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UNIQUENESS OF MHV GRAVITY AMPLITUDES

J. KOEFLER - U. OKTEM - S. PARANJAPE - J. TRNKA - B. ZACOVIC

We investigate MHV tree-level gravity amplitudes as defined on the spinor-
helicity variety. Unlike their gluon counterparts, the gravity amplitudes do
not have logarithmic singularities and do not admit Amplituhedron-like
construction. Importantly, they are not determined just by their singu-
larities, but rather their numerators have interesting zeroes. We make a
conjecture about the uniqueness of the numerator and explore this feature
from a more mathematical perspective. This leads us to a new approach
for examining adjoints. We outline steps of our proposed proof and pro-
vide computational evidence for its validity in specific cases.

1. Introduction

Scattering amplitudes are mathematical functions that describe probabilities of
elementary particle interactions. In the textbook formulation of quantum field
theory, they are calculated as a sum of Feynman diagrams which provide a dia-
grammatic method to organize perturbative calculations. While this approach is
general and can be used to calculate amplitudes in any quantum field theory, the
efficiency of this method is problematically low for scattering of particles with
spin. This is due to the number of Feynman diagrams, representing complicated
rational functions, growing extremely fast with increasing multiplicity. In the
last few decades, it has become clear that Feynman’s picture often hides many
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surprising properties: extraordinary simplicity, hidden symmetries and fascinat-
ing connections to mathematical structures.

In the context of gluon interactions, the simplest tree-level Maximal-
Helicity-Violating (MHV) amplitude for an n−particle interaction is given by
the famous Parke-Taylor formula [28],

PTn =
1

⟨12⟩⟨23⟩⟨34⟩ . . .⟨n1⟩
. (1)

We can associate this function with the canonical form on the non-negative
Grassmannian Gr≥(2,n), which is the subset of the real Grassmannian Gr(2,n)
where all ordered maximal minors are positive [2]. Generalizing this leads to
a connection between cells in Gr≥(k,n), plabic graphs and on-shell diagrams
[1] which are terms in the BCFW recursion relations for scattering amplitudes
[12]. This further generalizes to all tree-level amplitudes and loop integrands
in planar N = 4 super Yang-Mills (SYM) theory in the context of the Ampli-
tuhedron [3]. However, no such picture is known for amplitudes of gravitons.
While the color-kinematics duality [7] suggests a connection between graviton
and gluon scattering, the geometric picture for graviton amplitudes and connec-
tions to mathematics have not been found yet, despite some promising avenues
[27, 29].

In this paper, we focus on the simplest MHV tree-level graviton amplitudes.
There are several representations of this amplitude in the literature [6, 8, 24, 26],
but one of particular interest to us is Hodges formula, Equation (3), which first
appeared in [21]. Let n ≥ 5 denote the number of particles involved in the
scattering process, and consider the symmetric n× n matrix (Φi j) for 1 ≤ i <
j ≤ n with entries given by

Φi j =

{
[i j]
⟨i j⟩ , i ̸= j

−∑k∈{1,...,n}\i
[ik]⟨xk⟩⟨yk⟩
⟨ik⟩⟨xi⟩⟨yi⟩ , i = j

, (2)

where the ⟨i j⟩, [i j] are variables, subject to relations specified later in Section
2, called spinors. The x,y ∈ {1, . . . ,n} are referred to as reference spinors (see
Section 2 for details). Note that the spinors are antisymmetric with respect to
the labels used, that is ⟨i j⟩=−⟨ ji⟩. Denote Φ

{i1,...,ik}
{ j1,..., jm} the matrix obtained from

Φ by deleting the rows i1, . . . , ik and columns j1, . . . , jm. Then, the MHV gravity
amplitude An (with the helicity factor stripped-off) is defined as the rational
function

An =
detΦR

C
(R)(C)

, (3)

where R = {a < b < c}, C = {d < e < f} are subsets of {1, . . . ,n}, with (R)
and (C) equal −⟨ab⟩⟨bc⟩⟨ac⟩ and − [de] [e f ] [d f ], respectively. We will later,
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in Section 2, show that for any choice of reference spinors x,y, deleted rows R
and columns C, the numerators Nn of the rational function An are related to each
other by momentum conservation and Plücker relations in the spinors. This is a
re-derivation of [21] in our new setting. Due to its physical interpretations as a
scattering amplitude, it is also known that Nn vanishes whenever ⟨i j⟩= [i j] = 0
for any 1 ≤ i < j ≤ n. We give a self-contained proof of this property later on.

Example 1.1. Let n = 5, R= {1,2,3}, and C = {3,4,5}. Then,

detΦ
R
C = det

[
[14]
⟨14⟩

[24]
⟨24⟩

[15]
⟨15⟩

[25]
⟨25⟩

]
and thus

N5 = ⟨15⟩⟨24⟩ [14] [25]−⟨14⟩⟨25⟩ [15] [24] . (4)

Notice that the expression does not contain the reference spinors x,y. It is
also clear that N5 vanishes whenever we set ⟨i j⟩ = [i j] = 0 for any (i, j) in
{(1,5),(2,4),(1,4),(2,5)}. To make the remaining zeros manifest, we may
apply momentum conservation relations as described in Equation (7). For ex-
ample, using the relations

⟨24⟩ [25] =−⟨14⟩ [15]−⟨34⟩ [35] and ⟨25⟩ [24] =−⟨15⟩ [14]−⟨35⟩ [34] ,

we can make the vanishing of Nn at ⟨34⟩= [34] = 0 and ⟨35⟩= [35] = 0 mani-
fest, as shown by

N5 = ⟨15⟩⟨24⟩ [14] [25]−⟨14⟩⟨25⟩ [15] [24]

= ⟨15⟩ [14] (−⟨14⟩ [15]−⟨34⟩ [35])−⟨14⟩ [15] (−⟨15⟩ [14]−⟨35⟩ [34])

= ⟨14⟩⟨35⟩ [15] [34]−⟨15⟩⟨34⟩ [14] [35] .

Similar substitutions can be made to manifest the remaining zeros.

Motivated by the example above we make the following conjecture, which is
the main content of our paper:

Conjecture 1.2. The n-point MHV gravity amplitude can be written in the form

An =
Nn

∏1≤i< j≤n⟨i j⟩
, (5)

where the numerator Nn is a polynomial in the brackets ⟨..⟩, [..]. In fact, Nn is
the unique polynomial (up to an overall factor) of bi-degree (n2−3n−6

2 ,n−3) in
⟨..⟩ and [..], that vanishes for any i < j ∈ {1, . . . ,n} if we send a pair of spinor
brackets to zero,

⟨i j⟩= [i j] = 0. (6)

We will refer to Section 2 for a mathematical concise version of this conjecture.
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From a certain perspective, Hodges formula and our uniqueness conjecture
is a generalization of the Parke-Taylor factor (1) for gluon amplitudes to gravi-
tons. In the case of gluons, the MHV tree-level amplitude is fixed by its poles
and requirement of logarithmic singularities, and the numerator is trivial. The
generalization to arbitrary gluon amplitudes leads us to the positive Grassman-
nian and the Amplituhedron. In this framework, all information is contained in
the boundary structure, reflected in the poles and singularities of the correspond-
ing canonical differential form. It has been known for a long time that gravity
amplitudes do not follow this pattern and the singularity structure is more com-
plicated, and yet the amplitude formulas are often remarkably simple [5, 9–
11, 13, 14, 16, 19]. Unlike for gluons, the explicit expressions have non-trivial
numerators and are not fully fixed only by the locations of their poles. From
the physics perspective, this corresponds to “poles at infinity”. Our conjecture
suggests that the behavior at infinity is also linked to the strong constraints on
the IR region, along the lines of [4, 14, 15, 19], possibly opening new avenues
in the search of the geometric picture for graviton amplitudes.

Our work contributes meaningful computational and theoretical advances
that pave the way toward proving this conjecture. The structure of this work is
as follows. In Section 2, we introduce the mathematical framework in which
this problem is set and reformulate our main conjecture. Section 3 shows the
steps we believe to be most promising for furnishing a proof of our conjecture
in full generality. Finally, Section 4 then provides explicit computational proofs
for small n, that is n = 5 and n = 6. We conclude with a brief discussion of the
shortcomings of our computational methodology for n ≥ 7.

2. Spinor-Helcity ideals and little group weights

The goal of this section is to lay out the mathematical framework in which we
can formulate Conjecture 1.2 more succinctly. We do so by expanding on the
setup of spinor-helicity varieties given in [23, Section 2]. First, let us fix two
copies of the complex Grassmannian Gr(2,n), with Plücker variables ⟨i j⟩ and
[i j] for all i < j ∈ {1, . . . ,n}, respectively. We refer to these variables as angle
and square spinors. Let Rn denote the polynomial ring in these spinors over C.
In this ring we have n2 momentum conservation relations, given as

∑
i∈{1,...,n}\{a,b}

⟨ai⟩[ib] = 0, (7)

for all a,b ∈ {1, . . . ,n}. Then, denote by In ⊂ Rn the ideal generated by these
relations and the quadratic Plücker relations in the angle and square spinors.
We can then identify In with the spinor-helicty ideal In,k,r from [23, Remark
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2.6], where k = 2 and r = 0, defining the corresponding spinor-helicity variety
SH(2,n,0). We will also denote the coordinate ring C[SH(2,n,0)] = Rn/In by
Qn, and the canonical projection Rn → Rn/In, sending elements in Rn to their
equivalence class by πIn . In this work, however, we are interested in the follow-
ing intersection with SH(2,n,0): Let Ji j ⊂ Rn be the monomial ideal generated
by ⟨i j⟩ and [i j] for all i < j ∈ {1, . . . ,n}, then we want to study a homogeneous
part of

J =
⋂

1≤i< j≤n

πIn(Ji j)⊂ Qn.

The homogeneous part we are interested in is dictated by a property of the spinor
variables that is called little group weight, which we are going to introduce next.
To that end, we need to understand the spinor variables better. Spinor variables
were introduced to make manifest the on-shell condition for massless particles,
see [17] for details. More precisely, for a particle labeled by i with complex mo-
mentum pi in 1+3 kinematic space, we want a set of variables which trivialize
pi · pi = (p0

i )
2 − (p1

i )
2 − (p2

i )
2 − (p3

i )
2 = 0, where pk

i is the k-th entry of pi. We
can encode each pi in a complex 2×2 matrix as

Pi =

[
p0

i + p3
i p1

i − ip2
i

p1
i + ip2

i p0
i − p3

i

]
.

Then, the on-mass-shell condition for massless particles pi · pi = 0, is satisfied
if and only if that matrix is rank deficient, as det(Pi) = pi · pi = 0. In this case
we can write λiλ̃i = Pi for some suitable λi ∈ C2 and λ̃i ∈ (C2)∨. The spinor
variables ⟨i j⟩ and [i j] are the determinants of the 2× 2 matrices given by λiλ j

and λ̃iλ̃ j, respectively. Upon rescaling λi by a non-zero complex parameter ti,
while simultaneously rescaling λ̃i by t−1

i , the matrix λiλ̃i = Pi remains invari-
ant. This is called little group scaling invariance. The MHV numerator Nn is
then a function of the spinors that transforms homogeneously under this little
group scaling. That is, Nn(λ1, . . . , tiλi, . . . ,λn) = tr

i Nn(λ1, . . . ,λi, . . . ,λn) for all
i ∈ {1, . . . ,n}, where r depends on the number n of particles involved in the
process. This gives rise to a multi-grading on Rn.

For our purposes, a Zm-graded polynomial ring, is a ring S = C[x1, . . . ,xn]
that decomposes as a direct sum of additive groups

S =
⊕

v∈Zm

Sv

such that we get an inclusion

SvSw ⊆ Sv+w,
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for all v,w ∈ Zm. Therein, the homogeneous parts are denoted by Sv, which
are the subsets of S consisting of elements of degree v ∈ Zm. The degree is
induced by a degree map deg : Zn

≥0 → Zm, which, for each u = (u1, . . . ,un)
corresponding to the monomial xu1

1 xu2
2 · · ·xun

n , assigns deg(u) = v ∈ Zm . More
specifically, in this work, the degree map is given by

w : Z2(n
2)

≥0 → Z2+n, ⟨i j⟩ 7→ e⟨⟩+ ei + e j, [i j] 7→ e[]− ei − e j, (8)

where (e⟨⟩,e[],e1, . . . ,en) denotes the ordered standard basis of Zm and we im-
plicitly used the identification of the exponent vector u with its corresponding
element in Rn. For example, when n = 5, we write

w(⟨13⟩⟨24⟩ [45]) = (2,1,1,1,1,0,−1) ∈ Z7.

In other words, the grading keeps track of the number of appearances of each
label 1, . . . ,n in ⟨..⟩ or [..], and the numbers of spinor brackets. This degree map
w gives rise to a Z2+n grading on Rn, which refines the natural bi-grading with
respect to ⟨..⟩ and [..]. Moreover, this grading can be represented as a grading by
a (n+2)× 2

(n
2

)
matrix with non-negative integer entries. This ensures that for

all α ∈ Z2+n the homogeneous parts (Rn)α are of finite dimension as C-vector
spaces, see e.g. [25, Section 8.1]. We say an ideal J ⊂ Rn is homogeneous if
for every element f ∈ J all of its homogeneous parts are in J. For α ∈ Z2+n

we denote by (J)α the intersection of J with (Rn)α . Then, clearly In is a homo-
geneous ideal in Rn with this grading, therefore the quotient Rn/In inherits the
same grading. Finally, let the total degree of f ∈ Rn be defined as sum of the
first two coordinates of w( f ); in Physics this is referred to as the mass dimension
of f . (As In is also homogeneous wrt. to the grading derived from the first two
entries of w( f ), the total degree is well defined for elements in the quotient ring
Rn/In as well.) As the numerator Nn of the MHV gravity amplitude An is known
to carry particular mass dimension and little group weight in all labels 1 ≤ i ≤ n,
we can now encode these physical parameters in the following multidegree:

d(n) :=
(

1
2
(n2−3n−6),n−3,n−5, . . . ,n−5

)
∈ Z2+n.

That is to say, Nn will be a homogeneous polynomial of degree d(n) ∈ Z2+n.
This formalism allows us to reformulate Conjecture 1.2.

Conjecture 2.1. Fix n ≥ 5, let In, Rn and J as above. Then, the C-vector space
Jd(n) is generated by a unique element, i.e. dimC(Jd(n)) = 1.

There are a few comments in order.
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Remark 2.2. .

• In order for this unique generator to be compatible with its physical inter-
pretation as a scattering amplitude, a priori, it would seem appropriate to
place an additional constraint on this basis element; namely requiring it
to be anti-symmetric under the exchange of any two labels 1 ≤ i < j ≤ n.
However, as we will see this requirement is redundant.

• We surmise that the conjecture holds true when coarsening the grading to
the natural Z2-grading which records only the numbers of spinor brack-
ets. We chose to maintain the finer Z2+n-grading, however, in order to
expedite the computations carried out in Section 4.

• We can see that Conjecture 1.2, is related to Conjecture 2.1 by the corre-
spondence theorem, as the former amounts to saying that Nn is the lowest
total degree generator of the ideal

⋂
1≤i< j≤n(Ji j+ In) in Rn. Remarkably, a

similar conjecture can be made for the adjoint of polytopes, which is the
numerator of their canonical form when considered as positive geome-
tries. Therefore, Conjecture 2.1 constitutes a novel approach to study-
ing the structure of the adjoint hypersurface. We also believe that both
formulations are equivalent descriptions of the problem, as suggested by
our computational results in Section 4. Since we have both of these for-
mulations of our conjecture, in an effort to streamline notation, we will
henceforth refer to the equivalence classes in Qn as polynomials.

Naturally, we want that Nn is a contender for the unique generator in Con-
jecture 2.1. The following Proposition asserts this.

Proposition 2.3. The numerator Nn of the MHV gravity amplitude An is a basis
element of Jd(n) ⊂ Qn.

Proving this claim amounts to showing that Nn has a well defined equiva-
lence class in the quotient Qn = Rn/In, which is independent of the choices of
reference spinors x,y in Equation (3) and of the sets R,C; and also that Nn is
contained in Jd(n). We start with a partial result for the former.

Lemma 2.4. For any choice of x,y ∈ {1, . . . ,n} the numerator of Φii, as in (2),
has a well defined equivalence class in Qn.

Proof. For a choice of x and y, we write Φii(x,y) to emphasize the dependence
of Φii on x and y. We start by fixing i = 1, x = n−2, y = n−1, and z = n. So we
need to show that the numerators of Φ11(n−2,n−1) and Φ11(n−2,n) are equal
in Qn. More precisely,

n

∑
k=2

[1k]⟨n−2k⟩⟨n−1k⟩∏
j ̸=k

⟨1 j⟩=
n

∑
k=2

[1k]⟨n−2k⟩⟨nk⟩∏
j ̸=k

⟨1 j⟩ ∈ Qn. (9)
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First, notice that the summand of the right-hand-side for k = n−1 is given as

[1n−1]⟨n−2n−1⟩⟨nn−1⟩ ∏
j ̸=n−1

⟨1 j⟩

=⟨nn−1⟩ ∏
j ̸=n−1

⟨1 j⟩
(

∑
ℓ∈{2,...,n}\{n−2,n−1}

[1ℓ]⟨ℓn−2⟩
)
,

where we used momentum conservation. For any fixed ℓ ̸= 1,n−2,n−1 these
summands are

⟨nn−1⟩ ∏
j ̸=n−1

⟨1 j⟩ [1ℓ]⟨ℓn−2⟩=−⟨1ℓ⟩ [1ℓ]⟨ℓn−2⟩⟨n−1n⟩ ∏
j ̸=n−1,ℓ

⟨1 j⟩ . (10)

On the other hand, we can use the Plücker relations for the left-hand-side in
Equation (9), such that for each k ̸= n we obtain

∏
j ̸=k

⟨1 j⟩ [1k]⟨n−2k⟩⟨n−1k⟩

=− ∏
j ̸=k,n−1

⟨1 j⟩ [1k]⟨n−2k⟩(⟨1k⟩⟨n−1n⟩−⟨1n−1⟩⟨kn⟩)

= ⟨1k⟩ [1k]⟨kn−2⟩⟨n−1n⟩ ∏
j ̸=k,n−1

⟨1 j⟩− [1k]⟨n−2k⟩⟨nk⟩∏
j ̸=k

⟨1 j⟩ .

Upon inspection, we can see that the first term cancels the term in Equation (10)
and the second one cancels a single term in Equation (9) for any ℓ = k ̸= n.
Thus, the claim follows for this choice of x,y and z. The proof for any other
choice is analogous. The overall claim then follows by making two consecutive
swaps of reference spinors.

Next, we make the observation about the vanishing of Nn, when restricting
to ⟨i j⟩= [i j] = 0 for any i < j ∈ {1, . . . ,n}, as alluded to in Example 1.1, more
rigorous.

Lemma 2.5. Fix x ̸= y ∈ {1, . . . ,n}. Then, for all i < j ∈ {1, . . . ,n} such that
{i, j}∩{x,y}= /0, the numerator Nn of the MHV amplitude An equals

Nn = ⟨i j⟩r1 +[i j]r2,

where r1,r2 ∈ Rn.

Proof. Fix i, j,x and y as above. Then, notice that [i j] and ⟨i j⟩ appear only
in Φi j = Φ ji and in one of the summands of Φii and Φ j j, more precisely they
appear as [i j]⟨x j⟩⟨y j⟩

⟨i j⟩⟨xi⟩⟨yi⟩ and [i j]⟨xi⟩⟨yi⟩
⟨i j⟩⟨x j⟩⟨y j⟩ , respectively. Notice also that ⟨i j⟩ and [i j]
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always appear together as [i j]
⟨i j⟩ . Now, fix R= C ⊂ {1, . . . ,n} of cardinality 3 and

such that {i, j}∩R = /0. This will ensure ΦR
C contains all entries Φii,Φi j,Φ ji,

and Φ j j. Relabeling the row and column indices {1, . . . ,n}\R and {1, . . . ,n}\C
by 1, . . . ,n−3 allows us to write det(ΦR

C ) as:

detΦ
R
C = ∑

σ∈Sn−3

sgn(σ)(ΦR
C )1,σ(1) · · ·(ΦR

C )n−3,σ(n−3),

where Sn−3 denotes the symmetric group on n−3 elements, and sgn(σ) its sign.
By our choice of {i, j} ∩R = /0 and the observations above, each summand

admits a factor [i j]k

⟨i j⟩k , for some k ∈ {0,1,2}. The permutation σi′ j′ , which in-

terchanges the re-labeled i′-th and j′-th columns containing Φi j and Φ ji, will
induce a summand of the form

(−1) · [i j]2

⟨i j⟩2 · ∏
ℓ∈[n]\R∪{i′, j′}

(ΦR
C )ℓ,σ(ℓ).

Hence, the highest power of [i j]
⟨i j⟩ appearing in det(ΦR

C ) is two. The only other

summand which is quadratic in [i j]
⟨i j⟩ contains additional factors in the reference

spinors, hence the term above cannot be eliminated by any other summands.
Clearing denominators of det(ΦR

C ) will scale each summand by ⟨i j⟩2 , where

⟨i j⟩2 ·
(
[i j]
⟨i j⟩

)k

= ⟨i j⟩2−k · [i j]k .

Hence, what remains in the numerator is a sum of products each divisible by
⟨i j⟩ or [i j], since either 2− k or k for k ∈ {0,1,2} is strictly positive.

This allows us to prove the main Proposition of this section.

Proof of Proposition 2.3. This proof is essentially a reformulation of Hodges
proof sketch in [21]. First, note that d(n) = deg(Nn). Then, using Lemma 2.5,
we know that, for a suitable choice of R, C and the reference spinors x and
y, the MHV numerator Nn ∈ Rn can be written as Nn = ⟨i j⟩r1 + [i j]r2 for all
i < j ∈ {1, . . . ,n}, thus πIn(Nn) ∈ Ji j. By Lemma 2.4, it remains to show that
Nn gives a well defined equivalence class in Qn, independent of the choice of R
and C. To that end, we first construct another n×n matrix Ψ from Φ, by multi-
plying the i-th row with ⟨1i⟩⟨2i⟩ for all 1 ≤ i ≤ n, that is Ψi j = ⟨1i⟩⟨2i⟩Φi j. By
construction, the column sums of Ψ are zero, as −∑ j ̸=i Ψi j = Ψii. We also note
that the first two rows are zero since ⟨11⟩ = ⟨22⟩ = 0. Next, we want to show
that detΨ

{1,2,3}
C = −detΨ

{1,2,4}
C . To this end, it suffices to show detΨ

{12}
C = 0,
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where Ψ is the matrix obtained from Ψ by summing the third and fourth rows.
But this follows from the fact that

0 =
n

∑
i=1

Ψi j =
n

∑
i=3

Ψi j =
n

∑
i=3

Ψi j,

for all 1≤ j ≤ n. In turn, this implies ⟨14⟩⟨24⟩detΦ
{1,2,3}
C =−⟨13⟩⟨23⟩Φ

{1,2,4}
C .

The proof for any other choice of R and C, where only one label was swapped is
analogous. By stringing multiple of these transpositions of labels together, we
have just shown that the numerator Nn is independent of the choice of R and C.
Therefore, we get a well defined element Nn ∈ Jd(n) ⊂ Qn.

Example 2.6. Let n = 5. Then, I5 cuts out the irreducible variety SH(2,5,0) in
Gr(2,5)×Gr(2,5) with their Plücker embedding P9 ×P9. In turn, the intersec-
tion with J cuts out a reducible variety of total degree 420 and dimension 8. Its
irreducible components are precisely given by the vanishing loci of the ideals
Ji j ⊂ R5/I5. Moreover, we have dimC(Jd(5)) = 1 with the generator

N5 = ⟨15⟩⟨24⟩ [14] [25]−⟨14⟩⟨25⟩ [15] [24] .

Notice that this element is the one from Example 1.1 and it is anti-symmetric
upon swapping the labels, a feature that emerges naturally from our description
as the intersection of ideals. See Section 4 for a computational derivation of the
result.

Remark 2.7. Later on we are going to make use of the parametrization of the
spinor-helicity variety SH(2,n,0), which is also due to [23] and the fact that
SH(2,n,0) is isomorphic to the two step flag variety Fl(n,n−2;Cn). This can
be seen as follows. First, by definition we have

SH(2,n,0) = {(V,W ) ∈ Gr(2,n)×Gr(2,n) | dim(V ∩W⊥)≥ 2},

where W⊥ denotes the orthogonal complement of W in Cn with respect to
the standard inner product. Then, by passing from W to W⊥ we can identify
SH(2,n,0) with a subvariety in Gr(2,n)×Gr(n−2,n), with points (V,W⊥) such
that V ⊂ W⊥. Moreover, we can describe its Plücker coordinates as follows.
Take an (n−2)× n matrix X with entries given by formal variables xi j, that is
X = (xi j). For, {i1, i2} ⊂ {1, . . . ,n} the ⟨i1i2⟩ Plücker coordinate of V is the mi-
nor of X given by the determinant of the first two rows and the column labeled
by i1 and i2. Similarly, the [ j1 . . . jn−2] Plücker of W⊥ is the determinant of the
submatrix of X given by taking the first n−2 rows and the columns labeled by
{1, . . . ,n} \ { j1 . . . jn−2} and multiplying it with (−1) j1+...+ jn−2 . Then, we can
use [22, Lemma 3.3] (see also [20]) to express this in terms of Plückers of W .
That is, if {s, t} is the complement of { j1, . . . , jn−2} then

[st] (W ) = (−1) j1+...+ jn−2 [ j1 . . . jn−2] (W⊥).
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3. Special kinematics

In this section, we outline the steps which we believe will yield a proof of
Conjecture 2.1. These steps heavily rely on intuition derived from the physi-
cal interpretation of Nn as the numerator of the MHV gravity amplitudes and
the corresponding factorization properties. We proceed by induction on n ≥ 5,
where the recursion is established by restricting to special kinematics, which
will be defined later in this section. The base cases, n = 5 and n = 6 are derived
computationally in Section 4.

We start by endowing Rn with a slightly different Z2+(n−1) grading by defin-
ing a degree map

w′ : Z2(n
2)

≥0 → Z2+(n−1),

with w′(⟨i j⟩) = w(⟨i j⟩), as in Equation (8), where, again, we identify the ex-
ponent vector u with its corresponding element in Rn for i, j ∈ {1, . . . ,n}. And
also w′(⟨in⟩) = e⟨⟩+ ei + en−1 and w′(⟨n−1n⟩) = e⟨⟩+ 2en−1; analogously for
the square spinors. Therefore, the grading now counts each appearance of the
label n toward the weight in label n−1. Notice that this grading is a coars-
ening of the one introduced in Section 2. To account for this, we define the
slightly modified target multidegree d′(n) given by d′(n)i = d(n)i for i ≤ n and
d′(n)n+1 = 2d(n)n+2. Thus, Nn ∈ Jd′(n). Next, we introduce the notion needed
for our induction argument. Denote by Kn−1,n ⊂ Rn/In the special kinematics
ideal at n-points given by

Kn−1,n = (⟨n−1n⟩)+
n−1

∑
i=1

(⟨in−1⟩−αn−1,n ⟨in⟩) ,

where αn−1,n ∈ C is a non-zero constant. In Physics this correspond to the hard
kinematic limit, setting |n−1⟩ = αn−1,n|n⟩. Next, define the special kinematics
ring QK

n = Rn/(In +Kn−1,n) = πK(Qn), where πK is the canonical projection
from Qn → QN/Kn−1,n. QK

n retains the new Z2+(n−1) grading as In and Kn−1,n
are homogeneous with respect to that grading on Rn. Projecting down to the
special kinematics ring will be the recursion step in our induction. Denote by
JK

i j the image of the ideal Ji j ⊆ Qn in QK
n under πK . We then obtain

JK
i j =


(⟨i j⟩ , [i j]) if 1 ≤ i < j ≤ n−2,
(⟨in−1⟩ , [in−1]) if 1 ≤ i ≤ n−2, j = n−1,
(⟨in−1⟩ , [in]) if 1 ≤ i ≤ n−2, j = n,
([n−1n]) if i = n−1, j = n.

(11)

We also let JK
n :=

⋂
1≤i< j≤n JK

i j ⊂ QK
n , and similarly Jn =

⋂
1≤i< j≤n Ji j in Qn.

With the setup established, we can now state a series of conjectures which to-
gether may furnish a proof of Conjecture 2.1. We start with an assumption on
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how the canonical projection πK behaves with respect to taking the intersections
of Ji j.

Conjecture 3.1. The canonical projection map πK commutes with taking inter-
sections of the ideals Ji j for all i < j ≤ n. More precisely,

πK(Jn) =

( ⋂
i< j≤n−2

JK
i j

)
· ∏

1≤i≤n−2
JK

in ∩ JK
in−1

This result is desirable because it is generally easier to describe elements
in a product of ideals rather than in an intersection. In fact, if Conjecture 3.1
holds, each element in πK(Jn) admits a factor given element in JK

in−1 ∩ JK
in. This,

in turn, allows us to find a designated factor of any polynomial in f ∈ πK(Jn),
as the following Proposition asserts for 5 ≤ n ≤ 7.

Proposition 3.2. Let 5 ≤ n ≤ 7 and Jn as above. Then, for any element f̃ in
(Jn)d′(n) we have πK( f̃ ) = f with

f ∈ (Pn) ·

( ⋂
i< j≤n−2

JK
i, j

)
⊂ QK

n

where Pn = [n−1n] ·∏1≤i≤n−2 ⟨in⟩ ∈ QK
n .

Proof. We start with the case n = 7. Set G = {g1, . . . ,gs} to be a generating set
for the ideal

∏
1≤i<6

JK
i7 ∩ JK

i6.

By Conjecture 3.1 we then know that any f ∈ JK
7 can be written as

f =

(
∑

gi∈G
gi fi

)
·h

for some fi ∈ QK
7 and h ∈

⋂
i< j≤5 JK

i j . It is clear that every generator gk is of the
form

g1 = ∏
1≤i<6

⟨i7⟩ , gk = ∏
i∈I

⟨i7⟩∏
j∈J

[ j7] [ j6]

for some suitable subsets I and /0 ̸= J of [5]. Now consider a summand gk fk ·h.
It is of homogeneous degree (11,4,2,2,2,2,2,4), which implies that fk ·h must
be of degree (11−|I|,4− 2|J|,2,2,2,2,2,4)+ eI − eJ , where eI := ∑i∈I ei and
similarly eJ := ∑ j∈J e j. Suppose, without loss of generality, that J = {1} and
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fk ·h ̸= 0. Then, fk ·h must be of degree (7,2,4,2,2,2,2,4), which implies that
fk · h = ⟨17⟩ · r, for r ∈ QK

n , as there are only 7 angled spinors on which to
distribute the 8 labels in 1 and 6. The reasoning for the other cases is analogous.
It follows that

f = [67] · ∏
1≤i<6

⟨i7⟩ ·h,

as claimed. The cases for n = 5 and n = 6 are analogous, and additionally, with
the method described in Section 4, these can be verified independently.

We conjecture that such a result holds in general for n ≥ 8.

Conjecture 3.3. Let n ≥ 5, and Jn ⊂ Qn as above. Then, for any element f̃ in
(Jn)d′(n) we have πK( f̃ ) = f with

f ∈ (Pn) ·

( ⋂
1≤i< j≤n−2

JK
i, j

)
⊂ QK

n ,

where Pn = [n−1n] ·∏1≤i≤n−2 ⟨in⟩ ⊂ QK
n .

In the recursion step of the induction, there is a need to relate the intersection
of ideals in Qn to Qn−1. This is established as follows.

Conjecture 3.4. There is an induced isomorphism( ⋂
1≤i< j≤n−1

Ji j

)
d(n−1)

∼=

( ⋂
1≤i< j≤n−2

JK
i j

)
d′(n−1)

,

between vector spaces in Qn−1 and the special kinematics ring QK
n respectively.

It sends ⟨i j⟩ 7→ ⟨i j⟩ for all i < j < n, similarly [i j] 7→ [i j] for all i < j ≤ n−1 and
[in−1] 7→ [in]+ [in−1].

As the final ingredient, we need that the lift from the special kinematics ring
QK

n into Qn is unique.

Conjecture 3.5. The canonical projection πK : Qn → QK
n induces a linear iso-

morphism π∗
K : (Jn)d′(n) → (JK

n )d′(n).

Then, under the assumption of Conjectures 3.1-5, we can prove Conjecture
2.1 as follows.

Proof of Conjecture 2.1. By Conjecture 3.5 it suffices to show that Ñn ∈ QK
n is

unique. We proceed by induction on n. Let n = 5. Then, the claim follows by
computation in Macaulay2, see Section 4. Next, let n ≥ 5 be arbitrary but fixed.
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That is, suppose that Nn−1 is the unique basis element of (Jn−1)d(n−1) ⊂ Qn−1.

By Conjecture 3.1 any element f̃ ∈ Jn with f = πK( f̃ ) can be written as f = p ·g,
where f ∈ ∏1≤i≤n−2 JK

in ∩ JK
in−1 and g ∈

⋂
1≤i< j≤n−2 JK

i, j. If f̃ is additionally of
homogeneous degree d′(n), then by Conjecture 3.3 we actually have f = Pn ·g.
Notice, that w′( f ) = d′(n) since πK preserves the grading. Moreover, as Pn is of
homogeneous degree

w′(Pn) = (n−2)e⟨⟩+ e[]+ e1 + . . .+ en−2,

we must have w′(g) = d′(n)−w′(Pn) = d(n−1). Therefore, using the isomor-
phism of Conjecture 3.4 we have g = Nn−1, by the induction assumption. That
is to say, f = Pn ·N′

n−1 where N′
n−1 denotes the image of Nn−1 under that iso-

morphism. Therefore, f is in particular unique and lifts uniquely to Qn by Con-
jecture 3.5.

Example 3.6. We want to demonstrate explicitly what the proposed steps of the
proof look like for n = 6. Consider the 6-point numerator given by Hodges
formula, Equation (3), for the choices R = {1,2,5} and C = {3,4,6}. Let
Sk(i1i2 . . . ik) denote the group of permutations of the labels i1, i2, . . . , ik and |σ |
the sign of the permutation σ ∈ Sk(i1i2 . . . ik). We compute:

N6 = ∑
σ∈S3(125)

sgn(σ) [13] [24] [56]⟨23⟩⟨35⟩⟨14⟩⟨45⟩⟨16⟩⟨26⟩

= [56] · ∑
σ∈S2(12)

sgn(σ) [13] [24]⟨23⟩⟨14⟩⟨16⟩⟨26⟩⟨35⟩⟨45⟩

+ ⟨56⟩ · ⟨26⟩ · ∑
σ∈S2(25)

sgn(σ) [16] [23] [45]⟨13⟩⟨14⟩⟨35⟩⟨24⟩

−⟨56⟩⟨16⟩ · ∑
σ∈S2(15)

sgn(σ) [26] [13] [45]⟨23⟩⟨35⟩⟨14⟩⟨24⟩ .

Then, on special kinematics, that is taking the image of N6 under the projec-
tion map πK we obtain:

πK(N6) = [56]⟨16⟩⟨26⟩⟨35⟩⟨45⟩
(
[13] [24]⟨23⟩⟨14⟩− [14] [23]⟨13⟩⟨24⟩

)
.

Firstly, notice that the factor P6 = [56] ·∏1≤i≤4 ⟨i6⟩ from Conjecture 3.3 appears
here. We also see that the term in the parenthesis N′

5 is the image of N5 under

R5 ↪→ R6
πI6−→Q6

πK−→QK
6 , where, in particular, we use the proposed isomorphism

of Conjecture 3.4. Notice that we have

N′
5 =[13] [24]⟨23⟩⟨14⟩− [14] [23]⟨13⟩⟨24⟩
=⟨23⟩⟨46⟩ [24] [35]−⟨24⟩⟨36⟩ [23] [45]

+ ⟨23⟩⟨46⟩ [24] [36]−⟨24⟩⟨36⟩ [23] [46]

=⟨23⟩⟨46⟩ [24] ([35]+ [36])−⟨24⟩⟨36⟩ [23] ([45]+ [46])
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in QK
6 which is clearly contained in the ideal (⟨46⟩ , [45]+ [46]) ⊂ QK

6 . This in
agreement with the physical phenomenon that, for |n⟩= α|n−1⟩, the image Ñn

of Nn under the canonical projection πK exhibits new zeros, corresponding to
internal momenta. Put algebraically, we have

πK(N6) ∈
⋂
i≤4

(
⟨i5⟩ , [i6]+ [i5]

)
⊂ QK

6 ,

as expected.

4. Computational results

We implement a procedure to compute (Jn)d(n) in Macaulay2, [18], for n = 5,6
in order to deduce Conjecture 2.1 in both cases. Let < be the graded reverse
lexicographic order on Rn, and recall that In denotes the spinor-helicity ideal.
We compute the standard monomial basis Bn of (Rn/In)d(n) = (Qn)d(n) with
respect to < and obtain

|Bn|=

{
16 n = 5,
780 n = 6.

Next, we take a generic linear combination

g = ∑
b∈Bn

cbb

in the polynomial ring C[{cb | b∈Bn}] generated by formal variables cb. Denote
πJi j : Qn → Qn/Ji j the quotient map g 7→ g mod Ji j. Then, πJi j(g) = 0 gives
linear conditions in the cb. Collecting these conditions and organising them into
the coefficient matrix with respect to the ordered basis (c1, . . . ,c|Bn|) results in a
(20× 16) matrix X5 and a (2951× 780) matrix X6, both with entries in Z, for
n = 5 and n = 6 respectively. Direct computations yield

dim(ker(X5)) = dim(ker(X6)) = 1.

In fact, ker(X5) = N5 and ker(X6) = N6, which is consistent with Lemma 2.5,
establishing Conjecture 2.1 in both cases.

Unfortunately, both generic Gröbner basis methods as well as the procedure
described above fail for higher n. This is mainly because the combinatorics
of the quotient ring Qn become completely intractable. Using the Mandelstam
invariants si j = ⟨i j⟩[i j], we were able to find a combinatorial description of
bases for (Q5)d(5) and (Q6)d(6), but already at n = 7 such a description becomes
infeasible; a basis for (Q7)d(7) admits around 107 elements. In combination with
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the theoretical framework laid out in Section 2–which mostly reduces to linear
algebra–these impediments starkly highlight the necessity of better tools to deal
with such complexity.
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