implementation. Our Julia code is available at the MathRepo page [2]. Sec-
tion 5 is on the relevant case for physics, where X ≃M0,m is the moduli space
of m-pointed genus 0 curves. Theorem 5.6 explains how the points in Lu ∩RL

correspond to the scattering solutions for certain subsets of m′ = 4,5, . . . ,m par-
ticles, assuming a conjecture on their multiplicities. Finally, Section 6 features
a proof of Theorem 1.3 and Macaulay matrix constructions.

2. Scattering equations, reciprocal linear spaces and maximum likelihood

This section collects preliminary facts about the equations (2) and about recipro-
cal linear spaces. We start with the number of solutions. That number is constant
for almost all values of u, and depends only on the topology of X =Cd \A. We
assume that the hyperplane arrangement A is essential, meaning that there is
a subset of its hyperplanes which intersect in a single point. Let χ(X) be the
topological Euler characteristic of X . The following is [14, Theorem 1.1].

Theorem 2.1. For essential A and generic values of u ∈ Cn+1, the scattering
equations (2) have only isolated solutions. There are (−1)d · χ(X) solutions
in total. Moreover, all these solutions are non-degenerate critical points of Lu,
meaning that the Hessian determinant det

(
∂ 2Lu

∂xi∂x j

)
i j

is non-zero at each solution.

In fact, the above theorem has a much more general version [11, Theorem 1].
One can replace ℓi(x) by any polynomials so that X =Cd \V (ℓ0(x)ℓ1(x) · · ·ℓn(x))
is a smooth very affine variety, and the statement still holds. Our focus remains
on affine-linear functions ℓi(x). Theorem 2.1 was conjectured by Varchenko,
who proved the following for real arrangements, see [20, Theorem 1.2.1].

Theorem 2.2. If the matrix L ∈R(d+1)×(n+1) is real, A is essential and u ∈Rn+1
+

is a tuple of positive numbers, then all solutions of the scattering equations (2)
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Figure 1: An arrangement of four lines in R2 whose scattering equations have
three solutions and whose reciprocal linear space is a cubic surface in P3.

are real. Moreover, there is precisely one solution contained in each of the
bounded chambers of the hyperplane arrangement complement Rd \A.

In particular, in the case of real arrangements, the number of bounded cham-
bers of Rd \A counts the signed Euler characteristic (−1)d ·χ(X) of X =Cd \A.

In our paper, we adopt the geometric point of view that the map

φ : x 7−→ (ℓ−1
0 (x) : · · · : ℓ−1

n (x))

sends the solutions of the scattering equations (2) bijectively to the points in
Lu ∩ imφ . Here Lu ⊂ Pn is the linear space defined by A⊤ diag(u)y = 0. The
closure of the image of φ in Pn is denoted by RL. If L has rank d+1, then RL is
an irreducible d-dimensional variety called a reciprocal linear space. Trivially,
Lu ∩ imφ is contained in the intersection of closed subvarieties Lu ∩RL.

Example 2.3. The real points of the arrangement A from Example 1.1 are
shown in Figure 1 (left). The complement R2 \A has eleven connected com-
ponents, three of which are bounded. By Theorem 2.2, for positive values
of u ∈ R4

+, the scattering equations (2) have three real solutions. There is one
solution in each of the triangles in Figure 1 (left), and one in the quadrilateral.
The signed Euler characteristic of X = C2 \A is three by Theorem 2.1, and we
have seen in Example 1.1 that this equals the degree of the reciprocal linear
space RL associated to L from (4). The cubic surface RL is plotted in the right
part of Figure 1, together with the line Lu for u = (1,1,1,1). The map φ sends
the three solutions of scattering equations (2) to the three points in Lu ∩RL. ⋄

The matrix L defines a matroid M(L) on the ground set {0, . . . ,n} whose
dependent sets index linearly dependent columns of L. By the results of [16],
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the degree of RL only depends on the matroid M(L). If M(L) is uniform, like in
Example 2.3, then degRL is given by the binomial coefficient

(n
d

)
.

The equality degRL = (−1)d ·χ(X) holds in Example 2.3, but might fail in
general. Theorem 2.1 and injectivity of φ : X → Pn imply an inequality.

Proposition 2.4. If L has rank d +1, then we have (−1)d ·χ(X)≤ degRL.

Example 2.6 below shows that the inequality can be strict. Before stating
it, we recall a result by Proudfoot and Speyer [16] on the defining equations
of RL. The circuits of M(L) are the minimal dependent sets. For each circuit
C ⊂ {0, . . . ,n}, there is a unique linear relation between the functions ℓ0, . . . , ℓn,
given by ∑i∈C αC,i ℓi(x) = 0. The coefficient vectors (αC,i)i∈C are defined up to
scaling. We use these vectors to define one polynomial for each circuit:

fC = ∑
i∈C

αC,i ∏
j∈C\{i}

y j.

The following theorem is crucial in much of what follows, see [16, Theorem 4].

Theorem 2.5. The polynomials { fC : C is a circuit of M(L)} form a universal
Gröbner basis for the vanishing ideal I(RL) of the reciprocal linear space RL.

Example 2.6. The inequality in Proposition 2.4 can be strict. The variety RL for

L =

1 0 0 0
1 1 0 1
0 0 1 1


is a quadratic surface in P3. Its defining equation is found via Theorem 2.5:
y2y3 + y1y3 − y1y2 = 0. Indeed, M(L) has a unique circuit {1,2,3} consisting
of the last three columns. The complement of the arrangement A in R2 has one
bounded box. By Theorem 2.2, the Euler characteristic of X =C2\A is one. ⋄

We conclude the section with a note on algebraic statistics. The probabil-
ity simplex of dimension n is the set ∆n = {p ∈ Rn+1

+ : ∑
n
i=0 pi = 1}. This

contains all probability distributions for a discrete random variable with n+ 1
states. A linear model is the intersection of ∆n with an affine subspace in
Rn+1. That affine-linear space is parametrized by affine-linear functions ℓi:
x 7→ (ℓ0(x), . . . , ℓn(x)). Since (ℓ0, . . . , ℓn) represents a probability distribution,
we impose ∑

n
i=0 ℓi(x) = 1. A central problem in statistics is the following:

Let M⊂ ∆n be a statistical model. Suppose that, in an experiment, state i of
our random variable is observed a total number of ui times. What is the

distribution in M that best explains the data u = (u0, . . . ,un)?
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The answer from maximum likelihood inference (MLI) is to maximize the log-
likelihood function. The maximum likelihood estimate (MLE) is the maximizer
on M. In our context, the log-likelihood function is the scattering potential Lu

from (1). The MLE is among its complex critical points. The generic number of
complex critical points, called the maximum likelihood degree (ML degree) of
M, governs the algebraic complexity of MLI. In our context, the ML degree is
(−1)d ·χ(X) by Theorem 2.1, where X = Cd \A. The connection with particle
scattering was explored in [19]. For more on linear models, see [12, Section 1].

Example 2.7. After scaling ℓ0, ℓ1, ℓ2, ℓ3 from Example 1.1 by 3
4 ,

3
4 ,

1
4 ,

1
4 respec-

tively, they sum to one. This scaling changes neither the arrangement A nor
the scattering equations. Our linear statistical model is the intersection of the
3-dimensional probability simplex with the affine-linear space parametrized by
(ℓ0(x), ℓ1(x), ℓ2(x), ℓ3(x)). This is the quadrilateral shaded in blue in Figure 1.
It is defined by the inequalities ℓi ≥ 0 for i = 0, . . . ,3. The ML degree is three,
and for u ∈R4

+, the MLE is the unique critical point of Lu contained in the blue
region (Example 2.3). ⋄

3. Reciprocal versus ML degree

We investigate when the reciprocal degree degRL differs from the ML de-
gree (−1)d · χ(X). Our starting point is the stratification of RL established
in [16, Proposition 5] and recalled below in Proposition 3.1. For any sub-
set I ⊆ {0, . . . ,n}, we define submatrices LI and A⊤

I of L and A⊤ respectively.
They consist of the columns indexed by I. We denote the torus orbits of Pn by
UI = {x∈Pn : xi ̸= 0⇔ i∈ I}. The submatrix LI parametrizes a reciprocal linear
space RLI ⊂ P|I|−1 of dimension rank(LI)−1. With a slight abuse of notation,
we also write RLI for the image of RLI under the inclusion P|I|−1 ↪→ Pn which
identifies P|I|−1 with {x ∈ Pn : xi = 0, i /∈ I}. Finally, we write R◦

LI
=RLI ∩UI .

Proposition 3.1. If I ⊆ {0, . . . ,n} is not a flat of M(L), then RL ∩UI = /0. If I
is a flat of M(L), then RL ∩UI =R◦

LI
.

Recall that a flat of the matroid M(L) is a subset I of {0, . . . ,n} such that
the rank of I ∪{i} is strictly greater than rank(I) for any i ∈ {0, . . . ,n}\ I. The
entire ground set {0, . . . ,n} is a flat by convention. As a consequence of Propo-
sition 3.1, we have a disjoint union

Lu ∩RL =
⊔

I⊆{0,...,n}
I is a flat of M(L)

Lu ∩R◦
LI
. (6)
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Remark 3.2. Notice that the image of the map φ from the Introduction is con-
tained in the dense stratum: imφ ⊂R◦

L =R◦
L{0,...,n}

=RL∩U{0,...,n}. In particular,
the solutions to the scattering equations are among the points in Lu ∩R◦

L.

Lemma 3.1. If rank(L) = d + 1 and u ∈ Cn+1 is generic, then the solutions to
the scattering equations are in one-to-one correspondence with the intersections
of Lu with the dense stratum of RL. In symbols, we have Lu ∩ imφ = Lu ∩R◦

L.

Proof. Observe that R◦
L \ imφ equals R◦

A⊤ = RA⊤ ∩U{0,...,n}. These are the
reciprocals of the points in the row span of L which have non-zero coordinates
and which lie in the span of the last d rows. The intersections of R◦

A⊤ with Lu are
in one-to-one correspondence with the solutions to the scattering equations of Ã,
the central hyperplane arrangement in Cd given by the columns of AT . Since
rank(L) = d + 1, A has rank d and Ã is essential. The Euler characteristic of
Cd \Ã is zero, so its scattering equations have no solutions by Theorem 2.1.

Example 3.3. The matrix L from Example 2.6 gives a quadratic surface RL in P3.
That surface contains the curve RA⊤ = {y ∈ RL : y0 = y1}. The open subset
R◦

A⊤ ⊂RA⊤ intersects the line Lu if and only if u0 +u1 +u2 +u3 = 0. ⋄

The assumption rank(L) = d + 1 can be dropped in Lemma 3.1. The cen-
tral arrangement Ã from our proof might not be essential in that case, but its
scattering equations will have no solutions unless u0 +u1 + · · ·+un = 0:

∑
d
j=1 x j ∂ jLu = ∑

d
j=1 x j ∑

n
i=0 ui(∂ jℓi)ℓ

−1
i = u0 +u1 + · · ·+un,

where ∂ j =
∂

∂x j
. The assumption rank(L) = d + 1 is natural in this section:

It only makes sense to compare reciprocal and ML degree when rank(A) =
rank(L)−1. Then rank(L) = d +1, after possibly changing coordinates.

Next, we identify strata R◦
LI

containing “excess” intersection points with Lu.
For I ⊆ {0, . . . ,n}, let AI =V (∏i∈I ℓi(x)) be the subarrangement of hyperplanes
indexed by I. Let KI ⊂ Cd be the left kernel of the matrix A⊤

I and let XI =
(Cd \AI)/KI . Note that XI is a very affine variety isomorphic to the complement
of an arrangement of |I| hyperplanes in Crank(A⊤

I ).

Theorem 3.4. If rank(L) = d+1 and u ∈ Cn+1 is generic, then the intersection
Lu ∩RL consists of finitely many points. For a flat I of M(L) we have

(i) if rank(A⊤
I ) = rank(LI), then Lu ∩R◦

LI
= /0,

(ii) if rank(A⊤
I ) = rank(LI)− 1, then the set-theoretic intersection Lu ∩R◦

LI

consists of (−1)rank(A⊤
I ) ·χ(XI) many points.
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Proof. We start with the proof of (i). Let Â⊤
I be a matrix of size rank(A⊤

I )×|I|
with the same row span as A⊤

I . Since rank(A⊤
I ) = rank(LI) we have RÂ⊤

I
=

RA⊤
I
=RLI . The intersection Lu ∩R◦

LI
can equivalently be expressed as

Lu ∩R◦
LI

= {y ∈R◦
Â⊤

I
: Â⊤

I diag(uI)yI = 0}.

Like in the proof of Lemma 3.1, these are the scattering equations of an essential
central arrangement in Crank(A⊤

I ) with signed Euler characteristic zero. There are
no solutions for generic uI , which proves part (i).

For part (ii), let L̂I =
(
−b⊤I
Â⊤

I

)
, with Â⊤

I as above. We have RL̂I
=RLI . We

find that Lu ∩R◦
LI

is described by the scattering equations of AI ⊂ Crank(A⊤
I ):

Lu ∩R◦
LI

= {y ∈R◦
L̂I

: Â⊤
I diag(uI)yI = 0}.

By Theorem 2.1, this set consists of (−1)rank(A⊤
I ) ·χ(XI) points.

Corollary 3.5. Let rank(L) = d +1. We have Lu ∩ imφ = Lu ∩RL for generic
u ∈ Cn+1 if and only if all flats I of M(L) except I = {0, . . . ,n} are such that
rank(A⊤

I ) = rank(LI). That is, under this condition, the solutions to the scatter-
ing equations are in one-to-one correspondence with the points in Lu ∩RL.

Remark 3.6. Geometrically, the flats of M(L) are linear spaces in Pd obtained
as intersections of subsets of the n+ 1 hyperplanes given by (x0, . . . ,xd)

⊤ L =
(Ax−bx0)

⊤ = 0. The criterion in Corollary 3.5 is equivalent to no non-empty
flats being contained in the hyperplane at infinity {x0 = 0}.

Example 3.7. The matrix L from Example 1.1 gives rise to the rank-three uni-
form matroid on four elements, and M(A⊤) is uniform of rank 2. It is easy to
verify that if L has rank d+1 and M(A⊤) is uniform, then the criterion of Corol-
lary 3.5 is satisfied. That is, the matroid of a generic L has no flats at infinity.
Hence, as observed in Example 1.1, the intersection points of Lu and RL are in
one-to-one correspondence with the solutions to the scattering equations. ⋄

Example 3.8. The flats of M(L) with L as in Example 2.6 are /0, {0}, {1},
{2}, {3}, {0,1}, {0,2}, {0,3}, {1,2,3} and {0,1,2,3}. By Theorem 3.4, the
only strata of RL contributing to the intersection Lu ∩RL are those for which
rank(A⊤

I ) = rank(LI)−1. As we had observed in Example 2.6, for generic u, the
two intersection points are contained in R◦

L{0,1,2,3}
and in R◦

L{0,1}
. The flat {0,1}

is the intersection point of ℓ0(x) = ℓ1(x) = 0, which lies at infinity in P2. ⋄

Corollary 3.2. Let rank(L) = d+1. The equality (−1)d ·χ(X) = degRL holds
if and only if rank(A⊤

I ) = rank(LI) for each flat I of M(L), except I = {0, . . . ,n}.
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Proof. If the condition in the corollary is satisfied and u is generic, then Lu∩RL

consists of (−1)d ·χ(X) points by Corollary 3.5. These intersection points have
multiplicity one by Theorem 2.1. The equality (−1)d · χ(X) = degRL follows
from the fact that a transverse intersection of an (n−d)-dimensional linear space
with a d-dimensional algebraic variety consists of its degree many points.

If the condition is violated and u is generic, then Lu ∩RL consists of more
than (−1)d ·χ(X) isolated points. Therefore degRL > (−1)d ·χ(X).

4. Proudfoot-Speyer homotopies

This section explains our method for finding all solutions to (2) numerically.
The algorithm is implemented in Julia (v1.10.5) using Oscar.jl [15] (v1.0.4)
and HomotopyContinuation.jl [5] (v2.0). All code is available at [2].

Our main computational tool is homotopy continuation. We recall the ba-
sic ideas and refer to the textbook [18] for more details. Homotopy continua-
tion is a computational paradigm for finding approximate isolated solutions of
systems of polynomial equations. It is based on a deformation of the polyno-
mial system at hand, called the target system, into another polynomial system,
called the start system, whose solutions are easy to compute. Concretely, let
F(x) = ( f1(x), . . . , fℓ(x)) = 0 be a system of ℓ polynomial equations in k ≤ ℓ
variables (x1, . . . ,xk). A homotopy for solving F(x) = 0 is a polynomial map
H(x, t) = (h1(x, t), . . . ,hℓ(x, t)) : Ck × [0,1] 7−→ Cℓ satisfying

1. H(x,1) = F(x).

2. The start system G(x) = H(x,0) = 0 has at least as many regular isolated
solutions in Ck as F(x) = 0 and they are easy to compute.

3. For any t ∈ [0,1), the system H(x, t) = 0 has the same number of regular
isolated solutions in Ck as G(x) = 0.

A regular isolated solution of H(x, t) = 0 for fixed t is a point x ∈ Ck at which
H(x, t) = 0 and the ℓ× k Jacobian matrix

(
∂hi
∂x j

(x, t)
)

i j
has rank k. The new

variable t is called the continuation parameter. The task of a homotopy algo-
rithm is to track each solution of the start system G(x) = 0 along a continuous
solution path as t moves from 0 to 1. Such a solution path is a parametric
curve x(t) satisfying H(x(t), t) = 0. Under suitable assumptions, the solutions
of F(x) = 0 are among the limits of these paths for t → 1. In practice, tracking
the paths numerically comes down to solving Davidenko’s differential equation
using predictor-corrector schemes, see [18, Section 2.3]. If the start system G
has as many regular isolated solutions as F and they all converge to a solution
of F , then the homotopy H(x, t) is called optimal. This is the favorable case in
which no path is lost along the way, so that no computational effort is wasted.
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Example 4.1. In Example 1.1 we saw that the homotopy H(y, t) given by(
u0y0 −u2y2 −2u3y3, u1y1 −2u2y2 −u3y3, y1y2y3 − t1 y0y2y3 − t2 y0y1y3 + t3 y0y1y2

)
is optimal for solving (5). The three solutions for t = 0 are easy to compute: we
simply solve three linear systems with y1 = 0,y2 = 0 and y3 = 0 respectively. ⋄

The homotopy in Example 4.1 is based on a flat degeneration of RL to a
union of coordinate subspaces. Recall that a flat degeneration of a projective va-
riety V ⊆Pn is a family of varieties X together with a flat morphism π : X → C1

such that any fiber π−1(t) with t ∈C1 \{0} is isomorphic to V . These are called
the general fibers, and π−1(0) is the special fiber. Flatness ensures that the spe-
cial fiber shares many properties with the general fiber. This includes dimension
and degree, Hilbert function, Cohen-Macaulayness and normality, see [6].

Let I(RL) ⊂ C[y0, . . . ,yn] be the vanishing ideal of RL, as above. We con-
sider the initial ideal J of I(RL) with respect to a weight vector ω ∈ Zn+1:

J := inω(I(RL)) = spanC{inω( f ) : f ∈ I(RL)}.

Its variety is V (J). By [16, Theorem 4], for a generic weight vector ω , J is a
square-free monomial ideal and V (J) is a union of coordinate subspaces. More-
over, V (J) is the special fiber in a flat degeneration of RL, as we now explain.

We extend our polynomial ring to C[y, t] = C[y0, . . . ,yn, t] by adding a con-
tinuation parameter t. Let f (y) = ∑cαyα ∈ C[y0, . . . ,yn] be a polynomial. We
define ω( f ) := max

α,cα ̸=0
{ω ·α} and f ω

t (y, t)=∑cαtω( f )−ω·αyα ∈C[y, t]. The ideal

I(RL)
ω
t := ⟨ f ω

t : f ∈ I(RL)⟩ ⊂ C[y, t]

defines a family of varieties X =V (I(RL)
ω
t )⊂ Pn×C. By [10, Theorem 15.17]

this family is flat over C. It defines the Gröbner degeneration of RL with respect
to the weight ω , whose special fiber is π−1(0) =V (J).

Example 4.2. The degeneration of the cubic surface RL from Example (1.1) is
a Gröbner degeneration with respect to the weight vector ω = (1,2,3,4). ⋄

We now use the degeneration explained above in a homotopy algorithm for
solving the scattering equations. Let A⊤

0 ∈ Cd×(n+1) be a matrix with generic
entries. The target system F(y) = 0 and the start system G(y) = 0 are given by

F(y) =
(

A⊤ diag(u)y
( fC(y))C∈circuits(M(L))

)
, G(y) =

(
A⊤

0 y
(( fC)ω

t (y,0))C∈circuits(M(L))

)
.

Here { fC : C ∈ circuits(M(L))} is the universal Gröbner basis of I(RL) from
Theorem 2.5. The solutions to F(y) = 0 are the points in Lu ∩RL. To connect
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the target system F(y) and the start system G(y), we set up the homotopy

H(y, t) =
(
(1− t)A⊤

0 y+ t A⊤ diag(u)y
(( fC)ω

t (y, t))C∈circuits(M(L))

)
. (7)

In words, H(y, t) is a combination of a straight line homotopy for the linear part
of the system and a Gröbner degeneration of the reciprocal linear space RL.
Algorithm 1 summarizes how to use this homotopy to solve the scattering equa-
tions numerically. Below, we briefly comment on the steps.

Input: A matrix L ∈ C(d+1)×(n+1) of rank d +1 representing a hyperplane
arrangement A and a generic vector u ∈ Cn+1.

Output: Solutions to the equations (2).

1. Choose a generic vector ω ∈ Zn+1 and generic A⊤
0 ∈ Cd×(n+1).

2. Compute the polynomials { fC : C is a circuit of M(L)}.
3. Find a minimal prime decomposition of the ideal J = inω(I(RL)).
4. For each irreducible component Yi of V (J), find the unique solution y ∈ Yi

of the linear system A⊤
0 y = 0.

5. For each of the solutions from step 4, trace the homotopy (7) along a
smooth path in C1 from t = 0 to t = 1.

6. Return the inverse image under φ of the solutions from step 5 that have
only non-zero coordinates.

Algorithm 1: Proudfoot-Speyer homotopy algorithm

The genericity condition for ω in step 1 is that the weight ω should define
a linear order on the ground set {0, . . . ,n} of the matroid M(L). That is, all its
entries should be distinct. The genericity condition for the matrix A⊤

0 is that
A⊤

0 y = 0 defines a linear subspace of codimension d which cuts the variety
V (J) in degV (J) = degRL many points. In our code, A⊤

0 can optionally be
inputted by the user. We have seen in Example 1.1 that one can sometimes pick
A⊤

0 = A⊤diag(u), so that the first d equations in H(y, t) do not involve t. The
matrix A⊤diag(u) might not satisfy our genericity assumption, see Remark 5.8.

In step 2, we compute the circuits of M(L) to find the universal Gröbner
basis from Theorem 2.5. For step 3, we find broken circuits with respect to
the weight vector ω that generate the ideal J following [16]. The minimal prime
decomposition of J is then computed using only the combinatorics of M(L). Let
ω be a linear order on {0, . . . ,n}. Recall from [16] that a broken circuit of M(L)
is obtained from a circuit of M(L) by deleting the element with the smallest ω-
weight. Let Mω(L) be the matroid on {0, . . . ,n} whose circuits are the minimal
broken circuits of M(L) with respect to inclusion.
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Proposition 4.3. The reciprocal degree degRL equals the number of bases of
the matroid Mω(L). The minimal primes of the ideal J are ⟨yi : i ∈ Bc⟩, where
B ⊂ {0, . . . ,n} runs over all bases of Mω(L) and Bc = {0, . . . ,n}\B.

Proof. In [16], it was shown that C[RL] flatly degenerates to the Stanley-Reisner
ring of the broken circuits simplicial complex bcω(L) on {0, . . . ,n}. Its faces are
subsets of {0, . . . ,n} that do not contain any broken circuit. The degree of RL

is the number of facets of bcω(L), which is the number of maximal subsets of
the ground set that do not contain any broken circuit. By construction of the
matroid Mω(L), these are precisely the bases of Mω(L). The facet complements
generate the minimal prime components of the Stanley-Reisner ideal.

The fact that the initial monomial ideal J is squarefree implies that the start
system has only regular isolated solutions. Since our algorithm relies heavily on
results from [16], we chose the name Proudfoot-Speyer homotopy.

Theorem 4.4. Let rank(L) = d + 1 and suppose that all flats I of M(L) ex-
cept I = {0, . . . ,n} are such that rank(A⊤

I ) = rank(LI). For generic u ∈ Cn+1,
the Proudfoot-Speyer homotopy from Algorithm 1 is optimal for solving (2),
meaning that the number of homotopy paths equals the number of solutions.

Proof. The number of homotopy paths in a Proudfoot-Speyer homotopy equals
the degree of RL. By Corollary 3.5, the conditions in the theorem imply that
this is also the number of solutions to the scattering equations.

Notice that Theorem 4.4 implies Theorem 1.2 (see Example 3.7). Our Julia
package ProudfootSpeyerHomotopy [2] implements Algorithm 1.

Example 4.5. In Table 1 we report timings for generic hyperplane arrangements
with several values for d and n. Our homotopy method is optimal for such
arrangements, see Theorem 4.4. In our experiment, the entries of the matrix L
are random uniformly distributed integer numbers in the interval [−20,20] and
the parameters u are random complex numbers drawn from a standard normal
distribution. The number of solutions in each case is

(n
d

)
. ⋄

5. Scattering equations on M0,m

In this section we focus on X ≃ M0,m, the configuration space of m distinct
points on the projective line P1. A point in M0,m is represented as a 2×m matrix(

1 1 1 . . . 1 0
0 1 x1 . . . xm−3 1

)
(8)
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d
n

6 7 8 9 10 11

2 0.07s 0.19s 0.50s 1.11s 2.90s 6s
3 0.076s 0.29s 1.20s 3.90s 13.85s 41.90s
4 0.041s 0.21s 1.26s 13.42s 30.16s 132s
5 0.017s 0.10s 0.54s 7.81s 41.15s 194s
6 0.02s 0.54 2.78s 23.50s 236s
7 0.03s 2.64s 9.94s 124s
8 0.04s 9.74s 59s

Table 1: Timing results (in seconds) for generic hyperplane arrangements.

whose 2× 2-minors pi j(x) are non-zero. The i-th column represents homoge-
neous coordinates of a point σi ∈ P1 and imposing that the minors are non-zero
means σi ̸= σ j for i ̸= j. The CHY (Cachazo-He-Yuan) scattering equations are

∂Ls

∂x1
= . . .=

∂Ls

∂xm−3
= 0, where Ls = log∏

i< j
pi j(x)si j . (9)

The exponents si j are called Mandelstam invariants in physics. They encode
the momenta of m particles involved in a scattering process. The columns of
the 2×m-matrix (8) are indexed by these particles. The CHY amplitude of the
scattering process is a global residue over the solutions of (9). It is a rational
function in the Mandelstam invariants si j. This CHY formalism motivates the
importance of solving scattering equations in theoretical particle physics [8, 13].

The above discussion models M0,m as a hyperplane arrangement comple-
ment. The arrangement is Am = V (∏i< j pi j(x)) in Cm−3. There are (m− 3)!
bounded regions in the corresponding real arrangement complement in Rm−3

[19, Proposition 1]. Theorem 2.2 tells us that (9) has (m−3)! solutions.
Let Lm be the matrix associated to the hyperplane arrangement Am. Since

the minors pi j are of the form xi, xi −1 or x j − xi for j > i, we can write Lm as

Lm =


0 −1 0 −1 0 · · · 0 −1 0 0 · · · 0
1 1 0 0 −1 · · · 0 0 −1 0 · · · 0
0 0 1 1 1 · · · 0 0 0 −1 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. · · ·

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 0 0 · · · 0 0 0 0 · · · −1
0 0 0 0 0 · · · 1 1 1 1 · · · 1

 . (10)

In words, Lm is a (m−2)× m(m−3)
2 matrix of rank m−2 that consists of m−3

rectangular blocks of sizes (m−2)×k for k = 2, . . . ,m−2. The top square k×k
submatrices of these blocks have −1 on the first upper diagonal, and their k-th
row consists of ones. The parameters d,n are d = m−3 and n = m(m−3)

2 −1.
In the spirit of previous sections, we translate (9) into linear equations on

the (m− 3)-dimensional reciprocal linear space RLm . We intersect RLm with
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the linear space Ls = {y ∈ Pn : Am diag(s)y = 0}, where Am consists of the last
m− 3 rows of Lm and s is a vector of Mandelstam invariants si j in a suitable
order. The degree degRLm gives the expected number of intersection points.

Proposition 5.1. The reciprocal degree of M0,m is degRLm = (m−3)(m−3)!.

To prove Proposition 5.1, we study the matroid M(Lm) in more detail.

Lemma 5.1. Let C be a circuit of M(Lm). Then C contains at most 2 elements
from each of the m−3 block columns of Lm as in (10).

Proof. Assume first that C contains at least three vectors of the form ω0 = ek,
ωi = ek − ei, and ω j = ek − e j from the k-th block, where i < j. Since C is a
circuit, C \{ωh} is independent for any h = 0, i, j. Additionally, C must include
other vectors with non-zero entries in rows i and j that are different from ωi,ω j.
The triples {ωi,ω j,e j − ei} and {ω0,ωh,eh} are 3-circuits of M(Lm), so no other
vector in C can be of the form e j − ei or eh, where h = i, j. Therefore, C must
include at least two other vectors of the form ±(e j − eℓ1),±(ei − er1), where
ℓ1 ̸= r1 /∈ {i, j,k} to prevent a 4-circuit {±(e j − eℓ1),±(ei − er1),ωi,ω j}. How-
ever, the span of the vectors in proper subsets of C now contains vectors of the
form ±(ep − eq) for any pair p,q ∈ {i, j,k, ℓ1,r1}. By a similar argument, to
eliminate non-zero entries in rows ℓ1 and r1, we need at least two more vectors
±(eℓ1 − eℓ2), ±(er1 − er2), where ℓ2 ̸= r2 and ℓ2,r2 /∈ {i, j,k, ℓ1,r1}. Iterating
this process leads to a contradiction: the matrix Lm has finitely many rows, so at
some step t, either ℓt or rt belongs to {i, j,k, ℓ1,r1, . . . , ℓt−1,rt−1}, and a proper
subset of C is linearly dependent.

If ω0 = ek − es for some s < i, then to cancel the non-zero entries in rows
s, i, j we need to add three distinct vectors, and at most one of them can be of the
form eh, while the other two must have non-zero entries in new distinct rows.
Thus, at every step, we introduce at least two additional rows of the matrix Lm,
which again leads us to a contradiction.

Proof of Proposition 5.1. By Proposition 4.3, the reciprocal degree degRLm is
equal to the number of bases of the matroid Mω(Lm), where ω is any linear
order on the ground set {0, . . . ,n}. Let us choose the order ω = (n, . . . ,1,0).
That is, for any subset of the ground set, the largest index is ω-minimal.

We begin by describing the ω-broken circuits of the matroid M(Lm). The 3-
circuits of M(Lm) are {e j − ei,ek − ei,ek − e j} and {ei,e j,e j − ei} for i < j < k.
The corresponding ω-broken circuits {e j −ei,ek −ei} and {ei,e j} for i < j < k
are 2-circuits of Mω(Lm). We prove by induction that any other ω-broken cir-
cuit contains a 2-broken circuit. Assume the claim holds for all (r−1)-broken
circuits. A circuit of columns vi1 , . . . ,vir+1 of Lm with i1 < .. . < ir+1 gives

vir+1 = λ1vi1 + . . .+λrvir (11)
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with BC = {vi1 , . . . ,vir} as an ω-broken circuit. Suppose the last vector vir+1 lies
in the k-th block, then its k-th entry is 1. This can only be cancelled if there is
another vector from the k-th block. By Lemma 5.1, this implies that there are
exactly 2 vectors vir+1 ,vir from the k-th block. Thus, vir appears in (11) with the
coefficient λr = 1. Moreover, vir+1 ̸= ek, since it cannot be the first column of
the block and we have vir+1 = ek − e j for some j < k.

We consider two cases. First, if vir = ek − es for s < j < k, then the vector
e j −es =−(vir+1 −vir) lies in the span of BC \{vir}. Therefore there is a circuit
C of size |C| ≤ r in BC \ {vir} ∪ {e j − es}. By the induction hypothesis, the
corresponding ω-broken circuit contains some 2-broken circuit. Then the whole
set BC \{vir}∪{e j − es} contains this 2-broken circuit. If this has the form
{ei,e j}, then it lies in the set BC \{vir} and thus in BC. If it has the form
{eq−ep,et −ep}, then either it lies in BC \{vir} or one of its elements is e j −es.
But then p = s and BC contains a 2-broken circuit {eq − es,vir = ek − es}.

In the second case when vir = ek, we apply a similar argument for the de-
pendent set BC \{vir}∪{e j}.

The matroid Mω(Lm) is defined by circuits that correspond to the indices
of the parallel pairs {e j − ei,ek − ei} and {ei,e j} for i < j < k. This matroid
can be represented by a matrix Lω = ( e1 e2 e1 e2 e3 ··· e1 ··· em−2 ) with the same
block structure as in (10), but its blocks are identity matrices. The bases of
Mω(Lm) consist of standard basis sets of the form {e1, . . . ,em−2}. There are
(m−3)(m−3)! ways to select such a basis from the columns of Lω .

As observed above, the ML degree of M0,m is (m−3)!. Proposition 5.1 says
that its reciprocal degree is (m−3) times larger. This means that for generic s,
there are (m−4)(m−3)! solutions on the boundary RLm \R◦

Lm
. We study these

boundary solutions using Theorem 3.4. We say that a flat of M(Lm) is of type
(ii) if it satisfies the condition (ii) from Theorem 3.4. A submatrix of Lm is said
to be equivalent to Lm−r if it is equal to Lm−r after deleting r zero rows.

Proposition 5.2. For each r = 0, . . . ,m−4, there are exactly
(m−3

r

)
type (ii) flats

of M(Lm) whose corresponding submatrix of Lm is equivalent to Lm−r.

Example 5.3. The matrix L6 contains exactly
(6−3

1

)
= 3 submatrices that are

equivalent to L5, such that removing the first row causes the rank to drop. These
submatrices are highlighted in yellow and correspond to the flats {0,1,2,3,4},
{2,3,5,6,8}, and {0,1,5,6,7} of M(L6), respectively.(

0 −1 0 −1 0 0 −1 0 0
1 1 0 0 −1 0 0 −1 0
0 0 1 1 1 0 0 0 −1
0 0 0 0 0 1 1 1 1

)
,

(
0 −1 0 −1 0 0 −1 0 0
1 1 0 0 −1 0 0 −1 0
0 0 1 1 1 0 0 0 −1
0 0 0 0 0 1 1 1 1

)
,

(
0 −1 0 −1 0 0 −1 0 0
1 1 0 0 −1 0 0 −1 0
0 0 1 1 1 0 0 0 −1
0 0 0 0 0 1 1 1 1

)
.

In addition, L6 contains exactly
(6−3

2

)
= 3 distinct submatrices equivalent to L4,
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such that removing the first row causes the rank to drop. These submatrices are
bold and colored in red, green, and blue. Their flats are {0,1}, {2,3}, {5,6}. ⋄

Proof of Proposition 5.2. We want to construct a submatrix K of Lm equivalent
to Lm−r. Selecting the columns of K means selecting all linear functions among

{xi : 1 ≤ i ≤ n}∪{x j − xi : 0 ≤ i < j ≤ m−3}, (12)

which involve only m− r− 2 of the variables x0 = 1,x1, . . . ,xm−3. Notice that
each such submatrix K is a flat of M(Lm) of rank m− r− 2. Indeed, the rank
is that of Lm−r, and any column not contained in K is a linear form among (12)
which involves a new variable, so adding it to K would increase the rank. We
claim that among these flats, the only flats of type (ii) are those containing the
variable x0 = 1. Recall that the flat K is of type (ii) if deleting the first row
decreases its rank. In terms of the linear forms (12), deleting the first row cor-
responds to setting x0 = 0. If x0 is not among the variables in our flat, then this
clearly does not change the rank, so the flat is of type (i). If x0 is among the
variables, then after setting x0 = 0 the rank is at most m− r−3 < m− r−2.

Among the flats K described above, precisely
( m−3

m−r−3

)
=
(m−3

r

)
many in-

volve x0. We have shown that these are the type (ii) flats equivalent to Lm−r.

Below, we write Ir(W ),W ∈
( [m−3]

m−r−3

)
for the flats of M(Lm) whose matrices

are equivalent to Lm−r. More precisely, W is an (m− r− 3)-element subset of
{1, . . . ,m−3} and Ir(W ) is the rank-(|W |+1) flat consisting of the linear forms

{xi : i ∈W}∪{x j − xi : j ∈W, i ∈ {0}∪W, i < j}.

Example 5.4. Since Ir(W )∩ Ir′(W ′) = Im−3−|W∩W ′|(W ∩W ′), the type (ii) flats
Ir(W ) form a sublattice inside the lattice of flats of M(Lm). This is illustrated for
M(L6) in Figure 2. The cover relations can also be inferred from Example 5.3.
For instance, the submatrix L4 colored in red corresponds to the flat {0,1}. It
appears as a submatrix of the L5 associated with the flat {0,1,2,3,4}, and it also
appears as a submatrix of the L5 corresponding to the flat {0,1,5,6,7}. ⋄

By Theorem 3.4 and the fact that XIr(W ) ≃M0,m−3−r, each flat Ir(W ) con-
tributes (m−3− r)! points to the intersection Ls ∩RLm . These points lie in the
open stratum R◦

(Lm)Ir(W )
corresponding to the flat Ir(W ). They are the solutions

to the equations A⊤
Ir(W )diag(s)yIr(W ) = 0, y ∈ R◦

(Lm)Ir(W )
. By the definition of the

flats Ir(W ), this system is equivalent to the equations (2) of the arrangement of
Lm−r. These are the scattering equations of M0,m−r, with particles indexed by
1,2,m and W . We predict the intersection multiplicity of the solutions.

Conjecture 5.5. The multiplicity of Ls ∩RLm at each of the (m−3− r)! points
in Ls ∩R◦

(Lm)Ir(W )
equals r!.



160 B. BETTI - V. BOROVIK - S. TELEN

I0({1,2,3}) = {0,1,2,3,4,5,6,7,8}

I1({1,2}) = {0,1,2,3,4} I1({2,3}) = {2,3,5,6,8} I1({1,3}) = {0,1,5,6,7}

I2({1}) = {2,3} I2({2}) = {0,1} I2({3}) = {5,6}

Figure 2: Hasse diagram of type (ii) flats Ir(W ) of M(L6).

Conjecture 5.5 is supported by computations for small m, and we believe
that the sublattice of flats in Example 5.4 may be useful for proving it. Assuming
our conjecture, we give a full description of the intersection Ls ∩RLm .

Theorem 5.6. Assume that Conjecture 5.5 holds. For generic s ∈ C
m(m−3)

2 , the
set Ls ∩RLm is finite and it decomposes as

Ls ∩RLm =
m−4⊔
r=0

⊔
W∈( [m−3]

m−3−r)

Ls ∩R◦
(Lm)Ir(W )

. (13)

The component (r,W ) in this decomposition consists of (m−3−r)! points with
multiplicity r!. The non-zero coordinates (yi)i∈Ir(W ) of these points are the solu-
tions to the scattering equations for the particles indexed by 1,2,m and W .

Proof. Conjecture 5.5 would imply that the component (r,W ) in the righthand
side of (13) consists of (m−3− r)! solutions with multiplicity r!. Therefore,

deg(Ls ∩RLm) ≥
m−4

∑
r=0

(
m−3

r

)
r!(m−3− r)! = (m−3)(m−3)!.

On the other hand, the lefthand side cannot exceed degRLm = (m−3)(m−3)!
(Proposition 5.1). Thus, we have found all points in Ls ∩RLm .

Via Theorems 3.4 and 5.6, Conjecture 5.5 would imply that the flats Ir(W )
are the only type (ii) flats of M(Lm). Conversely, if these are the only type (ii)
flats, then that implies the set-theoretic decomposition (13) via Theorem 3.4.

Example 5.7. For m = 6, the intersection Ls ∩RL6 contains six distinct so-
lutions of multiplicity one in R◦

L6
, whose coordinates are all non-zero. These

are exactly the solutions to the scattering equations on M0,6. In addition,
there are two roots of multiplicity one in each stratum I1(W ), and one root
of multiplicity 2 in each stratum I2(W ). In total, this accounts for deg RL6 =
(6− 3)(6− 3)! = 18 solutions. One can verify these numbers using our pack-
age ProudfootSpeyerHomotopy with the optional input return boundary

= true in the function solve PS [2]. ⋄
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Remark 5.8. Unlike in Example 1.1, we should really use a generic matrix A⊤
0

in the start system of a Proudfoot-Speyer homotopy for computing the intersec-
tion Ls ∩RLm , as prescribed by Algorithm 1. Picking ω = (9, . . . ,1) for m = 6,
the system A⊤diag(s)y = 0 has 8 solutions of multiplicity 1 and 5 solutions of
multiplicity 2 on V (J). The computation is found at [2]. Hence, the start solu-
tions are not regular, and not suitable for a homotopy continuation algorithm.

6. Hilbert regularity

The Proudfoot-Speyer homotopy in Section 4 is a numerical continuation method
for solving the scattering equations associated to any hyperplane arrangement. It
works inherently over the complex numbers, and uses floating point arithmetic.
This section offers a more algebraic view. Let K be a field of characteristic 0,
e.g., Q, R, C or Q(u0, . . . ,un). We assume that L has entries in K and study
the Hilbert regularity of the algebra K[RL]/Iu. We demonstrate through an ex-
ample how this determines the size of Macaulay matrices used for solving our
equations via Gröbner basis and resultant methods. We start with definitions.

Let R be a finitely generated Z-graded K-algebra: R =
⊕

q∈Z Rq. The reader
should think of R as the homogeneous coordinate ring K[V ] =K[x0, . . . ,xn]/I(V )
of a projective variety V ⊂ Pn(K). The Hilbert function of R is

HFR : Z−→ Z, HFR(q) = dimK(Rq).

A theorem by Hilbert [7, Theorem 4.1.3] says that this function agrees with
a polynomial for q ≫ 0. This is called the Hilbert polynomial of R, denoted
by HPR. If R = K[V ] for an equidimensional projective variety V ⊂ Pn(K) of
dimension d and degree k, then HPR(q) is a degree d polynomial in q with
leading term k

d! qd . The Hilbert regularity of R is the smallest degree from which
the Hilbert function and the Hilbert polynomial agree:

HReg(R) = min{i ∈ Z : HFR(q) = HPR(q) for every q ≥ i}.

All definitions above apply to the ring K[RL] = K[x0, . . . ,xn]/I(RL), where
I(RL) is generated by the polynomials fC in Theorem 2.5 with coefficients in K.

Proposition 6.1. The Hilbert regularity of RL satisfies HReg(K[RL]) ≤ 0 and
equality holds if and only if the matroid M(L) is connected.

Proof. The Hilbert regularity is read from the Hilbert series

HSK[RL](q) =
hK[RL](q)
(1−q)d+1
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as HReg(K[RL]) = deg(hK[RL])− (d + 1)+ 1, see [7, Proposition 4.1.12]. To
compute the degree of the numerator we observe that the Hilbert series is left
unchanged by a Gröbner degeneration ([6, Theorem 1.6.2]). Thus, the Hilbert
series of K[RL] is that of the Stanley-Reisner ring K[y0, . . . ,yn]/V (J). The nu-
merator has degree at most d by [4, Proposition 7.4.7(ii)] and [16, Section 2].
The degree is equal to d if and only if the beta invariant β (M(L)) of the matroid
is nonzero by [4, Proposition 7.4.7(iii)]. The latter condition is equivalent to the
matroid M(L) being connected [4, Proposition 7.4.8].

Let L⊂ Pn(K) be a linear space of dimension n−d, defined over K, so that
K[RL]/I(L) has Krull dimension 1. Let h ∈ K[RL]k be of degree k and such
that K[RL]/(I(L)+ ⟨h⟩) has Krull dimension 0. Geometrically, this means that
L∩RL consists of finitely many points, and h does not vanish at any of these.
To emphasize this geometric interpretation we write I(L∩Vh) = I(L)+ ⟨h⟩.

Theorem 6.2. Let L and h be as above. We have

(i) HReg(K[RL]/I(L))≤ d and HFK[RL]/I(L)(q) = degRL for q ≥ d,

(ii) HReg(K[RL]/I(L∩Vh)≤ d+k and HFK[RL]/I(L∩Vh)(q) = 0 for q ≥ d+k.

Proof. Since RL is arithmetically Cohen-Macaulay [16], the first statement is a
direct consequence of Proposition 6.1 and [3, Theorem 5.4]. The ideal I(L) is
generated by d linear forms f1, . . . , fd ∈ RL. The proof of [3, Theorem 5.4] is
easily adapted to the regular sequence f1, . . . , fd ,h to show (ii).

Theorem 6.2 implies Theorem 1.3. A detailed investigation of the implica-
tions of Theorem 6.2 for symbolic solutions to the scattering equations is beyond
the scope of this paper. We illustrate its use by means of an example, in which
we construct a Macaulay matrix to study the intersection Lu ∩RL ⊂ Pn(K).

Example 6.3. We turn back to Example 1.1. Let K = Q(u0,u1,u2,u3, t) be
the field of rational functions in the exponents u and a new variable t. Let
h = y2 − ty1. The determinant of the following 19×19 matrix

M =



u0 0 −u2 −2u3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 u0 0 0 0 −u2 −2u3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 u0 0 0 −2u3 2u3 −u2 0 0 0 0 0 −2u3 0 0 0 0 0
0 0 0 u0 0 −u2 u2 0 −2u3 0 0 0 0 −u2 0 0 0 0 0
0 0 0 0 u0 0 0 0 0 0 −u2 −2u3 0 0 0 0 0 0 0
0 0 0 0 0 u0 0 0 0 0 0 0 −u2 −2u3 0 0 0 0 0
0 0 0 0 0 0 u0 0 0 0 0 0 0 −u2 −2u3 0 0 0 0
0 0 0 0 0 0 0 u0 0 0 0 0 0 0 0 −u2 −2u3 0 0
0 0 0 0 0 u0 −u0 0 0 0 0 0 0 u0 0 0 −u2 −2u3 0
0 0 0 0 0 0 0 0 u0 0 0 0 0 0 0 0 0 −u2 −2u3
0 u1 −2u2 −u3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 u1 −2u2 −u3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 u1 −u3 u3 −2u2 0 0 0 0 0 −u3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 u1 −2u2 −u3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 u1 0 −2u2 −u3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 u1 0 0 −2u2 −u3 0 0
0 −t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −t 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −t 1 0 0 0 0 0 0 0 0


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satisfies (det M)(u, t) = P(u) ·Q(u, t), where Q(u, t) is an irreducible polyno-
mial of degree 3 in t. The roots of Q are algebraic functions in u, which are the
values of the rational function y2

y1
at the points in Lu ∩RL, i.e., the points satis-

fying (5). In particular, normalizing Q(u, t) to a monic polynomial in t, we read
the values of the elementary symmetric functions at the y2

y1
coordinates of the

scattering solutions from its coefficients. We justify this claim via Theorem 6.2.
The ring K[RL] is the quotient of K[y0,y1,y2,y3] by the principal ideal of a

cubic, seen in (5). The Hilbert function of K[RL] for q = 0,1,2,3 is given by
1,4,10,19. A basis for the 19-dimensional K-vector space K[RL]3 is

y3
0, y2

0y1, y2
0y2, y2

0y3, y0y2
1, y0y1y2, y0y1y3, y0y2

2, y0y2
3,

y3
1, y2

1y2, y2
1y3, y1y2

2, y1y2y3, y1y2
3, y3

2, y2
2y3, y2y2

3, y3
3.

(14)

By Theorem 6.2(ii), we can find 19 generators of (I(Lu)+ ⟨h⟩)3 such that their
expansions in the basis (14) of K[RL] give an invertible matrix over K. That
matrix is M. The first 16 rows represent a basis of I(Lu)3, which has codimen-
sion three in K[RL]3 by Theorem 6.2(i). If we specialize t to the value of y2

y1
at

a point y in Lu ∩RL, then h vanishes at y. Evaluating the basis monomials (14)
at y gives a non-zero kernel vector of M, which shows that (det M)(u, t) = 0.

We note that replacing h by h2(y)− th1(y) for any non-zero linear forms
h1,h2 ∈ K[RL]1 only changes the last three rows of M, and the roots of its deter-
minant are the values of h2/h1 at the three solutions. Increasing the degree of h
to k would increase the size of the matrix to HFRL(d + k), and allows to evalu-
ate more complicated rational functions and their traces. For instance, one can
evaluate the CHY amplitude by choosing h1 and h2 to be the numerator and de-
nominator of the toric Hessian determinant of Lu, as in [19, Theorem 13]. This
computation is implemented in the CHYamplitude.m2 file available at [2]. ⋄

Acknowledgements. We thank Emanuele Delucchi and Cynthia Vinzant for
helpful conversations and for useful pointers to the literature.

Funding statement: This project started at a workshop held at MPI MiS Leipzig, supported by

the European Union (ERC, UNIVERSE PLUS, 101118787). Views and opinions expressed are

however those of the authors only and do not necessarily reflect those of the European Union or

the European Research Council Executive Agency. Neither the European Union nor the granting

authority can be held responsible for them.



164 B. BETTI - V. BOROVIK - S. TELEN

REFERENCES

[1] David Bayer - Michael Stillman, A criterion for detecting m-regularity, Inven-
tiones mathematicae 87 no. 1 (1987), 1–11.

[2] B. Betti - V. Borovik - S Telen, MathRepo page ProudfootSpeyerDegeneration
https://mathrepo.mis.mpg.de/ProudfootSpeyerDegeneration, 2024.

[3] Barbara Betti - Marta Panizzut - Simon Telen, Solving equations using Khovanskii
bases, Journal of Symbolic Computation 126 (2025), 102340.

[4] Anders Björner, The homology and shellability of matroids and geometric lattices,
Matroid applications 40 (1992), 226–283.

[5] Paul Breiding - Sascha Timme, HomotopyContinuation.jl: A package for homo-
topy continuation in Julia, 2018.

[6] W. Bruns - A. Conca - C. Raicu - M. Varbaro, Determinants, Gröbner Bases
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[9] Jesús A De Loera - Bernd Sturmfels - Cynthia Vinzant, The central curve in linear
programming, Foundations of Computational Mathematics 12 (2012), 509–540.

[10] David Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry,
vol. 150, Graduate Texts in Mathematics, Springer, 2003.

[11] June Huh, The maximum likelihood degree of a very affine variety, Compositio
Mathematica 149 no. 8 (2013), 1245–1266.

[12] June Huh - Bernd Sturmfels, Likelihood Geometry, Combinatorial Algebraic Ge-
ometry, Combinatorial Algebraic Geometry, Springer International Publishing,
2014, p. 63–117.

[13] Thomas Lam, Moduli spaces in positive geometry, Le Matematiche 80 (1) (2025),
17–101.

[14] Peter Orlik - Hiroaki Terao, The number of critical points of a product of powers
of linear functions, Inventiones mathematicae 120 (1995), 1–14.

[15] OSCAR – Open Source Computer Algebra Research system, Version 1.0.4, 2023.
[16] Nicholas Proudfoot - David Speyer, A broken circuit ring., Beiträge zur Algebra
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