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THE TWO-LOOP AMPLITUHEDRON

GABRIELE DIAN - ELIA MAZZUCCHELLI - FELIX TELLANDER

The loop-Amplituhedron A(L)
n is a semialgebraic set in the product of

Grassmannians GrR(2,4)L. Recently, many aspects of this geometry for
the case of L = 1 have been elucidated, such as its algebraic and face
stratification, its residual arrangement and the existence and uniqueness
of the adjoint. This paper extends this analysis to the simplest higher loop
case given by the two-loop four-point Amplituhedron A(2)

4 .

1. Introduction

The loop Amplituhedron Ak,n,4,L, introduced by Arkani-Hamed and Trnka in [3],
is a semialgebraic set in GrR(k,k+4)×GrR(2,k+4)L. It is conjectured that it
is a weighted positive geometry [1] whose canonical form yields the integrand
of scattering amplitudes in N = 4 super Yang-Mills theory. There, n represents
the number of particles, k relates to their helicity, L is the loop order, and we
always have m = 4.
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Our work is in fact mainly motivated by positive geometries [1]. In that con-
text, the relevant geometric object is a real semialgebraic set, which is equipped
with a unique complex meromorphic form called the canonical form. The latter
has logarithmic singularities only on its boundaries, and it is holomorphic else-
where. The definition of a positive geometry [1, Section 2.1] is recursive in the
dimension: the residue of the canonical form on each boundary divisor of the
semialgebraic set is the canonical form of the boundary, so that the boundary
(as a real semialgebraic set) is a positive geometry by itself. In general, it can be
difficult to analyze all possible sequences of residues of a canonical form, due
to the potentially intricate structure of the boundaries. A natural first step is to
analyze the algebraic boundary stratification, and its partition into boundary and
residual strata, see Definition 3.2. Along the lines of [19], this is the approach
we follow in this paper.

Great progress has been made recently in the study of the boundary structure
of tree Amplituhedra, which correspond to the case L = 0, for m = 2,4 [10, 17].
For higher loops L > 0 and k = 0, m = 4, the loop Amplituhedron, denoted
in the following by A(L)

n , was largely unexplored. A first study of A(L)
4 for

L ≤ 4 has appeared in the physics literature [11], where however the presence of
internal boundaries has not been noticed. Internal boundaries separate regions
of opposite orientation and their presence was first observed in [8]. Because
of this, loop Amplituhedra are not strictly speaking positive geometries [1] but
are conjectured to be weighted positive geometries [8]. However, the one-loop
case A(1)

n does not present this feature. In fact, many aspects of A(1)
n have been

elucidated in [19], including the algebraic and face stratification as well as the
existence and uniqueness of the adjoint, which lead to the proof that A(1)

n is a
positive geometry according to the common definition [2]. In this paper, we
generalise the analysis of [19] and focus on the simplest higher loop case: the
two-loop four-point Amplituhedron A(2)

4 .

We determine the stratification of the algebraic boundary of A(2)
4 , see Defi-

nition 3.1. Analogously to [19], we represent all strata as intersections of Schu-
bert varieties, which in this case lie in the product of Grassmannians Gr(2,4)2.
We then determine the intersection of complex strata with A(2)

4 and sort them
into boundary and residual strata. Compared to A(1)

4 , the real stratification of
A(2)

4 exhibits new topological features. The interior is not simply connected and
there are boundaries which are disconnected or contain more regions, see Def-
inition 4.3. We checked our results about the algebraic and real stratification
computationally, with Macauly2 and Maple; our codes are available at [9].

Another point we address, generalizing the analysis in [19], is the adjoint
hypersurface of A(2)

4 . In the context of Wachspress coordinates and polypols,
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generalizations of the adjoint have appeared in the literature, see [14]. In that
context, the adjoint is uniquely determined, by requiring it to have a fixed de-
gree and to interpolate the residual arrangement [14, Proposition 2.2]. Note that
the defining equation of the adjoint curve of a polytope or a polypol is in fact
the numerator of its canonical form, see [15, Theorem 5] and [14, Proposition
2.14]. A definition of the adjoint for general positive geometries is given in [15,
Definition 2]. Recently, the authors of [19] proved that the one-loop Amplituhe-
dron A(1)

n has a unique adjoint hypersurface, fully determined by the residual
arrangement. We extend this result to the two-loop case A(2)

4 .
This paper is structured as follows. Section 2 defines loop Amplituhedra

and provides a geometric way of visualizing A(2)
4 . Section 3 presents our results

about the algebraic stratification of A(2)
4 . Section 3.4 discusses the structure of

the real stratification, in particular of the residual arrangement. Section 4 is ded-
icated to topological considerations: we compute the fundamental group of the
interior of A(2)

4 , the number of connected components and regions, see Defini-
tion 4.3, of each (real) boundary stratum. Finally, Section 5 explains how the
adjoint geometry of A(2)

4 is uniquely determined by the residual arrangement.

2. Loop Amplituhedra and Grassmannians

Conventionally, the Amplituhedron depends on four integer parameters k,m,n,L;
see for instance [1, Eq. (6.36)]. In this paper, we fix the values k = 0, m = 4,
which turn out to be equivalent to k = m = 2 with L − 1 instead of L. The
following definition appeared for the first time in [2].

Definition 2.1 (The loop Amplituhedron). The n-point L-loop Amplituhedron
A(L)

n for n ≥ 4 and L ≥ 1 is the real semialgebraic set in the L-fold product
of Grassmannians GrR(2,4)L cut out by the following conditions. We fix a
totally positive matrix Z ∈ Rn×4 and represent points in GrR(2,4)L by tuples
(A1B1, . . . ,ALBL) of 2×4 matrices AℓBℓ for ℓ= 1, . . . ,L. Then, the inequalities
cutting out A(L)

n are given by

1. ⟨AℓBℓii+1⟩> 0 for i = 1, . . . ,n−1 and ⟨AℓBℓ1n⟩> 0,

2. the sequence (⟨AℓBℓ12⟩,⟨AℓBℓ13⟩, . . . ,⟨AℓBℓ1n⟩) has two sign flips, ig-
noring zeros,

3. ⟨AℓBℓAℓ′Bℓ′⟩> 0 for every ℓ < ℓ′,

for every ℓ,ℓ′ ∈ 1, . . . ,L, where we denote by i the i-th column of Z and use
twistor coordinates: for X ,Y ∈ GrR(2,4) we write ⟨XY ⟩ for the determinant of
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the 4×4 matrix obtained by stacking together X with Y . Then, we define A(L)
n

to be the Euclidean closure of this semialgebraic set in GrR(2,4)L.

We point out that there is an alternative definition of the loop Amplituhe-
dron, see [1, Eq. (6.35)]. In order to introduce it we define the following, which
is a special case of [1, Section 6.4].

Definition 2.2 (The positive loop Grassmannian). We define the n-point L-loop
positive Grassmannian Gr>0(2,n;L) to be the real semialgebraic set in the L-
fold product of Grassmannians GrR(2,n)L satisfying the following condition.
Let (D1, . . . ,Dn) be matrix representatives of a point in Gr>0(2,n)L. Then, this
corresponds to a point in Gr>0(2,n;L) if for every 1 ≤ ℓ ≤ n/2 and for every
(i1, . . . , iℓ) ∈

([L]
ℓ

)
, the 2ℓ×n matrix obtained from stacking together Di1 , . . . ,Diℓ

has positive maximal minors. We define Gr≥0(2,n;L) as the Euclidean closure
of Gr>0(2,n;L) inside GrR(2,n)L.

Then, the n-point L-loop Amplituhedron is alternatively defined as the im-
age of Gr≥0(2,n;L) under the rational map

Z̃ : Gr(2,n)L → Gr(2,4)L, ([D1], . . . , [DL]) 7→ ([D1 ·Z], . . . , [DL ·Z]) , (1)

where square brackets indicate the equivalence class of a matrix regarded as a
point in the Grassmannian. To the best of our knowledge, the equivalence of
these two definitions is not proven for general n and L, but it has been proven in
[19, Lemma 2.3] for L = 1.

2.1. Visualizing the two-loop Amplituhedron

From now on we fix n = 4. In this case, the map (1) is an isomorphism and we
can take without loss of generality Z to be the 4×4 identity matrix. Then, one
can check that Definition 2.1 and 2.2 are equivalent. The one-loop geometry
is just the positive Grassmannian A(1)

4 = Gr≥0(2,4), while what we really are
interested in is the two-loop Amplituhedron

A(2)
4 = Gr≥0(2,4;2) = {(AB,CD) ∈ Gr≥0(2,4)2 : ⟨ABCD⟩ ≥ 0} . (2)

Note that the Grassmannian Gr(k,n) can be identified with the space of (k−1)-
planes in Pn−1. As our notation suggests, we favour this picture, i.e. we identify
an element AB ∈ Gr(2,4) with a line in P3 and A and B as distinct points in P3

lying on AB. In this way we can visualize A(1)
4 in the following way. Let us take

a chart of P3(R) containing the four points Zi in a compact region and let AB



THE TWO-LOOP AMPLITUHEDRON 259

be a line in P3(R). By standard projective geometry, we can represent it by any
two distinct points on it. We choose

A := AB∩ (−412) =−Z4⟨AB12⟩+Z1⟨AB42⟩+Z2⟨AB14⟩ , (3)

where we denote by (i j) the line through Zi and Z j, and by (i jk) the plane
through Zi, Z j and Zk. Then, the conditions 1 and 2 in Definition 2.1 force the
coefficients in (3) in front of the Zi’s to be positive. This means that A lies in the
triangle T1, given by the convex hull of −Z4, Z1 and Z2. Similarly, we chose the
point B as

B := AB∩ (234) = Z2⟨AB34⟩+Z3⟨AB42⟩+Z4⟨AB23⟩ , (4)

Again, one finds that the Amplituhedron condition forces B to lie in the triangle
T2, given by the convex hull of Z2, Z3 and Z4. Note the necessary choice of the
minus sign in front of Z4 in (3); a visualization and more details on this can be
found in [7]. One easily verifies that the geometric picture for the line AB is
actually equivalent to the L = 1 Amplituhedron conditions, i.e.

AB ∈ A(1)
4 = Gr≥0(2,4) ⇐⇒ A ∈ T1 and B ∈ T2 . (5)

It is then straightforward to generalize this picture to A(L)
4 : we simply introduce

L lines, i.e. L points Aℓ in T1 and L points Bℓ in T2. The complication arises from
the condition (3) in Definition 2.1, which imposes relative constraints between
pairs of lines AℓBℓ and Aℓ′Bℓ′ . Let us now see how this works for L = 2. In this
case we have two lines, i.e. two pairs of points: A,C in T1 and B,D in T2. These
are subject to only one condition given by

⟨ABCD⟩=⟨AB12⟩⟨CD34⟩+ ⟨AB34⟩⟨CD12⟩+ ⟨AB23⟩⟨CD14⟩+
⟨AB14⟩⟨CD23⟩−⟨AB13⟩⟨CD24⟩−⟨AB24⟩⟨CD13⟩ ≥ 0 .

(6)

Note that there is a symmetry under the group Z2 ×D4, where Z2 acts by ex-
changing AB with CD, and the dihedral group D4 of order 4 acting on the Zi’s.
Equation (6) can also be rewritten using the Plücker relations for AB and CD as

⟨ABCD⟩=
∆24

2 ∆24
4 −∆24

1 ∆24
3

⟨AB24⟩⟨CD24⟩
≥ 0 , (7)

where ∆24
i is defined as

∆
24
i := ⟨ABii+1⟩⟨CD24⟩−⟨AB24⟩⟨CDii+1⟩ . (8)



260 GABRIELE DIAN - ELIA MAZZUCCHELLI - FELIX TELLANDER

1

2

−4

T1

A

3

4

T2

B

C
D

(ABC)∩ (234)

Figure 1: Illustration of one point (AB,CD) in A(2)
4 according to (5). For fixed

A,B,C, condition (6) fixes on which side of the line (ABC)∩ (234) D lies in T2.
The blue lines represent the vanishing of ∆24

i for i ∈ {1, . . . ,4}, see (9) and (8).

We can rewrite (8) more geometrically as1

∆
24
2 =−⟨AB2(CD)∩ (234)⟩=−⟨AB2D⟩ , (9)

where in the last equality we used (4) for CD. Similarly, we have2

∆
24
1 =−⟨AB2C⟩ , ∆

24
3 = ⟨AB4D⟩ , ∆

24
1 =−⟨AB2C⟩ . (10)

Equation (7) has the following geometric interpretation: For fixed A and B, the
sign of (9) depends only on which side of the line (2B) the point D lies within
T2.

From (10) we can see that the sign regions of the vector (∆24
1 ,∆24

2 ,∆24
3 ,∆24

4 )
triangulate both T1 and T2 into four smaller triangles each. Positivity of (7)
allows only 12 out of 16 sign-regions. Out of the 16 sign-regions, the following
four do not intersect A(2)

4 :

(+−−−) , (+−++) , (−+−−) , (−+++) . (11)

An illustration of this can be found in Figure 1.

3. Algebraic and real boundary stratification

In this section, we analyze the stratification of the algebraic boundary of the two-
loop Amplituhedron and give a full list of complex strata labeled as intersections

1The expression ⟨AB2(CD)∩ (i jk)⟩ indicates that the last column of the 4× 4 matrix corre-
sponds to (CD)∩ (i jk).

2Note that these expressions are valid only after (3) and (4).
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of Schubert varieties, together with their multiplicities. Finally, we will take
the intersection of these strata with the amplituhedron and compute the real
boundary stratification.

We denote the Euclidean boundary of A(2)
4 in GrR(2,4)2 by ∂A(2)

4 and
the algebraic boundary by ∂aA(2)

4 , which is defined as the Zariski closure in
Gr(2,4)2 of ∂A(2)

4 . Following [15, 19], we stratify ∂aA(2)
4 as follows.

Definition 3.1. We define a stratum S ⊂ ∂aA(2)
4 to be a complex variety in

Gr(2,4)2 constructed recursively as follows. If the codimension of S is one,
then it is one of the irreducible components of ∂aA(2)

4 . If S has codimension
r > 1, then it is an irreducible component of the intersection of two strata of
codimension r−1 in ∂A(2)

4 .

We checked computationally with Macaulay2 [13] that the set of strata is
closed under intersections. We also checked that all strata are normal. There-
fore, one can equivalently define a stratum by iteratively taking the irreducible
components of singular loci of codimension one, see [6, Chapter 9, Theorem 8].

3.1. The boundary divisors

We first determine the boundary strata, i.e. the irreducible components of
∂aA(2)

4 . By (2), ∂aA(2)
4 will contain the algebraic stratification of two copies

of A(1)
4 , which one can find in [19, Table 1]. The elements in the stratification

of A(1)
4 can be expressed as intersections of the following Schubert varieties:

L(1)
i := {AB∩ (ii+1) ̸= /0} , V (1)

i := {i ∈ AB} , P(1)
i := {AB ⊂ (i−1ii+1)} , (12)

for i ∈ {1, . . . ,4} taken modulo 4. Analogously, we use the superscript (2) for
the corresponding varieties for CD. We refer to elements in ∂aA(2)

4 that can be
written as intersections of only these Schubert varieties as product strata, and to
their union as product stratification. In this way, by (2) there are eight boundary
divisors in the product stratification of A(2)

4 , given by L(ℓ)
i for i = 1, . . . ,4 and

ℓ = 1,2. There is an additional bidegree (1,1) boundary divisor given by the
vanishing of (6), which we denote by

L(1,2) := {AB,CD ⊂ P3 : AB∩CD ̸= /0} ⊂ Gr(2,4)2 . (13)

There are therefore nine boundary divisors3. We point out that the singular
locus of L(1)

i and that of L(1,2) have both codimension three and are given by

3This fact can be easily checked by choosing a parametrisation of GrR(2,4)2.
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AB = (ii+1) and {AB =CD} respectively. Therefore, all boundary divisors are
normal algebraic varieties.

The more intricate part of the determination of the stratification of ∂aA(2)
4

lies in the strata involving an intersection with (13). For instance, on L(1)
1 L(2)

1
(where from now on we omit the intersection symbols between Schubert vari-
eties) we have that (7) factorises as

⟨ABCD⟩= ∆24
2 ∆24

4
⟨AB24⟩⟨CD24⟩

, (14)

which consists of two irreducible components, both of codimension three. In
terms of Shubert varieties, we will denote this as

L(1,2)L(1)
1 L(2)

1 =V1(1,2)∪P1(1,2) (15)

where the component V1(1,2) is defined by the vanishing of ∆24
4 and corresponds

to the geometric configuration in which the three lines AB, CD and (12) intersect
in a single point, while P1(1,2) is defined by the vanishing of ∆24

2 , denotes the
component on which they are coplanar.

Other relevant instances of factorisation are

Vi−1(1,2)Vi(1,2) =V (1)
i V (2)

i ∪P(12)
i ,

Pi−1(1,2)Pi(1,2) = P(1)
i P(2)

i ∪V (12)
i ,

(16)

where V (12)
i denotes the two-dimensional irreducible component where AB =

CD passes through Zi, while P(12)
i denotes the two-dimensional component where

AB = CD lies in the plane (i− 1ii+ 1). Note that the irreducible components
on the right-hand side of (16) have dimension four and two respectively. This is
due to the fact that the divisors we are considering are non-generic.

3.2. Strata in each codimension

We now present our result about the computation of all strata in ∂aA(2)
4 . We

computed all strata using the Schubert-like relations listed in Section 3.3 and
checked our result using Macaulay2 [13]. A summary of the counting of strata
ordered by codimension is given in Table 1. We give a list of all strata in Ap-
pendix A. Our results are summarized as follows. We present one table for each
codimension, ranging from one to eight. The indices run as follows: ℓ = 1,2
is taken modulo 2 and i, j,k, l = 1, . . . ,4 are taken modulo 4. Each stratum’s
multiplicity is given, along with its classification as either part of the bound-
ary or residual arrangement. The next column shows the number of connected
components formed by the intersection with A(2)

4 , while the final column lists
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Codimension: 1 2 3 4 5 6 7 8
Components: 9 44 144 324 450 370 168 36
Boundaries: 9 44 144 286 356 306 156 34
Residual: 0 0 0 38 94 64 12 2
Regions: 9 52 176 326 416 342 156 34

Table 1: Number of strata in each codimension of the algebraic boundary of
A(2)

4 , with a breakdown of boundary and residual components, as well as the
number of regions, see Definition 4.3.

the number of regions for each boundary stratum, both of which are discussed
in Section 4.1. Additionally, each table features a horizontal separation into two
families: strata above the line belong to the product stratification, while those
below do not, and are therefore contained in L(1,2).

3.3. Schubert-like relations

By standard results in Schubert calculus, the varieties in (12) satisfy

L(ℓ)
i−1L(ℓ)

i =V (ℓ)
i ∪P(ℓ)

i , V (ℓ)
i L(ℓ)

i+1 =V (ℓ)
i P(ℓ)

i+1 , V (ℓ)
i L(ℓ)

i−2 =V (ℓ)
i P(ℓ)

i−1 . (17)

They also satisfy (15) and (16). Additionally, there are other relations. One way
of finding these is to consider one of the lines to be fixed and using standard
Schubert calculus with respect to the other one. Here we give a (conjecturally
minimal) list of relations. First of all, we have product strata which lie in L(1,2):

V (ℓ)
i V (ℓ+1)

i , P(ℓ)
i P(ℓ+1)

i , V (ℓ)
i V (ℓ)

i+1L(ℓ+1)
i , L(ℓ)

i V (ℓ+1)
i V (ℓ+1)

i+1 , (18)

and all the substrata thereof. Secondly, we find the following relations:

Vi(1,2)V
(ℓ)
i =V (ℓ)

i V (ℓ+1)
i ∪V (ℓ)

i V (ℓ)
i+1L(ℓ+1)

i ,

Pi(1,2)P
(ℓ)
i = P(ℓ)

i P(ℓ+1)
i ∪V (ℓ)

j V (ℓ)
i+1L(ℓ+1)

i ,

Vj(1,2)V
(ℓ+1)
i V (ℓ)

i =V (ℓ)
i V (ℓ+1)

i , Pj(1,2)P
(ℓ)
i P(ℓ+1)

i = P(ℓ)
i P(ℓ+1)

i j = i, i−1 ,

Pi(1,2)V
(ℓ)
i V (ℓ)

i+1 =Vi(1,2)V
(ℓ)
i V (ℓ)

i+1 =V (ℓ)
i V (ℓ)

i+1L(ℓ+1)
i ,

Pi(1,2)Pi+2(1,2) =Vi(1,2)Vi+2(1,2) ,

Vi(1,2)Pi+2(1,2) =Vi(1,2)L
(ℓ)
i+2L(ℓ+1)

i+2 = Pi+2(1,2)L
(ℓ)
i L(ℓ+1)

i ,

Vi(1,2)Pi+1(1,2) =Vi(1,2)P
(ℓ)
i P(ℓ+1)

i ∪Pi+1(1,2)V
(ℓ)
i V (ℓ+1)

i ,

V (12)
i P(12)

i =V (12)
i P(ℓ)

i =V (12)
i P(ℓ+1)

i = P(12)
i V (ℓ)

i = P(12)
i V (ℓ+1)

i ,

V (12)
i P(ℓ)

i+1P(ℓ+1)
i+1 =Vi+1(1,2)V

(ℓ)
i V (2+1)

i .
(19)
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3.4. Real stratification

We now determine the real boundary stratification of A(2)
4 . We introduce Defi-

nition 3.2 which is motivated by the discussion we present in Section 5.

Definition 3.2. Let S be a complex stratum in ∂aA(2)
4 , see Definition 3.1. We

write S≥0 := S∩A(2)
4 and denote by S>0 the relative interior of S≥0 in the real

points S(R) of S. Note that S>0 is a real manifold. We call S a boundary or
face of A(2)

4 if the real dimension of S>0 is equal to the complex dimension of S,
and residual otherwise. We call residual arrangement of A(2)

4 the (projective)
variety given by the union of all residual strata.

We now focus our attention on the determination of the residual arrange-
ment of A(2)

4 . Recall that the residual arrangement of A(1)
4 is empty. Instead,

for A(2)
4 the residual arrangement is 4-dimensional and its 4-dimensional irre-

ducible components are

V (1)
1 V (1)

3

1

2 3

4

V (1)
1 P(1)

2 L(2)
1

1

2 3

4

P(1)
2 V (2)

2

1

2 3

4

L(1)
1 L(1)

3 L(2)
2 L(2)

4

1

2 3

4

L(1,2)V (1)
2 P(1)

2

1

2 3

4

L(1,2)V (1)
1 P(1)

2

1

2 3

4

as well as all the configurations in their orbits under the symmetry group, see Ta-
ble 6. Here we follow the pictorial depiction of Schubert conditions introduced
in [19]. The bracket ⟨ABCD⟩ reduces to −⟨AB24⟩⟨CD13⟩ in the first three con-
figurations and −⟨AB24⟩⟨CD13⟩− ⟨AB13⟩⟨CD24⟩ in the fourth one. Equation
(6) implies that the intersection of these complex strata with A(2)

4 is empty. On
the variety L(1,2)V (1)

2 P(1)
2 we have instead

⟨ABCD⟩= ⟨AB34⟩⟨CD12⟩+ ⟨AB14⟩⟨CD23⟩= 0 . (20)

It follows that the intersection of this four-dimensional stratum with A(2)
4 is

three-dimensional and therefore residual. An analogous situation happens to
L(1,2)V (1)

1 P(1)
2 , as well as to the following three-dimensional complex strata:
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L(1,2)V (1)
1 V (2)

3

1

2 3

4

L(1,2)P(1)
1 P(2)

3

1

2 3

4

All other strata of the residual arrangement are contained in the ones above
and can be found in Appendix A. The residual arrangement can also be cal-
culated directly using the RegularChains [16] library in Maple. We used
LazyRealTriangularize [4] to determine the residual arrangement and the
inequality description of boundaries’ interior.

4. Topology

Now we turn our attention to the study of the real topology of A(2)
4 . While the

interior of A(1)
4 is homeomorphic to an open ball [12], this is no longer true at

two loops.

Theorem 4.1. The Euclidean interior int(A(2)
4 ) of A(2)

4 is connected and its
fundamental group is free of rank one4.

Proof. Let us start by observing that int(A(2)
4 ) is a fiber bundle over int(A(1)

4 )
via the projection map on the first component AB, with fibers homeomorphic to

F := {CD ∈ int(A(1)
4 ) : ⟨ABCD⟩> 0} , (21)

for any AB ∈ int(A(1)
4 ). Since int(A(1)

4 ) is contractible [12], the fiber bundle is
trivial and therefore, if F is connected so is int(A(2)

4 ). Moreover, the fundamen-
tal group of int(A(2)

4 ) is isomorphic to that of F .
Let us start by showing that F is connected. We want to find a path between

two points CiDi ∈ F for i = 1,2. We choose A, Ci to lie on T1 and B, Di on T2,
see Figure 1. A path C(t)D(t) with t ∈ [0,1] from C1D1 to C2D2 draws paths
C(t) in T1 and D(t) in T2. Let us take a path C(t) connecting C1 to C2. For
each point C(t) we can see that the allowed region for D(t) is determined by
⟨ABC(t)D(t)⟩ > 0, which carves out one of the two connected components of
the complement of T2 by the line L(t) := (ABC(t))∩ (234). The latter is drawn
in red in Figure 1. By continuity there always exists a path D(t) from D1 to
some point D(1) such that C(t)D(t) always lies in F . It is now easy to see that

4We thank Thomas Lam for pointing this out to us.
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D(1) and D2 lie in the same connected component of the complement of T2 by
L(1), and hence C2D(1) and C2D2 can be connected by a path in F .

We now study at the fundamental group of F . As before, a loop γ(t) =
C(t)D(t) in F draws loops C(t) in T1 and D(t) in T2. A homotopy between
loops in F yields homotopies between the respective loops in T1 and T2. Assume
that C(t) has winding number w ∈ Z around A. Since D(t) must always lie on
the same side of L(t) defined as in the previous paragraph, it is clear that the
winding of D(t) around B must be w as well. Finally, if w ̸= 0 then γ(t) is not
contractible, because C(t), D(t) cannot be equal to A, B respectively because of
(21).

4.1. Towards the CW-structure

On the positive Grassmannian there is a regular CW structure given by the
positroid stratification [18]. More precisely, each d-dimensional (complex) stra-
tum in ∂aA(1)

4 intersects A(1)
4 in a (real) d-dimensional set, which is in fact a

(closed) positroid cell. We can therefore endow A(1)
4 with a regular CW struc-

ture directly from the algebraic stratification.
When considering A(2)

4 , there are three main aspects we want to highlight:
the nontrivial topology of the interior, the non-connectedness of some faces
(see also [11]) and the presence of multiple regions, see Definition 4.3. Finally,
we explain how one may give a CW structure to A(2)

4 starting from its face
stratification.

Let us begin with the first point. By Theorem 4.1, to equip A(2)
4 with a CW

structure, we must divide its interior into at least two cells. The following lemma
demonstrates that two cells suffice, as shown by a straightforward application
of the argument in the proof of Theorem 4.1.

Lemma 4.2. The two regions in int(A(2)
4 ) defined by {∆24

i > 0} and {∆24
i < 0}

for any fixed i ∈ {1, . . . ,4} are both contractible.

The second distinctive feature at two loops is the presence of disconnected
faces. Their number is nevertheless very limited and they appear only at codi-
mension two and three, see Table 4 and 5. Finding the connected components
of a real semialgebraic set is a famously challenging problem. It is in principle
solved by calculating a cylindrical algebraic decomposition (CAD) [5]. The
CAD yields a decomposition into disjoint cells that are “cylindrical” (see [5]
for precise meaning). Each cell is homeomorphic to an open cube and therefore
connected. If top-dimensional cells are connected by lower-dimensional cells,
they are a part of the same connected component. We used the CAD implemen-
tation in the Maple library RegularChains [16] for determining the number of
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connected components of boundaries. We now present the disconnected bound-
aries of A(2)

4 . In the following we denote a face by the same expression as that of
the stratum it is associated to. Then, the only disconnected faces at codimension
two are those in the orbit of L(1)

1 L(1)
3 , on which (7) reduces to

⟨ABCD⟩= ∆24
2 ∆24

4
⟨AB24⟩⟨CD24⟩

− ⟨AB24⟩
⟨CD24⟩

⟨CD12⟩⟨CD34⟩ ≥ 0 . (22)

In the plane (∆24
2 ,∆24

4 ) the face L(1)
1 L(1)

3 consists of two connected components
bounded by the hyperbola ⟨ABCD⟩ = 0, which corresponds to L(1,2)L(1)

1 L(1)
3 .

The face associated to the latter also has two connected components, corre-
sponding to the two branches of the hyperbola. It turns out that these are the
only disconnected (closed) faces. There are however faces whose interior is
disconnected, which we also discuss now.

The last point we want to address is that of multiple regions, which is tightly
related to the presence of internal boundaries [8].

Definition 4.3. We define a region of a d-dimensional face S≥0 with d > 0 to be
a connected component of the complement in S≥0 by the union of all (d − 1)-
dimensional (closed) faces.

We now give some examples. Consider the codimension two face L(1)
1 L(2)

1 ,
on which ⟨ABCD⟩ ≥ 0 reduces to ∆24

2 ∆24
4 ≥ 0. Its interior has two connected

components which can be visualized in the plane (∆24
2 ,∆24

4 ) as the union of the
two sign regions (++) and (−−). Its boundary is given by the intersection with
L(1,2) and yields the union of the two coordinate axis, ∆24

2 ∆24
4 = 0, which are

the faces P1(1,2) and V1(1,2). The latter are further separated by the boundary
P1(1,2)V1(1,2), which corresponds to the origin ∆24

2 = ∆24
4 = 0. Therefore,

L(1)
1 L(2)

1 , P1(1,2) and V1(1,2) all have two regions.
As the second example, we take the codimension four face V (1)

1 V (2)
1 . On

this we have ⟨ABCD⟩= 0 but ∆24
2 ,∆24

3 ̸= 0. In particular, if we look at the plane
(∆24

2 ,∆24
3 ), we see that the face consists of all four sign regions. The face has

four regions, separated by two higher codimension boundaries corresponding to
the two coordinate axes, which are Pi(1,2)V

(1)
1 V (2)

1 and for i = 2,4 respectively.
The latter are in turn separated by V (12)

1 into two regions each. An analogous
discussion applies for the face P(1)

1 P(2)
1 .

The highest codimension faces with multiple regions have codimension six.
For example the face P4(1,2)V

(1)
1 P(1)

2 V (2)
1 is separated by the V (12)

1 P(1)
2 P(2)

2 into
two regions, characterised by the sign of ∆24

3 .
These examples show that in order to endow A(2)

4 with a regular CW struc-
ture from its face stratification, one has to subdivide some faces into several
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cells. Let us mention the minimal requirements for such a procedure. There
must be at least two eight-dimensional cells according to Lemma 4.2. The same
applies to the disconnected faces presented above. The zero-dimensional cells
are the 34 vertices of Table 10. All other faces must be decomposed in at least
as many (open) cells as their regions. We find that all these can be characterised
by the sign regions of ∆24

i or ∆13
i for i = 1, . . . ,4, see (8). We enumerate the

regions of each face in the tables of Section A. All regions are easily verified
to be contractible5. We also provide the poset of faces in [9]. This will help in
constructing a regular CW structure on A(2)

4 associated to its face stratification.

5. Unique adjoint

In this section we generalize the result in [19] to the two-loop Amplituhedron,
i.e. we show that the adjoint is uniquely determined by its (bi)degree and the
fact that it interpolates the residual arrangement.

5.1. The adjoint of the loop Amplituhedron

The L-loop n-point Amplituhedron A(L)
n for n ≥ 4 and L ≥ 1, is conjectured to

be a (weighted) positive geometry. More precisely, we expect that there exists a
unique meromorphic top-form on Gr(2,4)L given by

Ω
(L)
n =

L

∏
ℓ=1

⟨AℓBℓdAℓdAℓ⟩⟨AℓBℓdBℓdBℓ⟩ ·Ω
(L)
n , (23)

where Ω
(L)
n is a rational function in twistor coordinates of homogeneous degree

zero in the Zi’s and of degree −4 in each AℓBℓ and dAℓ and dBℓ are the differ-
ential of Al and Bl respectively. The form (23) is required to have logarithmic
poles only on the boundary of A(L)

n and therefore we can write

Ω
(L)
n = N(L)

n (Z1, . . . ,Zn)
N (L)

n
(
A1B1, . . . ,ALBL,Z1, . . . ,Zn

)
∏

L
ℓ=1 ∏

n
i=1

〈
AℓBℓii+1

〉
∏ℓ′<ℓ

〈
Aℓ′Bℓ′AℓBℓ

〉 , (24)

where the numerator N (L)
n is a homogeneous polynomial in the twistor coordi-

nates of AℓBℓ of degree n+ L− 1− 4 = n− 5+ L in each AℓBℓ and Z matrix
minors ⟨i jkl⟩ := det(ZiZ jZkZl). N(L)

n instead is a polynomial that does not de-
pend on twistor coordinates. We call N (L)

n the adjoint polynomial of A(L)
n . Note

that by the symmetries of A(L)
n , it follows that N(L)

n N (L)
n is invariant under the

5One can also analyze this through explicit parametrisations.
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dihedral group of order n acting on the Zi’s, while N (L)
n is symmetric under the

action of the symmetric group SL permuting the loop variables AℓBℓ. In particu-
lar, N (L)

n belongs to R(L)
n := SLRn+L−5, the symmetric L-fold tensor product of

Rn+L−5, where Rk denotes the degree-k part of the coordinate ring of Gr(2,4).
We denote by d(n,L) the complex dimension regarded as a linear space. Then,
d(n,L)− 1 counts the degrees of freedom of the polynomial N (L)

n , up to an
overall constant factor. We have that [19, Eq. 5.1]

d(n,1) =
(

n+1
5

)
−
(

n−1
5

)
= 2

(
n
4

)
−
(

n−1
3

)
, n ≥ 4 . (25)

Therefore,

d(n,L) =
(

d(n+L−1,1)+L−1
L

)
, n ≥ 4 , L ≥ 1 . (26)

n\L 1 2 3
4 0 20 1539
5 5 209 22099
6 19 1274 198484

Table 2: The number of degrees of freedom of N (L)
n up to an overall multiplica-

tive constant, that is d(n,L)−1. For our case of interest, n = 4 and L = 2, this
number is 20.

5.2. Interpolating the residual arrangement

As promised, we now prove the following.

Theorem 5.1. There exists an up to scaling unique bi-homogeneous polynomial
N (2)

4 ∈R(2)
4 of bidegree (1,1) interpolating the residual arrangement of A(2)

4 .

Proof. The proof is an explicit computation relying on the determination of the
residual arrangement of A(2)

4 from Section 3.4. We begin with the general form
of an element in R(2)

4 , which is

N (2)
4 (AB,CD) =

6

∑
i, j=1

Ci j ⟨ABYi⟩⟨CDYj⟩ , (27)

with

Y1 = (12) , Y2 = (23) , Y3 = (34) , Y4 = (41) , Y5 = (13) , Y6 = (24) , (28)
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and Ci j =C ji ∈ C. we show that the 20 degrees of freedom, i.e. all coefficients
Ci j up to an overall scale, are fixed by requiring that N (2)

4 vanishes on all four-
dimensional irreducible components of the residual arrangement, listed at the
beginning of Section 3.4.

We start from the first component V (1)
1 V (1)

3 of the residual arrangement, on
which

N (2)
4 (13,CD) =

6

∑
j=1

C6 j⟨1234⟩⟨CDYi⟩ . (29)

Imposing that N (2)
4 (13,CD) = 0 for every CD ∈ Gr(2,4) forces C6 j = 0 for

every j = 1, . . . ,6. By the dihedral and permutation symmetry, we also obtain
C j6 =C j5 =C5 j = 0. We proceed to the second residual component, V (1)

1 P(1)
2 L(2)

1 ,
on which

N (2)
4 (AB,CD) =

6

∑
j=2

C3 j⟨AB34⟩⟨CDYj⟩+C6 j⟨AB24⟩⟨CDYj⟩ . (30)

Imposing the vanishing of (30) forces C3 j = 0 for every j = 2, . . . ,6 in addition
to the previous conditions. Again, by taking the symmetric configurations we
find many more conditions, such that the only non-vanishing remaining coef-
ficients are C13 = C31 and C24 = C42. At this point, one checks that N (2)

4 also
interpolates the components P(1)

2 V (2)
2 and L(1)

1 L(1)
3 L(2)

2 L(2)
4 . We are left with the

last residual component L(1,2)V (1)
2 P(1)

2 , on which by (20) we have

N (2)
4 (AB,CD) = (C13 −C24)⟨AB34⟩⟨CD12⟩ , (31)

whose vanishing imposes C24 =C13 =: N(2)
4 . At this point, one checks that N (2)

4

vanishes also on L(1,2)V (1)
1 P(1)

2 , as well as on the three-dimensional residual
strata of Section 3.4.

As a result, we obtain

N (2)
4 (AB,CD) = N(2)

4

(
⟨AB12⟩⟨CD34⟩+ ⟨AB34⟩⟨CD12⟩
+ ⟨AB14⟩⟨CD23⟩+ ⟨AB23⟩⟨CD14⟩

)
,

(32)

which for N(2)
4 = ⟨1234⟩3 reproduces the known result, see e.g. [8, Eq. (2)].

At this point we stress again that A(2)
4 is known to not be a positive geometry

according the the definition in [1], because of the presence of internal bound-
aries and non-unit maximal residues [8]. Nevertheless, it is believed that A(2)

4
is a weighted positive geometry [8], a generalization of positive geometry. In
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order to prove this, one should compute the residues of (24) with the explicit
form and normalization of (32) on every stratum of the algebraic stratification.
This has been done for A(1)

4 in [19]. Some results in this direction for A(2)
4 can

be found in [11, Section 9.1].
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A. List of strata

Schubert condition indices multiplicity type components regions
L(ℓ)

i 8 b 1 1
L(1,2) 1 b 1 1

Table 3: The 9 boundary strata of codimension one.

Schubert condition indices multiplicity type components regions
V (ℓ)

i 8 b 1 1
P(ℓ)

i 8 b 1 1
L(ℓ)

i L(ℓ)
i+2 4 b 2 2

L(ℓ)
i L(ℓ+1)

j j = i±1 8 b 1 1

L(ℓ)
i L(ℓ+1)

i+2 4 b 1 1
L(ℓ)

i L(ℓ+1)
i 4 b 1 2

L(1,2)L(ℓ)
i 8 b 1 1

Table 4: The 44 boundary strata at codimension two.

Schubert condition indices multiplicity type components regions
V (ℓ)

i P(ℓ)
j |i− j| ̸= 2 24 b 1 1

V (ℓ)
i L(ℓ+1)

j 32 b 1 1

P(ℓ)
i L(ℓ+1)

j 32 b 1 1

L(ℓ)
i L(ℓ)

i+2L(ℓ+1)
j j = i±1 8 b 1 1

L(ℓ)
i L(ℓ)

i+2L(ℓ+1)
j j = i, i+2 8 b 1 2

L(1,2)V (ℓ)
i 8 b 1 1

L(1,2)P(ℓ)
i 8 b 1 1

L(1,2)L(ℓ)
i L(ℓ)

i+2 4 b 2 2
L(1,2)L(ℓ)

i L(ℓ+1)
j j = i±1 8 b 1 1

L(1,2)L(ℓ)
i L(ℓ+1)

i+2 4 b 1 4
Vi(1,2) 4 b 1 2
Pi(1,2) 4 b 1 2

Table 5: The 144 boundary strata at codimension three.



THE TWO-LOOP AMPLITUHEDRON 273

Schubert condition indices multiplicity type components regions
V (ℓ)

i V (ℓ)
j j = i±1 8 b 1 1

V (ℓ)
i V (ℓ)

j j = i, i+2 4 r

V (ℓ)
i P(ℓ)

j L(ℓ+1)
i j = i±1 16 r

V (ℓ)
i P(ℓ)

j L(ℓ+1)
k else 80 b 1 1

V (ℓ)
i V (ℓ+1)

j i ̸= j 12 b 1 1

V (ℓ)
i V (ℓ+1)

i 4 b 1 4
V (ℓ)

i P(ℓ+1)
j i ̸= j 24 b 1 1

V (ℓ)
i P(ℓ+1)

i 8 r
V (ℓ)

i L(ℓ+1)
j L(ℓ+1)

j+2 16 b 1 1

P(ℓ)
i P(ℓ+1)

j i ̸= j 12 b 1 1

P(ℓ)
i P(ℓ+1)

i 4 b 1 4
P(ℓ)

i L(ℓ+1)
j L(ℓ+1)

j+2 16 b 1 1

L(ℓ)
i L(ℓ)

i+2L(ℓ+1)
i−1 L(ℓ+1)

i+1 2 r
L(ℓ)

i L(ℓ)
i+2L(ℓ+1)

i L(ℓ+1)
i+2 2 b 1 2

L(1,2)V (ℓ)
i P(ℓ)

j j = i±1 16 b 1 1

L(1,2)V (ℓ)
i P(ℓ)

i 8 r
L(1,2)V (ℓ)

i L(ℓ+1)
j j = i+1, i+2 16 b 1 1

Pj(1,2)V
(ℓ)
i j = i−1, i 16 b 1 1

L(1,2)P(ℓ)
i L(ℓ+1)

j j = i+1, i+2 16 b 1 1

Vj(1,2)P
(ℓ)
i j = i−1, i 16 b 1 1

L(1,2)L(ℓ)
i L(ℓ)

i+2L(ℓ+1)
j j = i−1, i+1 8 b 1 1

Vi(1,2)Pi(1,2) 4 b 1 1
Vi(1,2)L

(ℓ)
j L(ℓ)

j+2 j = i, i+2 8 b 1 2

Pi(1,2)L
(ℓ)
j L(ℓ)

j+2L(ℓ+1)
i j = i, i+2 8 b 1 2

Table 6: The 324 boundary strata at codimension four.
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Schubert condition indices multiplicity type components regions
V (ℓ)

i V (ℓ)
j L(ℓ+1)

k j = i±1 32 b 1 1

V (ℓ)
i V (ℓ)

j L(ℓ+1)
k j = i, i+2 16 r

V (ℓ)
i P(ℓ)

j V (ℓ+1)
j j = i±1 16 r

V (ℓ)
i P(ℓ)

j V (ℓ+1)
i j = i±1 16 b 1 2

V (ℓ)
i P(ℓ)

j V (ℓ+1)
k else 64 b 1 1

V (ℓ)
i P(ℓ)

j P(ℓ+1)
i j = i±1 16 r

V (ℓ)
i P(ℓ)

j P(ℓ+1)
j j = i±1 16 b 1 2

V (ℓ)
i P(ℓ)

j P(ℓ+1)
k else 64 b 1 1

V (ℓ)
i P(ℓ)

i+1L(ℓ+1)
i L(ℓ+1)

i+2 16 r
V (ℓ)

i P(ℓ)
j L(ℓ+1)

k L(ℓ+1)
k+2 else 32 b 1 1

L(1,2)V (ℓ)
i V (ℓ)

i+2 4 r
L(1,2)V (ℓ)

i P(ℓ)
j L(ℓ+1)

j+1 j = i±1 16 b 1 1

L(1,2)V (ℓ)
i P(ℓ)

i L(ℓ+1)
k k = i+1, i+2 16 r

Pj+2(1,2)V
(ℓ)
i P(ℓ)

j j = i±1 16 b 1 1

Vi(1,2)V
(ℓ)
i P(ℓ)

j j = i±1 16 b 1 1

Vi(1,2)L
(ℓ)
j+2L(ℓ+1)

i L(ℓ+1)
i+2 j = i, i+2 8 b 1 2

Pj(1,2)V
(ℓ)
i V (ℓ+1)

i j = i±1 8 b 1 2
L(1,2)V (ℓ)

i V (ℓ+1)
i+2 4 r

Pi(1,2)V
(ℓ)
i V (ℓ+1)

j j = i±1 8 b 1 1

L(1,2)V (ℓ)
i P(ℓ+1)

i+2 8 b 1 1
Pi(1,2)V

(ℓ)
i L(ℓ+1)

j L(ℓ+1)
j+2 i, j ∈ [4] 16 b 1 1

Vi(1,2)P
(ℓ)
j P(ℓ+1)

j j = i, i−1 8 b 1 2

Vi(1,2)P
(ℓ)
i P(ℓ+1)

i+1 8 b 1 1
L(1,2)P(ℓ)

i P(ℓ+1)
i+2 4 r

Vi(1,2)P
(ℓ)
j L(ℓ+1)

i L(ℓ+1)
i+2 j = i, i+1 16 b 1 1

Vi(1,2)Pi+2(1,2) 4 b 1 2
L(1,2)L(ℓ)

i L(ℓ)
i+2L(ℓ+1)

i−1 L(ℓ+1)
i+1 2 r

Table 7: The 450 boundary strata at codimension five.
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Schubert condition indices multiplicity type components regions
V (ℓ)

i P(ℓ)
i+1V (ℓ+1)

j P(ℓ+1)
j+1 j = i±1 24 r

V (ℓ)
i P(ℓ)

j V (ℓ+1)
i P(ℓ+1)

j |i− j| ̸= 2 12 b 1 2

V (ℓ)
i P(ℓ)

j V (ℓ+1)
k P(ℓ+1)

l else 116 b 1 1

V (ℓ)
i V (ℓ)

i+2V (ℓ+1)
j j = i±1 8 r

V (ℓ)
i V (ℓ)

j V (ℓ+1)
k else, i ̸= j 40 b 1 1

V (ℓ)
i V (ℓ)

i+2P(ℓ+1)
j j = i, i+2 8 r

V (ℓ)
i V (ℓ)

j P(ℓ+1)
k else, i ̸= j 40 b 1 1

V (ℓ)
i V (ℓ)

i+2L(ℓ+1)
j L(ℓ+1)

j+2 8 r

V (ℓ)
i V (ℓ)

i+1L(ℓ+1)
j L(ℓ+1)

j+2 16 b 1 1

L(1,2)V (ℓ)
i P(ℓ)

i V (ℓ+1)
i+2 8 r

L(1,2)V (ℓ)
i P(ℓ)

j V (ℓ+1)
j+2 j = i±1 16 b 1 1

Pj+2(1,2)V
(ℓ)
i P(ℓ)

j V (ℓ+1)
i j = i±1 16 b 1 2

L(1,2)V (ℓ)
i P(ℓ)

i P(ℓ+1)
i+2 8 r

Vi(1,2)V
(ℓ)
i P(ℓ)

j P(ℓ+1)
i+2 j = i±1 32 b 1 1

Vi(1,2)V
(ℓ)
i P(ℓ)

j L(ℓ+1)
j L(ℓ+1)

j+2 j = i±1 16 b 1 1

V (12)
i 4 b 1 1

P(12)
i 4 b 1 1

Vi(1,2)Vi+2(1,2) 2 b 1 1

Table 8: The 370 boundary strata at codimension six.

Schubert condition indices multiplicity type components regions
V (ℓ)

i V (ℓ)
i+2V (ℓ+1)

j P(ℓ+1)
i j = i±1 8 r

V (ℓ)
i V (ℓ)

j V (ℓ+1)
k P(ℓ+1)

l else, |k− l| ̸= 2 136 b 1 1

L(1,2)V (ℓ)
i P(ℓ)

i V (ℓ+1)
i+2 P(ℓ+1)

i+2 4 r
Vi(1,2)V

(ℓ)
i−1V (ℓ+1)

i+2 8 b 1 1
V (12)

i P(ℓ)
j P(ℓ+1)

j j = i±1 8 b 1 1

V (12)
i P(12)

i 4 b 1 1

Table 9: The 168 boundary strata at codimension seven.

Schubert condition indices multiplicity type components regions
V (ℓ)

i V (ℓ)
i+2V (ℓ+1)

j V (ℓ+1)
j+2 j = i+1 2 r

V (ℓ)
i V (ℓ)

j V (ℓ+1)
k V (ℓ+1)

l else 34 b 1 1

Table 10: The 36 boundary strata at codimension eight.
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