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THE POSITIVE ORTHOGONAL GRASSMANNIAN

YASSINE EL MAAZOUZ - YELENA MANDELSHTAM

The Plücker positive region OGr+(k,2k) of the orthogonal Grassman-
nian emerged as the positive geometry behind the ABJM scattering am-
plitudes. In this paper we initiate the study of the positive orthogonal
Grassmannian OGr+(k,n) for general values of k,n. We determine the
boundary structure of the quadric OGr+(1,n) in Pn−1

+ and show that it
is a positive geometry. We show that OGr+(k,2k + 1) is isomorphic to
OGr+(k+1,2k+2) and connect its combinatorial structure to matchings
on [2k+ 2]. Finally, we show that in the case n > 2k+ 1, the positroid
cells of Gr+(k,n) do not induce a CW cell decomposition of OGr+(k,n).

1. Introduction

Let n ≥ k be positive integers and denote by Gr(k,n) the Grassmannian of k-
dimensional subspaces of Cn. The positive Grassmannian Gr+(k,n) is the semi-
algebraic set in Gr(k,n) where all Plücker coordinates are real and nonnegative.
The matroid stratification of the Grassmannian [11] induces a natural decompo-
sition of Gr+(k,n) into the so-called positroid cells. These cells can be indexed
by combinatorial objects like Grassmann necklaces, decorated permutations,
plabic graphs and Le diagrams, see [16].
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After Postnikov’s landmark paper [16], the positive Grassmannian became
a rich object of research in algebraic combinatorics [9, 17, 19]. Its study accel-
erated, in recent years, largely due to its unexpected and profound connection
to Physics, in particular shallow water waves [1, 14] and scattering amplitudes
in quantum field theory [2–4].

The object of study in the present article is the positive orthogonal Grass-
mannian OGrω

+(k,n) which is defined as follows.

Definition 1.1. Let ω : Rn ×Rn → R be a non-degenerate symmetric bilinear
form. We denote by OGrω(k,n) the algebraic variety of isotropic k-dimensional
subspaces V of Cn with respect to ω i.e. ω(x,y) = 0 for any x,y ∈ V . The
positive orthogonal Grassmannian OGrω

+(k,n) is the semi-algebraic subset of
OGrω(k,n) where the Plücker coordinates are all real and have the same sign.

In the special case n = 2k and ω(x,y) = ∑
2k
i=1(−1)i−1xiyi, the semialgebraic

set OGrω
+(k,2k) was first studied in the context of ABJM scattering amplitudes

in [13] and later connected to the Ising model in [10]. In this paper we initiate
the study of OGrω

+(k,n) for general values of k,n with respect to the quadratic
form

ω0(x,y) = x1y1 − x2y2 + · · ·+(−1)n−1xnyn. (1)

In particular, we aim to find the combinatorics that govern its boundary struc-
ture. We note that the choice of the quadratic form ω is extremely important.
For certain quadratic forms the variety OGrω(k,n) has no real points.

Example 1.2.

1. Let ω(x,y) = x1y1−x2y2−x3y3−x4y4 be the Lorentzian inner product on
R4. The variety OGrω(2,4) has no real points. To see why suppose that
V is a real point in OGrω(2,4) and let x,y ∈ R4 be a basis of V . We have
ω(x,y) = ω(x,x) = ω(y,y) = 0, so x1,y1 ̸= 0 and we may assume that
x1 = y1 = 1. Then z= x−y satisfies z1 = 0 and ω(z,z) =−(z2

2+z2
3+z2

4) =
0. So we deduce that z = 0 and hence x = y which is a contradiction.

2. Let ω(x,y) = x1y1 + x2y2 − x3y3 − x4y4. The variety OGr(2,4)ω has real
points, for example the rowspan of the matrix:

M(θ) =

[
1 0 cos(θ) −sin(θ)
0 1 sin(θ) cos(θ)

]
for θ ∈ [0,2π]. (2)

However, the semialgebraic set OGrω
+(2,4) is zero-dimensional. To see

why, if V is a point in OGrω
+(2,4) then the first Plücker coordinate p12

of V does not vanish, otherwise V would contain a non-zero vector of
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the form (0,0,a,b) and such a vector cannot be orthogonal to itself. Now
since p12 ̸= 0, the space V is then the row span of some matrix of the form
(2) and one can check that the only such matrix with nonnegative minors
is the matrix M(π/2).

This article is organized as follows. In Section 2 we collect some facts on
the geometry of the orthogonal Grassmannian OGrω(k,n). In particular we de-
termine the ideal of quadrics that cut out OGr(k,n) in P(∧kCn), and determine
a Gröbner basis for this ideal. In Section 3 we investigate OGrω0

+ (1,n) with
respect to the alternating form (1). Namely, we describe its face structure and
show that it is a positive geometry. Section 4 is devoted to OGrω0

+ (k,2k+1). In
this section we show that OGrω0

+ (k,2k+1) is isomorphic to OGrω0
+ (k+1,2k+2)

and we relate the face structure of OGrω0
+ (k,2k+ 1) to matchings on [2k+ 2].

In Section 5 we initiate the study of OGrω0
+ (k,n) starting with the case k =

2. Already in this specific case, we show that the positroid cell decomposi-
tion of Gr+(2,n) is no longer sufficient to induce a CW cell decomposition of
OGrω0

+ (2,n).

2. Commutative algebra and geometry of OGr(k,n)

In this section we collect some facts on the algebraic variety OGrω(k,n) over C.
Since all non-degenerate symmetric bilinear forms over C are isomorphic to

(x,y) := x1y1 + · · ·+ xnyn,

up to a linear change of variables, the varieties OGrω(k,n) for different ω are
isomorphic. So, in this section we may assume that ω is the standard inner prod-
uct (·, ·), and we suppress ω and write OGr(k,n). We recall that the Grassman-
nian Gr(k,n) can be embedded in Plücker space P(∧kCn). The

(n
k

)
coordinates

of this projective space are called Plücker coordinates which we denote by pI

for any subset I = {i1 < i2 < · · ·< ik} of [n]. In Physics, the Plücker coordinates
are often denoted by pI = ⟨i1i2 . . . ik⟩ and for any permutation σ of [k] we have
⟨iσ(1)iσ(2) . . . iσ(k)⟩= sign(σ)⟨i1i2· · ·k⟩= sign(σ)pI .

Theorem 2.1. The orthogonal Grassmannian OGrω(k,n) is cut out in P(
n
k)−1 by

the Plücker relations in addition to the following 1
2

( n
k−1

)(( n
k−1

)
+1
)

equations:

n

∑
ℓ=1

ε(Iℓ)ε(Jℓ) pIℓpJℓ = 0, for I,J ∈
(

[n]
k−1

)
. (3)

where ε(Iℓ) = (−1)|{i∈I : i>ℓ}| denotes the sign of the permutation that sorts Iℓ.
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Proof. Let p = (pI)I∈([n]k )
be a point in OGr(k,n) and let V be its corresponding

isotropic space in Cn. The space V is the rowspan of a rank k matrix:

A =


a11 a12 . . . . . . a1n

a21 a22 . . . . . . a2n
...

... . . . . . .
...

ak1 ak2 . . . . . . akn

 .
For I = {i1 < · · ·< ik}, a Plücker coordinate pI can then be written as follows:

pI = ∑
σ∈Sk

ε(σ)
k

∏
s=1

aℓ jσ(s) ,

where Sk is the symmetric group on [k]. Now let I = (i1 < · · · < ik−1) and
J = ( j1 < · · ·< jk−1) be ordered subsets of [n], then:

n

∑
ℓ=1

ε(Iℓ)ε(Jℓ)pIℓpJℓ =
n

∑
ℓ=1

∑
σ ,τ∈Sk

sign(στ)
k−1

∏
s=1

aσ(s)is aτ(s) js aσ(k)ℓ aτ(k)ℓ

= ∑
σ ,τ∈Sk

sign(στ)
k−1

∏
s=1

aσ(s)is aτ(s) js

(
n

∑
ℓ=1

aσ(k)ℓ aτ(k)ℓ

)
︸ ︷︷ ︸

=0

.
(4)

Since V is isotropic, the last sum in the right-hand-side is 0 so we deduce that:

n

∑
ℓ=1

ε(Iℓ)ε(Jℓ)pIℓpJℓ = 0.

Conversely, let p be a point in Gr(k,n) such that:

n

∑
ℓ=1

ε(Iℓ)ε(Jℓ)pIℓpJℓ = 0 for all I,J ⊂
(
[n]
k

)
.

Since the quadratic form (·, ·) is invariant under the action of the symmetric
group Sn, we can use the action of this group on Gr(k,n) and, without loss of
generality, assume that p1,2,...,k ̸= 0. So we can write the vector space in Cn

represented by p as the rowspan of the matrix:

A =


p1,2,...,k 0 . . . 0 (−1)k−1 p2,3,...,k,k+1 (−1)k−1 p2,3,...,k,k+2 . . . (−1)k−1 p2,3,...,k,n

0
. . . . . .

... (−1)k−2 p1,3,...,k,k+1 (−1)k−2 p1,3,...,k,k+2 . . . (−1)k−2 p1,3,...,k,n
...

...
. . .

...
...

...
0 . . . 0 p1,2,...,k p1,2,...,k−1,k+1 p1,2,...,k−1,k+2 . . . p1,2,...,k−1,n

.

From the equations (3), we can see that the rows of this matrix are orthogonal to
themselves and to one another so p ∈ OGr(k,n) and this finishes the proof.
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Example 2.2. The orthogonal Grassmannian OGr(2,5) is cut out by a system
of 5 Plücker relations and 15 relations of the form (3):

p2
12 + p2

13 + p2
14 + p2

15, p2
12 + p2

23 + p2
24 + p2

25, . . . , p2
15 + p2

25 + p2
35 + p2

45

p13 p23 + p14 p24 + p15 p25, −p12 p23 + p14 p34 + p15 p35, . . . , p14 p15 + p24 p25 + p34 p35

The ideal generated by these relations is the prime ideal of OGr(2,5).

Remark 2.3. In Physics notation the equations (3) become

n

∑
ℓ=1

⟨i1i2 . . . ik−1ℓ⟩⟨ j1 j2 . . . jk−1ℓ⟩= 0.

This is because ε(Iℓ)pIℓ = ⟨i1i2 . . . ik−1ℓ⟩. The relations (3) can also be obtained
from the so-called co-circuit matrices in [8, Section 3]. We denote by P the( n

k−1

)
×n matrix

PIℓ =

{
ε(Iℓ) pIℓ, if ℓ ̸∈ I
0, otherwise ℓ ∈ I

, for I ∈
(

[n]
k−1

)
and 1 ≤ ℓ≤ n.

The equations (3) are equivalent to PPT = 0. For a different quadratic form ω

whose matrix in the standard basis of Cn is Ω, the equations for OGrω(k,n) are
obtained by setting PΩPT = 0 instead of (3). For example for the alternating
bilinear form (1), the equations (3) become:

(PΩPT )IJ =
n

∑
ℓ=1

(−1)ℓ−1
ε(Iℓ)ε(Jℓ)pIℓpJℓ = 0, for I,J ∈

(
[n]

k−1

)
. (5)

Proposition 2.4. The variety OGr(k,n) is empty if n< 2k. When n= 2k it splits
into two irreducible connected components, and it is irreducible when n > 2k.
Moreover we have:

dim(OGr(k,n)) = k(n− k)−
(

k+1
2

)
for n ≥ 2k.

Proof. The proof for the first part of the statement can be found in [12, Propo-
sition on page 735]. For the dimension count it is more convenient to work with
the quadratic form:

ω(x,y) = x1yn + x2yn−1 + · · ·+ xny1.

Let Ω be its corresponding matrix, X = (xi, j) be a k× (n− k) matrix of indeter-
minates, and consider the k×n matrix A= [Idk|X ] = 0. The equations AΩAT = 0
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are equivalent to an expression of each entry in the lower right corner of X :

X =


x1,1 . . . . . . . . . x1,n−k−1 xxx1,n−k
x2,1 . . . . . . . . . xxx2,n−k−1 xxx2,n−k
... . . . . . . . .

.
. . .

...
xk,1 . . . xxxk,n−2k+1 . . . . . . xxxk,n−k

 ,

in terms of all the other entries of the matrix A outside that corner. So we deduce
that dim(OGr(k,n)) = dim(OGrω(k,n)) = k(n− k)−

(k+1
2

)
.

From now on, we fix positive integers k,n such that n ≥ 2k. Following [8],
let Yk,n denote Young’s lattice. This is a poset whose elements are subsets of size
k in [n] and the order relation in Yk,n is:

5⟨i1 < · · ·< ik⟩ ≤ ⟨ j1 < · · ·< jk⟩ if i1 ≤ j1, i2 ≤ j2, . . . , ik−1 ≤ jk−1 and ik ≤ jk.

We denote by Ỹk,n another copy of Young’s lattice. As a set Ỹk,n =
( [n]

n−k

)
and the

order relation is given by:

[i′1 < · · ·< i′n−k]≤ [ j′1 < · · ·< j′n−k] if i′1 ≥ j′1, . . . , i′n−k ≥ j′n−k.

Finally we denote by Pk,n the poset which, as a set, is the disjoint union of Yk,n
and Ỹk,n. All order relations in Yk,n and Ỹk,n remain order relations in Pk,n and in
addition to these relations we have

(2k
k

)
covering relations:

[ j′1 < · · ·< j′n−k] < ⟨i1 < · · ·< ik⟩

whenever {1,2,3, . . . ,2k}= {i1, . . . , ik}⊔{ j1, . . . , jk} is a partition where the set
{ j1, . . . , jk} is the complement [n]\{ j′1, . . . , j′n−k}.

An incomparable pair of elements in Pk,n is of type
(
⟨i1, . . . , ik⟩,⟨ j1, . . . , jk⟩

)
or
(
⟨i1, . . . , ik⟩, [ j′1, . . . , j′n−k]

)
. Such a pair yields a non-semistandard Young

tableau µ of shape (k,k) or λ of shape (n− k,k):

µ =

[
j1 · · · jℓ−1 jjjℓ jjjℓ+1 · · · jjjk
iii1 · · · iiiℓ−1 iiiℓ iℓ+1 · · · ik

]
,

λ =

[
j′1 · · · j′ℓ−1 jjj′ℓ jjj′ℓ+1 · · · jjj′k · · · jjj′n−k
iii1 · · · iiiℓ−1 iiiℓ iℓ+1 · · · ik

]
.

(6)

The tableau µ or λ being non-semistandard means that there exists an index ℓ
in [k] such that:

i1 < · · ·< iℓ < jℓ < · · ·< jk or i1 < · · ·< iℓ < j′ℓ < · · ·< j′n−k. (7)

We pick ℓ to be the smallest index with this property. The strictly increasing
sequences of integers in (7) are highlighted in bold in (6). Now consider the
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⟨56⟩

⟨46⟩

⟨36⟩

⟨26⟩

⟨16⟩

⟨45⟩

⟨35⟩

⟨25⟩

⟨15⟩

⟨34⟩

⟨24⟩

⟨14⟩ ⟨23⟩

⟨13⟩

⟨12⟩

[1234]

[1235]

[1245]

[1345]

[2345]

[1236]

[1246]

[1346]

[2346]

[1256]

[1356]

[2356][1456]

[2456]

[3456]

Figure 1: The poset P2,6 is created from Y2,6 and Ỹ2,6 by adding the six covering
relations in red.

permutations π of the sequence i1 < · · · < iℓ < jℓ < · · · < jk which make the
first ℓ entries and the last k− ℓ+ 1 entries separately increasing, and similarly,
the permutations σ of the sequence i1 < · · ·< iℓ < j′ℓ < · · ·< j′n−k which make
the first ℓ entries and the last n− k− ℓ+ 1 entries separately increasing. Such
permutations permute the bold entries in the tableaux µ and λ in (6) and yield

π(µ) =

[
j1 · · · jℓ−1 π( jjjℓ) π( jjjℓ+1) · · · π( jjjk)

π(iii1) · · · π(iiiℓ−1) π(iiiℓ) iℓ+1 · · · ik

]
,

σ(λ ) =

[
j′1 · · · j′ℓ−1 π( jjj′ℓ) π( jjj′ℓ+1) · · · π( jjj′k) · · · π( jjj′n−k)

π(iii1) · · · π(iiiℓ−1) π(iiiℓ) iℓ+1 · · · ik

]
.

Summing over these permutations, the tableaux µ and λ yield quadrics

fµ := ∑
π

sign(π) ⟨π(i1), . . . ,π(iℓ), iℓ+1, . . . ik⟩ ⟨ j1, . . . , jℓ−1,π( jℓ), . . . ,π( jk)⟩

fλ := ∑
π

sign(π) ⟨π(i1), . . . ,π(iℓ), iℓ+1, . . . ik⟩ [ j′1, . . . , j′ℓ−1,π( j′ℓ), . . . ,π( j′k)]
. (8)

Here, whenever J′ = { j′1 < · · ·< j′n−k} and [n]\ J′ = { j̄1 < · · ·< j̄k} we set

[ j′1, . . . , j′n−k] := (−1)∑
n−k
r=1 j′r⟨ j̄1, . . . , j̄k⟩.
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These quadrics are called straightening laws in standard monomial theory. We
note that, under any reverse lexicographic term order ≺ in C[pI] given by a lin-
ear extension of the poset Yk,n, the leading monomial of fµ in (8) is the binomial
pi1...ik p j1... jk and the leading monomial of fλ in (8) is the binomial pi1...ik p j̄1... j̄k .

Example 2.5. The pair ⟨12⟩ and [1356] are incomparable in P2,6, see Figure 1.
This pair corresponds to the following non-semistandard Young tableau:

λ =
1 333 555 666

111 222
.

There are 10 permutations π that make the two first entries and the remaining
3 entries of {1,2,3,5,6} separately increasing. Among these 10 permutations,
only 4 leave 1 in the bottom row of λ . The quadric fλ in this case has the
following expression:

fλ =−p12 p24 − p13 p24 + p15 p45 + p16 p46.

Theorem 2.6. The quadrics in (8) form a Gröbner basis for the ideal Ik,n in
C[pI] generated by the Plücker relations and the quadratic equations in (3) with
respect to any monomial ordering given by a linear extension of the poset Pk,n.

Proof. The ideal Ik,n is the image of the ideal Ik,n,0 of the spinor-helicity variety
SH(k,n,0) in [8] under the map:

ϕ : C[pI,qJ′ ] 7→ C[pI], pI 7→ pI, qJ′ 7→ (−1)∑ j′∈J′ j′ p[n]\J′ .

The quadrics (8) and (8) are the images of a Gröbner basis of the ideal Ik,n,0
[8, Theorem 2.7] under the map ϕ . So we deduce that fµ and fλ in (8) and
(8) are members of the ideal Ik,n for any non-semistandard Young tableaux µ of
type (k,k) and λ of type (n− k,k) and the initial monomials pi1...ik p j1... jk and
pi1...ik p j̄1... j̄k are in the initial ideal in≺(Ik,n). Now let g ∈ Ik,n and write g = ϕ(h)
for some h ∈ Ik,n,0. After scaling h with a suitable nonzero scalar in C, we can
write:

h = pppaaaqqqbbb +
N

∑
ℓ=1

cℓpppaaaℓqqqbbbℓ ,

where aaa,aaaℓℓℓ are exponent vectors for the variables (pI, I ∈
([n]

k

)
) and bbb,bbbℓℓℓ are

exponent vectors for the variables (qJ′ , J′ ∈
([n]

k

)
). The underlined monomial in

h is the leading mononmial with respect to ≺, so it is divisible by some binomial
pIqJ′ where I′,J′ is an incomparable pair in Pk,n. We claim that the leading term
of g = ϕ(h) is ϕ(pppaaaqqqbbb). To see why let 1 ≤ ℓ≤ N, we then have pppaaaℓqqqbbbℓ ≺ pppaaaqqqbbb

and after applying the map ϕ this inequality continues to hold.
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Hence in≺(Ik,n) is generated by the binomials pI pJ where I,J′ = [n] \ J is
an incomparable pair in Pk,n. These are exactly the initial monomials of the
quadrics (8) and (8).

Our next result gives a formula for the degree of OGr(k,n) for n > 2k.

Proposition 2.7. Let n > 2k, m := ⌊n/2⌋, and set D := k(n− k)−
(k+1

2

)
. The

degree of OGr(k,n) in the Plücker embedding is

D! ·

 ∏
1≤i≤k
k< j≤m

1
(2m− i− j)( j− i)

( ∏
1≤i< j≤k

2
2m− i− j

)
, if n = 2m,

D! ·

(
∏

1≤i≤k

2
2m−2i+1

) ∏
1≤i≤k
k< j≤m

1
(2m− i− j)( j− i)

( ∏
1≤i< j≤k

2
2m− i− j+1

)
, if n = 2m+1.

(9)

Proof. Fix n > 2k and recall that OGr(k,n) is irreducible in this case. Let
R be homogeneous coordinate ring of OGr(k,n) endowed with its natural Z-
grading. By the Borel-Weil-Bott theorem, each degree ℓ piece Rℓ of R is an irre-
ducible representation Vℓλ of SO(n) corresponding to the highest weight vector
ℓλ where λ := e1 + ...+ ek ∈ Rm and m := ⌊n/2⌋. Furthermore, we can com-
pute the dimensions of these representations using the Weyl dimension formula
as follows. Recall that the positive roots of SO(n) are

Φ
+ =

{
{ei ± e j}1≤i< j≤m, if n = 2m
{ei ± e j}1≤i< j≤m ∪{ei}1≤i≤m, if n = 2m+1.

The Weyl dimension formula states that for any integer ℓ≥ 0 we have

dimVℓλ =
∏α∈Φ+⟨ρ + ℓλ ,α⟩

∏α∈Φ+⟨ρ,α⟩
= ∏

α∈Φ+

(
1+ ℓ

⟨λ ,α⟩
⟨ρ,α⟩

)
, (10)

where 2ρ be the sum of the positive roots Φ+, and ⟨·, ·⟩ is the standard inner
product on the root space Rm. This is equal to

2ρ =

{
(2m−2)e1 +(2m−4)e2 + ...+2em−1 n = 2m
(2m−1)e1 +(2m−3)e2 + ...+3em−1 + em n = 2m+1.

Plugging this into the dimension formula above for n = 2m yields

dimVℓλ = ∏
1≤i≤k
k< j≤m

((
1+ 1

2m−i− j ℓ
)(

1+ 1
j−iℓ
))

∏
1≤i< j≤k

(
1+ 2

2m−i− j ℓ
)
. (11)
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When n = 2m+1 we obtain

dimVℓλ = ∏
1≤i≤k

(
1+ 2

2m−2i+1ℓ
)

∏
1≤i≤k
k< j≤m

((
1+ 1

2m−i− j+1ℓ
)(

1+ 1
j−iℓ
))

· ∏
1≤i< j≤k

(
1+ 2

2m−i− j+1ℓ
)
.

This determines the Hilbert polynomial H(ℓ) := dim(Vℓλ ) of the coordinate ring
R, which is a polynomial in ℓ of degree D. The degree of OGr(k,n) is then the
leading coefficient of the polynomial D! H(X).

Next we prove that Ik,n is a prime ideal for n > 2k.

Lemma 2.1. The incomparable pairs (I,J′) in the poset Pk,n with I ∈
([n]

k

)
and

J′ ∈
( [n]

n−k

)
such that the pair (I, [n] \ J′) is comparable in Yk,n are in bijection

with semistandard Young Tableaux of shape (k − 1,k − 1) and fillings in [n].
Their number is

1
k−1

(
n+1

k

)(
n

k−2

)
.

Proof. Note that the incomparable pairs (I,J′) in question here are exactly the
non-semistandard Young tableaux λ of shape (n− k,k) with fillings in [n] such
that the Young tableau λ c of shape (k,k) obtained by taking the complement of
the first row of λ in [n] is semistandard. To show the result, it then suffices to
exhibit a bijection between the following two sets{

(S1,S2) : S1,S2 ∈
(

[n]
k−1

)
,S1 ≤ S2

}
and {

(T1,T2) : T1,T2 ∈
(
[n]
k

)
, T1 ≤ T2 and T c

1 ̸≤ T2

}
.

Here if A = {a1 < · · · < aℓ},B = {b1 < · · · < bℓ} ∈
([n]
ℓ

)
, by A ≤ B we mean

a1 ≤ b1,a2 ≤ b2, . . . ,aℓ ≤ bℓ. For any h ∈ [n] and set S ⊆ [n] we denote by Sh

the set S∩ [h]. Note that S ≤ T in Young’s lattice if and only if Sh ≥ T h for all
h ∈ [n].

The desired bijection is as follows. Fix S1 ≤ S2 ∈
( [n]

k−1

)
and let L = S1 ∩S2

and R= Sc
1∩Sc

2. Let h be minimal such that |Lh|< |Rh|. Note that h is guaranteed
to exist since |Rn| = n− 2(k − 1)+ |Ln| > |Ln|, and further note that we then
necessarily have |Lh|+1 = |Rh|. Then we define

T1 = (S1 \Lh)∪Rh, T2 = (S2 \Lh)∪Rh.

It is easy to see that T1,T2 ∈
([n]

k

)
with T1 ≤ T2. Now we show that T c

1 ̸≤ T2.
Consider the set (T c

1 )
h = {t ∈ T c

1 : t ≤ h} = Sh
2, while T h

2 = Sh
2 \Lh ∪Rh. Thus
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|(T c
1 )

h| = |Sh
2| but |T h

2 | = |Sh
2| − |Lh|+ |Rh| = |Sh

2|+ 1 > |(T h
1 )

c|, and therefore
T c

1 ̸≤ T2.
The inverse map is as follows. A pair T1 ≤ T2 ∈

(n
k

)
with T c

1 ̸≤ T2 is mapped
to the pair

S1 = (T1 \Rh)∪Lh, S2 = (T2 \Rh)∪Lh,

where L = T1 ∩T2, R = T c
1 ∩T c

2 , and h is minimal such that |Lh|> |Rh|. To see
why such an h exists, observe that T c

1 ̸≤ T2 implies that there is some h for which
|(T c

1 )
h|< |T h

2 |, while T1 ≤ T2 implies |T h
2 | ≤ |T h

1 |. We have

|T h
2 |= |T h

2 ∩T h
1 |+ |T h

2 ∩(T c
1 )

h| and |(T c
1 )

h|= |(T c
1 )

h∩T h
2 |+ |(T c

1 )
h∩(T c

2 )
h|.

Together these give |Lh| = |T h
1 ∩T h

2 | > |(T c
1 )

h ∩ (T c
2 )

h| = |Rh|, as desired. The
defined map yields S1 ≤ S2 ∈

( [n]
k−1

)
, so our provided map is a bijection.

Remark 2.8. We remark that the proof of Lemma 2.1 may be more intuitive to
the reader if translated into the non-crossing lattice path formulation of semis-
tandard Young tableaux, with a row of a Young tableau defining a path by its
left steps [18, Chapter 7]. Under this formulation, taking the complement of a
row of a Young tableau corresponds to reflecting the corresponding path. In the
proof, the sets L and R correspond respectively to shared left and right steps of
the two paths, and the superscript h denotes a cutoff at height h. The bijective
map reflects the picture of the two lattice paths up to the point at which the
number of shared right steps exceeds shared left steps by one (see Figure 2).

1 3 6 7
2 3 7 8

1 4 5 6 7
2 4 5 7 8

Figure 2: A lattice path depiction of the bijection in Lemma 2.1. The red path
crosses the reflection of the blue path, pictured as a dotted line.

Theorem 2.9. When n > 2k, the ideal Ik,n in C[pI] generated by the Plücker
relations and the quadratic equations in (3) is the prime ideal of OGr(k,n). In
particular, the degree of Ik,n is given by (9).
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Proof. By Kostant’s theorem, the prime ideal of OGr(k,n) in C[pI] is generated
in degree 2. To show that Ik,n is exactly the prime ideal of OGr(k,n) it is then
enough to prove that the dimension of the degree 2 piece of the Z-graded ring
C[pI]/Ik,n is equal to dimV2λ from the proof of Proposition 2.7. To do so we
need to count the dimension of the degree 2 part of Ik,n.

This dimension is equal to the sum of the number of incomparable pairs in
the poset Yk,n together with the mixed incomparable pairs in Lemma 2.1. So the
dimension of the degree 2 part of C[pI]/Ik,n is

1
k

(
n+1
k+1

)(
n

k−1

)
− 1

k−1

(
n+1

k

)(
n

k−2

)
. (12)

Using (11), we compute dim(V2λ ) and we find that it is equal to (12).

Remark 2.10. 1. The ideal Ik,2k is clearly not prime since OGr(k,2k) has
two irreducible connected components and we know that Ik,2k cuts out

OGr(k,2k) in P(
2k
k )−1. Moreover, if ω = ω0 is the sign alternating form in

(1), then for any p ∈ Gr(k,2k) we have p ∈ OGrω0(k,2k) if and only if

pI = pIc for all I ∈
(
[2k]

k

)
or pI =−pIc for all I ∈

(
[2k]

k

)
. (13)

2. Using the half-spin representation, OGr(k,2k) can also be embedded as
the spinor variety in P2n−1. This spinor embedding is minimal and the
Plücker embedding we study here can be recovered from the spinor em-
bedding via a quadratic Veronese map. See for example [15, Section 2]
or [7] for a more detailed account.

In this article, we define the standard component of OGrω0(k,2k) to be the
connected component where pI = pIc for all I ∈

([2k]
k

)
. We will denote the semi-

algebraic set in the standard component where all Plücker coordinates are real
and have the same sign by OGrω0

+ (k,2k).

3. The positive orthogonal Grassmannian OGr+(1,n)

For the remainder of this article, unless specifically mentioned, we work with
the sign alternating quadratic form ω0 in (1). We denote by (p,q) the signature
of ω0 where p = ⌈n

2⌉ and q = ⌊n
2⌋. In this section we switch gears to study the

positive geometry OGr+(1,n) = OGrω0
+ (1,n). Here, positive geometry is meant

in the sense of [2, Section 2.1].
We think of the elements of [n] as vertices of a regular n-gon ordered clock-

wise from 1 to n. For each pair of non-empty subsets A ⊂ [n]∩ (2Z+ 1) and
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B ⊂ [n]∩2Z, there exists a unique cycle σ(A,B) in the symmetric group Sn such
that σ(A,B) has exactly one excedance and the support of σ(A,B) is A⊔B. The
set of such permutations1 σ(A,B) is denoted S1,n. The set S1,n is endowed with
a partial order given by:

σ(C,D)⪯ σ(A,B) ⇐⇒ C ⊆ A and D ⊆ B.

For σ(A,B)∈S1,n, we denote by Πσ the subset of Pn−1
+ where xi = 0 if and only

if i is a fixed point of σ(A,B) i.e. i ̸∈ A⊔B. Here, Pn−1
+ is simply Gr+(1,n).

Theorem 3.1. The positive orthogonal Grassmannian OGr+(1,n) is combina-
torially isomorphic to the product of simplices ∆p−1×∆q−1. More precisely, the
following hold:

1. OGr+(1,n) =
⊔

σ∈S1,n

OGr+(1,n)∩Πσ .

2. OGr+(1,n)∩Πσ =
⊔

τ⪯σ

OGr+(1,n)∩Πτ .

3. If A = {i1 < · · · < ir} and B = { j1 < · · · < jm} and σ = σ(A,B) the cell
OGr+(1,n)∩Πσ(A,B) can be parameterized as follows. For each t1, . . . , tr−1
and s1, . . . ,sm−1 in R>0 we get a point x ∈ OGr+(1,n)∩Πσ(A,B) by setting
xi = 0 whenever i is a fixed point of σ(A,B) and:

xi1 =
et1 − e−t1

et1 + e−t1
, xi2 =

2
et1 + e−t1

et2 − e−t2

et2 + e−t2
, . . . , xir−1 =

2
etr−1 + e−tr−1

r−1

∏
ℓ=1

etℓ − etℓ

etℓ + e−tℓ
,

x j1 =
es1 − e−s1

es1 + e−s1
, x j2 =

2
es1 + e−s1

es2 − e−s2

es2 + e−s2
, . . . , x jm−1 =

2
esm−1 + e−sm−1

m−1

∏
ℓ=1

esℓ − esℓ

esℓ + e−sℓ
.

(14)

Proof. The semi-algebraic set OGr+(1,n) in Pn−1 is cut out by:

∑
i∈[n]∩(2Z+1)

x2
i = ∑

j∈[n]∩2Z
x2

j and x ∈ Pn−1
+ .

The cells OGr+(1,n) ∩ Πσ(A,B) correspond to the boundaries of OGr+(1,n)
where the point x ∈ Pn−1

+ satisfies:

∑
i∈A

x2
i = ∑

j∈B
x2

j and xi ̸= 0 ⇐⇒ i ∈ A⊔B. (15)

The closure of such a cell is obtained by driving some of the coordinates indexed
by A or B to 0. So the first and second statement follow. The face structure de-
scribed in here is the same face structure as the product ∆p−1×∆q−1 of simplices
of dimensions p−1 and q−1.

1These are decorated permutations with all fixed points having a “+” decoration.
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For the third statement, to parametrize the cell OGr+(1,n)∩Πσ(A,B) it is

enough to parametrize the set of points (xi)i∈A ∈ R|A|
>0 and (x j) j∈B ∈ R|B|

>0 on the
unit spheres S|A|−1 and S|B|−1. This is exactly what is done in (14).

Example 3.2. The orthogonal Grassmannian OGr+(1,5) has the same com-
binatorial structure as ∆1 ×∆2. The poset of the boundaries of OGr+(1,5) is
depicted in Figure 3.
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Figure 3: The Hasse diagram of the poset structure on S1,5.

The next theorem shows that OGr+(1,n) is a positive geometry. To give its
canonical form, it is convenient to permute2 the coordinates of Pn−1 and write
OGr+(1,n) as follows:

OGr+(1,n) =
{
(x1 : · · · : xn) ∈ Pn−1

+ : x2
1 + · · ·+ x2

p − x2
p+1 −·· ·− x2

n = 0
}
.

Theorem 3.3. The semi-algebraic set OGr+(1,n)⊂ Pn−1
+ is a positive geometry

in the sense of [2, Section 2.1]. Its canonical form:

Ω = (1+u2
2,1 +u2

3,1 + · · ·+u2
p,1)

du2,1 ∧du3,1 ∧·· ·∧dun−1,1

u2,1 u3,1 · · · un−1,1 u2
n,1

.

Here, ui, j := xi/x1 in the projective coordinates (x1 : · · · : xn) of Pn−1.

Proof. For ease of notation we write ui for ui,1. In the way the form Ω is defined,
it is clear that for p+1 ≤ i ≤ n−1:

Resui=0(Ω) = (−1)i+1(1+u2
2 + · · ·+u2

p)
du2 ∧·· ·∧ d̂ui ∧·· ·∧dun−1

u2 . . . ûi . . .un−1u2
n

.

2Here, since k = 1, permuting the coordinates does not change the signs of the “minors”.
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For 2 ≤ i ≤ p we can rewrite Ω as: Ω =−(u2
p+1+ · · ·+u2

n)
du2∧du3∧···∧dun−1

u2 u3 ··· un−1 u2
n
, and

then:

Resui=0(Ω) = (−1)i+1(−u2
p+1 −·· ·−u2

n)
du2 ∧·· ·∧ d̂ui ∧·· ·∧dun−1

u1 . . . ûi . . .un−1u2
n

.

For the boundary corresponding to un = 0 note that we have:

u2du2 + · · ·+updup −up+1dup+1 −·· ·−undun = 0.

Taking the wedge on the right with du3 ∧·· ·∧dun−1 we get:

u2du2 ∧·· ·∧dun−1 −undun ∧du3 ∧·· ·∧dun−1 = 0.

So we can rewrite Ω as follows:

Ω = (1+u2
2 + · · ·+u2

p)
du2∧du3∧···∧dun−1

u2 u3 ··· un−1 u2
n

= (1+u2
2 + · · ·+u2

p)
dun∧du3∧···∧dun−1

u2
2u3...un−1un

.

We then get the residue at un = 0:

Resun=0(Ω) = (1+u2
2 + · · ·+u2

p)
du3 ∧·· ·∧dun−1

u2
2u3 . . .un−1

.

The residue at the boundary where x1 = 0 can be computed similarly by switch-
ing to a different affine chart (eg. set x2 = 1). This covers all the boundaries
of OGr+(1,n) and since the residue at each boundary gives the same form for a
lower dimensional positive orthogonal Grassmannian OGr+(1,n), we can carry
on taking residues for lower dimensional boundaries in the same way.

Example 3.4 (OGr+(1,4)). The points (x1 : x2 : x3 : x4) in the positive orthogo-
nal Grassmannian OGr+(1,4) in P3 are those that satisfy:

x2
1 − x2

2 + x2
3 − x2

4 = 0 and x1,x2,x3,x4 ≥ 0.

We can see that OGr+(1,4) is a curvy quadrilateral inside the 3-simplex in P3
+

as depicted in Figure 4. It is a positive geometry and its canonical form is:

Ω = (1+u2
3,1)

du2,1 ∧du3,1

u3,1 u2,1 u2
4,1

.

where ui, j = xi/x j.
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[1 : 0 : 0 : 0][0 : 1 : 0 : 0]

[0 : 0 : 1 : 0]

[0 : 0 : 0 : 1]

Figure 4: The positive Grassmannian OGr+ (1,4) is the red region in the tetra-
hedron P3

+. The boundaries of OGr+(1,4) lie on the facets of P3
+.

4. The positive Orthogonal Grassmannian OGr+(k,2k+1)

We recall that we are working with the sign alternating form (1). The positroid
cells of Gr+(k,2k) induce a CW cell decomposition on the positive orthogonal
Grassmannian OGr+(k,2k), and the cells of this decomposition are indexed by
fixed-point-free involutions of [2k]. The face structure of OGr+(k,2k) as well
as the parametrization of its cells are studied in detail in [10, Section 5].

One of the reasons positroid cells induce a cell decomposition of the positive
orthogonal Grassmannian OGr+(k,2k) is that the latter can be obtained by slic-
ing Gr+(k,2k) by a linear space, see (13). In general, one can obtain OGr+(k,n)
by slicing the positive flag variety with a linear space as we shall now explain.

For a subspace V in Cn of dimension k, we denote by V⊥ its orthogonal
complement with respect to the form (1).

Lemma 4.1. The Hodge star map Gr(k,n)→ Gr(n− k,n),V 7→V⊥ is given in
Plücker coordinates by:

qJ = pJc , for any J ∈
(

[n]
n− k

)
,

where the pI and qJ’s are the Plücker coordinates in Gr(k,n) and Gr(n− k,n)
respectively. In particular it restricts to an isomorphism of positive geometries
between Gr+(k,n) and Gr+(n− k,n).

Proof. If (pI)I are the Plücker coordinates of V , the Plücker coordinates qJ of
V⊥ are obtained as follows:

qJ = sJ tJ pJc for any J ∈
(

[n]
n− k

)
,
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where t = ∏ j∈J ω0(e j,e j) and sJ is the sign of the permutation that sorts the
string JJc. We compute the signs sJ and tJ and get the following:

sJ = (−1)∑ j ̸∈J j−k(k+1)/2 and tJ = (−1)|J∩2Z|.

From this it is not so hard to see that the sign sJtJ does not depend on J. Since
we work with projective coordinates, we deduce that qJ = pJc , hence the Hodge
star map is indeed an isomorphism between Gr+(k,n) to Gr+(n− k,n).

Let F(k,n) be the 2-step flag variety of partial flags V ⊂ W ⊂ Cn where
dim(V ) = k and dim(W ) = n − k. The positive part F+(k,n) of F(k,n) is
the semi-algebraic set of points (V,W ) ∈ Gr+(k,n)×Gr+(n− k,n) such that
(V,W ) ∈ F(k,n). We denote by D the diagonal subset of P(

n
k)×P(

n
n−k) i.e.:

D :=
{
(p,q) : pI = qIc for any I ∈

(
[n]
k

)}
.

Proposition 4.1. The positive orthogonal Grassmannian OGr+(k,n) is the in-
tersection of the positive flag variety F+(k,n) with D i.e.:

OGr+(k,n) = F+(k,n)∩D. (16)

Proof. This follows immediately from Lemma 4.1.

This motivates the choice of the sign alternating form (1) in [10, 13]. How-
ever, unlike F+(k,2k) ∼= Gr+(k,2k), the positive region F+(k,n) is not well
understood3 for general k. This motivates the following question:

Problem 4.2. Study the face structure of F+(k,n) and find a parametrization of
its cells for general (k,n).

The following result is known to the experts, see [8, Proposition 5.1] and [6,
Equation (1.7)]. We include a proof here for completeness.

Proposition 4.3. The homogeneous coordinate rings of the 2-step flag variety
F(k,2k+1) and the Grassmannian Gr(k+1,2k+2) are isomorphic.

Proof. Note that the cone over F(k,2k+1)⊂ P(
2k+1

k )−1 ×P(
2k+1
k+1 )−1 is an affine

variety F̂(k,2k+1) ⊂ A(
2k+1

k )×A(
2k+1
k+1 ) = A(

2k+2
k+1 ) and the cone over the Grass-

mannian Gr(k+ 1,2k+ 2) is the affine variety Ĝr(k+ 1,2k+ 2) ⊂ A(
2k+2
k+1 ). To

prove the above statement, we show that F̂(k,2k + 1) = Ĝr(k + 1,2k + 2) in

3The Lusztig positive part of F(k,n) is well understood but it can be shown that the Plücker
positive region F+(k,n) strictly contains the Lusztig positive region when n > 2k+1, see [5].
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A(
2k+2
k+1 ). To that end, it suffices exhibit a quasi affine variety U that is open and

dense in both Ĝr(k+1,2k+2), F̂(k,2k+1)⊂ A(
2k+2
k+1 ).

The points of the variety U ⊂ A(
2k+2
k+1 ) are obtained by taking taking the (k+

1)× (k+1)-minors of the (k+1)× (2k+2) matrices of the following form:
1 · · · 0 ∗ · · · ∗ 0
...

. . .
...

... · · ·
...

...
0 · · · 1 ∗ · · · ∗ 0
0 · · · 0 t ∗· · · ∗ z

 , (17)

with ∗ ∈A and t,z ∈C×. It is clear how U sits inside Ĝr(k+1,2k+2). We now
describe how to obtain points (V̂ ,Ŵ ) ∈ F̂(k,2k+1) from the matrices (17). We
obtain Ŵ by taking (k+1)× (k+1) minors excluding the last column of (17),
while V̂ is obtained by taking the k×k minors of the upper left k× (2k+1) part
of (17), all multiplied by z. This shows that F̂(k,2k+1) = Ĝr(k+1,2k+2) is
the Zariski closure of U in A(

2k+2
k+1 ) which finishes the proof.

Remark 4.4. We warn the reader that although the homogeneous coordinate
rings of F(k,2k + 1) and Gr(k + 1,2k + 2) are isomorphic, the two varieties
F(k,2k + 1) and Gr(k + 1,2k + 2) are clearly not isomorphic. Moreover, the
coordinate ring of Gr(k+ 1,2k+ 2) has a Z-grading while the coordinate ring
of F(k,2k+1) has a Z2-grading.

Theorem 4.5. The positive orthogonal Grassmannians OGr+(k,2k + 1) and
OGr+(k+1,2k+2) can be identified through a linear isomorphism.

Proof. We denote the Plücker coordinates on OGr(k,2k + 1) by pI and those
of OGr(k+ 1,2k+ 2) by qJ . The orthogonal Grassmannian OGr(k,2k+ 1) is
irreducible and the map:

Φk : OGr(k+1,2k+2) → OGr(k,2k+1)
(qJ)J∈([2k+2]

k+1 )
7→ (pI = qI∪{2k+2})I∈([2k+1]

k )
(18)

is an isomorphism between the OGr(k,2k + 1) (which is irreducible) and the
standard component in OGr(k+ 1,2k+ 2). It is not so difficult to see that this
isomorphism restricts to an isomorphism between the positive orthogonal Grass-
mannians OGr+(k,2k+1) and OGr+(k+1,2k+2).

Remark 4.6. The equations that cut out OGr(k,2k + 1) in Gr(k,2k + 1) are
all quadrics. So it is remarkable that we can still describe the face structure
of OGr+(k,2k+ 1) from our understanding of the face structure of OGr+(k+
1,2k+2) which is obtained by taking a linear slice of Gr+(k+1,2k+2)!
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Example 4.7 (OGr+(2,5)). The orthogonal Grassmannian OGr+(2,5) is iso-
morphic to OGr+(3,6). The Hasse diagram of the face poset of the latter is in
[10, Figure 7]. Figure 5 gives the same Hasse diagram in the realizable permu-
tations in OGr+(2,5). These cells can be parameterized using the isomorphism
in (18) and [10, Theorem 5.17 (i)].
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Figure 5: The face poset of OGr+(2,5) matches that of OGr+(3,6). See Figure
7 in [10].

We finish this section by explaining how one goes from matchings τ on [2k+
2] to the admissible permutations in [2k+1] i.e. permutations σ of [2k+1] with
corresponding positroid cell Πσ such that Πσ ∩OGr+(k,2k+1) is nonempty.

Let c denote the chord in τ attached to the vertex 2k+2 and, starting from
the vertex 2k + 2, consider the largest sequence c = c1,c2, . . . ,cr of pairwise
intersecting chords of τ . Denote the 2r vertices of these chords by i1 < · · · <
i2r−1 < 2k + 2. Then the cell Πτ ∩OGr+(k + 1,2k + 2) is isomorphic to the
cell Πσ ∩OGr+(k,2k+ 1) where σ is the permutation of [2k+ 1] obtained by
replacing the chords c1, . . . ,cr with the unique cycle with support {i1, . . . , i2r−1}
and r excedances. See Figure 6 for an example.

5. What goes wrong for OGr+(k,n) when n > 2k+1 and k > 1?

In this section we show why positroid cells fail to induce a cell decomposition
of OGr+(k,n) as soon as n > 2k+1 and k > 1. Let us start with the following:
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τ σ

Figure 6: A matching τ of [2k + 2] and the corresponding permutation σ of
[2k+1] for k = 7. In the left figure, starting vertex 16 (in blue), the chords in red
are longest sequence of chords c1, . . . ,cr that intersect each other pairwise. In
the figure on the right, the blue vertex is deleted and the chords in red are turned
into the unique cycle with support {1,2,4,8,11,13,15} and 4 excedances.

Definition 5.1. For any positroid M of type (k,n) and for any pair of subsets
I,J of [n] of size k−1 we define the following two subsets of [n]:

A±
IJ(M ) =

{
ℓ ∈ [n] : Iℓ,Jℓ ∈ M and (−1)ℓ−1

εIℓεJℓ =±1
}
.

We say that M is an orthopositroid if for any I,J ∈
( [n]

k−1

)
we have:

A+
IJ(M ) = /0 ⇐⇒ A−

IJ(M ) = /0.

Example 5.2. Let n = 5 and consider the two following positroids:

M1 =
{
{1,2},{1,4},{2,5},{4,5}

}
and M2 =

{
{1,2},{1,3},{2,4},{3,4}

}
.

We then have:
A+

24(M1) = /0 and A−
24(M1) = {2}.

So M1 is not an orthopositroid. One can check that M2 is an orthopositroid.

The motivation behind this definition is that if X is a point in OGr+(k,n)
and MX is its associated positroid then MX is necessarily an orthopositroid in
the sense of Definition 5.1. This is because the Plücker coordinates of X satisfy
the equations (5).

Since we will show that positroid cells dot not induce a CW cell decompo-
sition of OGr+(k,n), we refrain from elaborating more on the realizability of
orthopositroids for general k, leaving that discussion for upcoming work, and
state the following

Conjecture 5.3. The orthopositroids in the sense of Definition 5.1 are realizable
i.e. for any orthopositroid M of type (k,n), there exists X ∈ OGr+(k,n) such
that M = MX .
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Let us start with OGr+(2,6). A exhaustive computation shows that, out
of all the positroids M (or decorated permutations σ ) of type (2,6), there
are exactly 99 orthopositroids (or admissible permutations). All of these or-
thopositroids are realizable in OGr+(2,6) and are listed in Table 1. Let us now
focus on the following orthopositroid cells σ and τ in OGr+(2,6):

5

6

1

2

3

4

5

6

1

2

3

4

σ τ

We shall show that Cσ =Πσ ∩OGr+(2,6) and Cτ =Πτ ∩OGr+(2,6), which
are cells of dimension 2, have the combinatorial type of a triangle and a square
respectively. We start by giving generic matrices Mσ ,Mτ that describe the points
of the cells Cσ ,Cτ respectively:

Mσ =

[
1 1 0 0 −x −x
0 0 1 1 y y

]
, where x,y > 0,

Mτ =

[
1 1 0 0 0 0
0 0 1 a b c

]
, where

{
a,b,c > 0
1+b2 = a2 + c2 .

Note that on the one hand, the closure of the cell Cτ in OGr+(2,6) is isomorphic
to OGr+(1,4) so Theorem 3.1 implies that Cτ has the same combinatorial type
as a square. On the other hand, the closure of the cell Cσ has the combinatorial
type of a triangle. Its edges are given by:

e1 =

[
1 1 0 0 b b
0 0 1 1 0 0

]
, e2 =

[
1 1 b b 0 0
0 0 0 0 1 1

]
, e3 =

[
1 1 0 0 0 0
0 0 1 1 b b

]
b ≥ 0.

The edge e1 is one of the diagonals of the “square” Cτ . So the cell Cσ glues with
the cell Cτ as in Figure 7.

Figure 7: A cartoon of the cell Cσ (in green) glued to the cell Cτ (in red).
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This shows that the positroid cells are not enough to induce a CW cell de-
composition on OGr+(2,6). In general this problem arises as soon as n> 2k+1.
This is because whenever n > 2k+1 we have n−6 ≥ 2(k−2), so we can extend
a 2×6 matrix in OGr+(2,6) by a (k−2)× (n−6) as follows



1 1 0 · · · · · · · · · · · · · · · · · · · · · · · · 0
0 0 1 1 0 · · · · · · · · · · · · · · · · · · 0

0 · · · · · ·
. . . · · · · · · · · · · · · · · · · · ·

... (0)
... · · · · · · · · · 0 1 1 · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · · · 0 1 1 0 · · · 0

∗ ∗ ∗ ∗ ∗ ∗
(0) ∗ ∗ ∗ ∗ ∗ ∗


.

We can then realize each positroid cell in OGr+(2,6) as some positroid cell
of OGr+(k,n) and the same problem as above arises again. This highlights the
need for new combinatorics to give a CW cell decomposition of OGr+(k,n)
when n > 2k+1 and k > 1.

Problem 5.4. Find a cell decomposition for OGr+(k,n) when n > 2k+ 1 and
describe the combinatorics behind its face poset.
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