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MODULI SPACES IN POSITIVE GEOMETRY

THOMAS LAM

These are lecture notes for five lectures given at MPI Leipzig in May
2024. We study the moduli space M0,n of n distinct points on P1 as
a positive geometry and a binary geometry. We develop mathematical
formalism to study Cachazo-He-Yuan’s scattering equations and the as-
sociated scalar and Yang-Mills amplitudes. We discuss open superstring
amplitudes and relations to tropical geometry.

Introduction

The new field of positive geometry is developing at the interface of combina-
torial algebraic geometry in mathematics and scattering amplitudes in physics.
The purpose of these notes is to give an introduction to some of the ideas in this
area. Our main target audience is a mathematics graduate student with some ex-
perience in geometric combinatorics or algebraic geometry. At the urging of the
organizers of the workshop “Combinatorial algebraic geometry from physics”,
I have leant towards an algebro-geometric approach, though I have kept the lan-
guage as concrete as possible. The text should be understandable to a motivated
student who has taken one graduate class in algebraic geometry. No physics
background is assumed.

When I started writing these notes, it became clear very quickly that I could
not give a comprehensive survey of the area, such is the breadth of the ideas
involved. I narrowed the scope as follows.
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On the mathematical side, we focus on the spaceM0,n. This is the configu-
ration space of n distinct points on the projective line P1. The spaceM0,n is a
central example in combinatorial geometry, as it is simultaneously:

1. a quotient of an open subset of the Grassmannian, or of a matrix space,

2. a hyperplane arrangement complement,

3. (naturally) an open subset of a toric variety,

4. a very affine variety,

5. a positive geometry,

6. a binary geometry,

7. a moduli space,

8. a cluster configuration space.

On the physics side, we consider three classes of amplitudes, all with tight
connections to combinatorial algebraic geometry:

1. the planar scalar φ
3-amplitude,

2. the planar gluon-amplitude for Yang-Mills theory, and

3. the open superstring-amplitude.

In all cases, we focus on the kinematic aspects of the amplitudes, and only con-
sider tree-level amplitudes for massless scattering. Our aim is to give precise
definitions of various functions on kinematic space, with heuristic explanations
of the relations to quantum field theory and string theory. SinceM0,n is the main
mathematical object we consider, our approach to amplitudes leans heavily on
the Cachazo-He-Yuan scattering equations [CHY14a, CHY14c, CHY14b]. For
gluon amplitudes, we borrow also from twistor string theory [Wit04, RSV04].
We regret the absence of loop amplitudes, of supersymmetry, and of momentum-
twistors, all of which are the bread and butter of modern amplitudes theory.

A recurring theme in the notes is to ask whether amplitudes can be general-
ized beyondM0,n to more general settings, such as that of binary geometries,
positive geometries, and very affine varieties. In [Lam24], we develop these
amplitudes for hyperplane arrangement complements.

Overview. We now give a more detailed survey of the contents of this work. In
Section 1, we define and study the spaceM0,n. We use crucially a collection of
cross-ratios ui j called dihedral coordinates [KN69, Bro09]. These cross-ratios
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are labeled by the diagonals, but not sides, of a n-gon. They form a basis of the
character lattice of the intrinsic torus ofM0,n (Proposition 1.9), and define an
affine variety M̃0,n (Section 1.4) that is a partial compactification ofM0,n. The
strata of M̃0,n are labeled by subdivisions of the n-gon, or equivalently, by faces
of the associahedron polytope. Thus, M̃0,n is an affine patch in which we can
see the combinatorics and geometry of the boundary stratification ofM0,n.

The dihedral coordinates ui j depend on a choice of a connected compo-
nent (M0,n)>0 of the real points M0,n(R). We call (M0,n)>0 the positive
part of M0,n. The analytic closure (M0,n)≥0 is a positive geometry (Def-
inition 1.20) inside M0,n, and we discuss properties of the canonical form
Ω0,n =Ω((M0,n)≥0), a holomorphic top-form onM0,n.

In Section 2, we formalize ideas from [AHHLT23] and define binary ge-
ometries. The dihedral coordinates ui j ofM0,n satisfy binary u-equations. For
example, with n = 5, we have five dihedral coordinates u13,u14,u24,u25,u35, sat-
isfying the five relations

u13+u24u25 = 1

u24+u13u35 = 1

u35+u14u24 = 1

u14+u25u35 = 1

u25+u13u14 = 1

(0.1)

A key feature of dihedral coordinates is that if ui j = 0 then we have ukl = 1 for all
diagonals (k, l) crossing (i, j). This is the “binary” nature of the u-equations. In
Definition 2.1 we define binary geometries, a class of affine varieties with dis-
tinguished coordinates ui satisfying equations of a form similar to (0.1). We
classify (Theorem 2.9) one-dimensional binary geometries and show (Theo-
rem 2.10) that the face poset of a binary geometry is a simplicial complex that
is a pseudomanifold. We suggest a number of potential directions for further
exploration of binary geometries.

Section 3 is the core of the lecture series. We start with an informal dis-
cussion of scattering amplitudes in quantum field theory, leading to a precise
definition of the kinematic space Kn for n-particle scattering (Definition 3.1).
The link between kinematics and the geometry ofM0,n is made possible by a
natural isomorphism between the integer points Kn(Z) and the character lattice
Λ(M0,n) (Proposition 3.3). The celebrated scattering equations of Cachazo-
He-Yuan were a revolution in the construction of tree-level amplitudes, and we
interpret them as a scattering correspondence (see (3.8))

I ⊂Kn×M0,n. (0.2)
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This correspondence is cut out by the critical points of the scattering potential,
also called a likelihood function in algebraic statistics, or master function in the
theory of hyperplane arrangements.

At the heart of our philosophy is that the correspondence (0.2) is canoni-
cally associated to the very affine varietyM0,n. The CHY scalar amplitudes are
obtained by summing a rational function over the pre-images of a point s ∈ Kn

under the map I → Kn. We make CHY’s definition more conceptual in two
ways. First, we define in Definition 3.22 an amplitude A(Ω∣Ω′) that depends
on two rational top-forms Ω,Ω′, which we expect to be taken to be canonical
forms of positive geometries. Second, we define a scattering form on Kn as a
push-pull of the canonical form ofM0,n. This gives a conceptual approach to
the scattering form of [AHBHY18].

In Section 4, we specialize to four-dimensional space-time and consider
amplitudes for gluons (massless spin one particles). We introduce spinor co-
ordinates on kinematic space. Mathematically, these coordinates come from
the exceptional isomorphism Spin(4) ≃ SL(2)×SL(2) involving the spin group
Spin(4)→SO(4) covering the complexification of the four-dimensional Lorentz
group. Spinor coordinates capture in a beautiful way the special features of four-
dimensional space-time and also encode the polarization vectors that appear in
gluon scattering.

Restricting (0.2) to the subvariety of four-dimensional kinematics K4
n ⊂ Kn,

the correspondence breaks up into (n−3) irreducible components J1, . . . ,Jn−3,
called “sectors” (Proposition 4.6). These sectors were discovered in Witten’s
twistor string theory [Wit04] and further studied by Roiban-Spradlin-Volovich
[RSV04] and Cachazo-He-Yuan [CHY13]. The sector decomposition arises
from the interpretation of (0.2) as an incidence subvariety Ĩ ⊂M0,n(P3,n−2),
whereM0,n(P3,n−2) denotes the moduli space of rational n-pointed maps to
P3 of degree n−2, and Ĩ is the subvariety of maps with image in a quadric. We
explain a construction of [AHBCT11], which reinterprets the scattering corre-
spondence of the d-th sector as a subvariety of the Grassmannian Gr(d +1,n).
This is one of the starting points of the Grassmannian formulae for scattering
amplitudes.

In Section 5, we study the tree-level n-point open superstring amplitude
as an integral over (M0,n)>0, explaining how field theory amplitudes can be
obtained as limits of string amplitudes as strings turn into particles. We consider
a general class of stringy integrals [AHHL21b], also called Euler integrals in
[MHMT23], which take the form

I(τ,c) = ∫
U>0

φτ,c Ω = ∫
Rd
>0

yτ1
1 ⋯yτn

n

pc1
1 ⋯pcr

r

dy1

y1
∧⋯∧ dyn

yn
,
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where pi = pi(y) are polynomials in the variables y1, . . . ,gn. Associated to such
an integral function is a (very affine) subvariety U of a toric variety, and the
integral is taken over a positive part U>0 ⊂U(R). The integrand φτ,c is the natu-
ral potential function of U , and the condition that the integral I(τ,c) converges
cuts out a class of bounded characters of the character lattice Λ(U). In the case
of the string amplitude itself, we have U =M0,n and we recover the dihedral
coordinates of Section 1 in this way.

We explain that the field theory limit of a string integral is naturally related
to tropicalization. Indeed, the (positive) tropicalization trop(φτ,c) of the poten-
tial function controls the field theory limit of I(τ,c). In this way, the Feynman
diagrams of φ

3-theory (which are cubic trees) naturally appear, and we have the
following satisfying “commutative diagram”:

M0,n string amplitude∫(M0,n)>0
φX Ω

cubic trees Feynman amplitude∑trees T∏e∈E(T)
1
Xe

tropicalization field theory limit

In Section 6, we review basic definitions for very affine varieties, and we
speculate on possible definitions of amplitudes in that setting.

Exercises and Problems. There are exercises at the end of each lecture, which
we hope will be useful for a student reader. “Problems” are more open-ended:
some of these are conjectures or open problems, and some are statements from
the physics literature that I do not know proofs of in the mathematics literature.
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1. Positive geometry ofM0,n

Let [n] ∶= {1,2, . . . ,n}.

1.1. Matrices, Moduli space, and the Grassmannian

We represent points σ ∈ P1 = C∪{∞} by non-zero vectors [x0 ∶ x1], with [x0 ∶
x1] ∼ [αx0 ∶ αx1] for a nonzero scalar α . The general linear group GL(2) of
invertible 2×2 matrices acts on C2 and thus on P1. This action factors through
the projective linear group PGL(2) which is the quotient group of GL(2) by the
scalar matrices.

Definition 1.1. For n ≥ 3, the spaceM0,n is the moduli space of n distinct points
σ1,σ2, . . . ,σn on P1 considered up to the simultaneous action of PGL(2).

We may represent a point σ ∈M0,n as a 2×n matrix (with no zero columns)

[x11 x12 ⋯ x1n

x21 x22 ⋯ x2n
]

where the i-th column represents the point σi ∈ P1.
Let Mat2,n denote the space of 2× n matrices. Let Mat○2,n ⊂Mat2,n denote

the subset where all 2×2 minors are nonzero. The group GL(2) acts on Mat○2,n
on the left as row operations. The group T ≅ (C×)n acts on Mat○2,n (on the
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right) by scaling the columns. Since one group acts on the left and the other
on the right, the action of the two groups commute, and we obtain an action
of the product group GL(2)×T . Let Z ⊂ GL(2) denote the subgroup of scalar
matrices, and let D = {(t,t, . . . ,t)} ⊂ T denote the subgroup where all entries
are equal. Then the action of Z and D on Mat○2,n are the same, so the action
of GL(2)×T factors through the quotient group where Z and D are identified.
Equivalently, the action factors through the action of the group

PGL(2)×T ≅GL(2)×T ′

where T ′ = T /D ≅ (C×)n−1. We leave the proof of the following result as an
exercise for the reader.

Lemma 1.2. The action of PGL(2)×T ≅GL(2)×T ′ on Mat○2,n is free.

We have the following commutative diagram of quotient maps:

Mat○2,n

Gr○(2,n) ((P1)n)○

M0,n

TGL(2)

T ′ PGL(2)

(1.1)

Here, Gr○(2,n) ⊂ Gr(2,n) is the locus inside the Grassmannian of 2-planes
where all Plücker coordinates are non-vanishing, and ((P1)n)○ denotes the space
of n distinct points in P1, obtained by removing the “diagonals” from (P1)n.
SinceM0,n is the quotient of the smooth variety Mat○2,n by the free action of the
algebraic group PGL(2)×T , we obtain the following.

Proposition 1.3. M0,n is a smooth complex algebraic variety of dimension n−
3.

The group PGL(2) acts simply-transitively on the space of 3 distinct ordered
points in P1 (Exercise 1.22). Thus, the action of PGL(2) allows us to place
(σ1,σ2,σn) at (0,1,∞) and σ3, . . . ,σn−1 are coordinates onM0,n. In particular,
M0,3 is a single point andM0,4 ≅ P1∖{0,1,∞}.

In general, M0,n can be identified with the hyperplane arrangement com-
plement in Cn−3 for the (n2)−n hyperplanes

{σi = 0 ∣ i = 3,4, . . . ,n−1}⋃{σi = 1 ∣ i = 3,4, . . . ,n−1}
⋃{σi−σ j = 0 ∣ 3 ≤ i < j ≤ n−1}.
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1.2. Cross ratios

For i, j ∈ [n], we write (i j) to denote the 2× 2 minor of a 2× n matrix, using
the columns indexed i and j. For two distinct points σ ,σ ′ ∈ P1, the expression
σ −σ

′ is simply the difference of two complex numbers; if one of σ or σ
′ is∞

then it is taken to be ±∞. We also use the notation σab ∶= (σa−σb).
Using the action of PGL(2)×T we can put a 2× n matrix representing a

point σ ∈M0,n into the form

[ 1 1 ⋯ 1
σ1 σ2 ⋯ σn

] .

In this form, we have (i j) = σ j −σi.

Definition 1.4. For distinct i, j,k, l ∈ [n], define the cross ratio

[i j∣kl] ∶= (ik)( jl)
(il)( jk) =

(σi−σk)(σ j −σl)
(σi−σl)(σ j −σk)

Lemma 1.5. The cross ratio [i j∣kl] is a regular function onM0,n, satisfying the
identities

[i j∣kl] = 1− [ik∣ jl], [i j∣lk] = [i j∣kl]−1 = [ ji∣kl],
[i j∣kl] = [kl∣i j] = [ ji∣lk] = [lk∣ ji].

When n = 4, any of the cross-ratios [i j∣kl] with (i, j,k, l) a permutation of
1,2,3,4, defines an isomorphismM0,4 ≅P1∖{0,1,∞}. More generally, for any
n, we have the following.

Proposition 1.6. The cross-ratios define an embedding

ι ∶M0,n↪ (P1∖{0,1,∞})(
[n]
4 ). (1.2)

Proof. Using the PGL(2) action, we place (σ1,σ2,σn) at (0,1,∞). The cross
ratio [1n∣ j2] = σ j then determines σ j. This shows that (1.2) is injective. Let

W ⊂ (P1∖{0,1,∞})(
[n]
4 ) be the closed subvariety cut out by the ideal generated

by the relations in Lemma 1.5. We define a morphism π ∶W →M0,n by sending
(σ1,σ2,σn) to (0,1,∞) and σ j to [1n∣ j2]. The relations of Lemma 1.5 can then
be used to show that π is inverse to ι .
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1.3. Dihedral coordinates

Define the dihedral coordinates

ui j ∶= [i, i+1∣ j+1, j] = (σi−σ j+1)(σi+1−σ j)
(σi−σ j)(σi+1−σ j+1)

(1.3)

for i, j ∈ [n] such that i− j ∉ {−1,0,1} mod n, that is i, j are not equal or adjacent
modulo n. We have that ui j = u ji, and thus the cross-ratios ui j are labeled by the
diagonals, or chords, (but not the sides) of a n-gon with vertices 1,2, . . . ,n. Let
diagn denote the set of diagonals of an n-gon. There are ∣diagn∣ = (n2)−n dihedral
coordinates.

It is easy to check (Exercise 1.23) that the ui j satisfy the following relations:

Ri j ∶= ui j + ∏
(k,l) crosses (i, j)

ukl −1 = 0. (1.4)

A key feature of dihedral coordinates is that if ui j = 0 then we have ukl = 1 for
all (k, l) crossing (i, j). This follows from the relations Rkl = 0.

For example, for n = 4, we have two dihedral coordinates u13,u24 satisfying
the relation

u13+u24 = 1.

For n = 5, the relations Ri j are given in (0.1).
Let TU = Spec(C[ui j,u−1

i j ]) be the ((n2)−n)-dimensional torus with coordi-
nates ui j. Define the closed subvariety U ⊂ TU cut out by the relations (1.4).

Theorem 1.7 ([Bro09, AHHL21a]). The dihedral coordinates give a closed em-
beddingM0,n↪ TU with image equal to U . The ideal of U in TU is equal to the
ideal I = (Ri j) generated by the relations (1.4).

In particular,M0,n is isomorphic (as a scheme) to Spec(C[ui j,u−1
i j ]/I). In

contrast to Proposition 1.6, Theorem 1.7 identifiesM0,n naturally with a closed
subvariety of a torus.

For two subsets A,C ⊂ [n], let uA,C =∏a∈A,c∈C uac. Let (A,B,C,D) be a de-
composition of [n] into four non-empty cyclic intervals, in cyclic order, and
define

RA,B,C,D ∶= uA,C +uB,D−1.

For example, for (A,B,C,D) = ({2,3},{4},{5,6,7},{1}), we have RA,B,C,D =
u25u26u27u35u36u37 + u14 − 1. Brown [Bro09] includes the generators RA,B,C,D

in his definition of the ideal. It follows from [AHHL21a] that these additional
generators are not necessary; we give a direct proof.

Proposition 1.8. The elements RA,B,C,D belong to the ideal I = (Ri j) of C[ui j].
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Proof. We prove the result using the following identity. Suppose ∣A∣ ≥ 2 and a
is the maximal element of A in cyclic order, and set A′ ∶= A∖a. Then we have
(Exercise 1.23)

RA,B,C,D−R{a},B,C,A′∪D−ua,CRA′,B∪a,C,D+uB,DRA′,{a},B,C∪D = 0. (1.5)

We prove that RA,B,C,D ∈ I by reverse induction on d =max(∣A∣, ∣B∣, ∣C∣, ∣D∣). The
base case is d =n−3, in which case after cyclic rotation we have (∣A∣, ∣B∣, ∣C∣, ∣D∣)=
(1,1,1,n−3) and RA,B,C,D = Ra,c. Suppose the claim has been been proven for
all d′ > d, and suppose that ∣D∣ = d. Suppose that ∣A∣ ≥ 2. Then by (1.5), we have

RA,B,C,D = R{a},B,C,A′∪D+ua,CRA′,B∪a,C,D−uB,DRA′,a,B,C∪D.

By induction, −uB,DRA′,a,B,C∪D and R{a},B,C,A′∪D belong to I. Repeatedly ap-
plying this relation, we reduce to proving that RA,B,C,D ∈ I for ∣A∣ = 1. Now if
∣A∣ = 1 and ∣C∣ ≥ 2, we use the mirror reflection of (1.5) to reduce to the case
∣A∣ = ∣C∣ = 1, which belongs to I by definition. This completes the inductive step
of the argument, and the proof.

The embeddingM0,n ↪ TU is in fact intrinsic toM0,n. The group of units
C[M0,n]×/C× of the coordinate ring ofM0,n, modulo scalars, is a free abelian
group Λ = Λ(M0,n) ∶= C[M0,n]×/C× (see Section 6.1). The intrinsic torus of
M0,n is the torus T with character lattice Λ.

Proposition 1.9. The intrinsic torus of M0,n is canonically isomorphic to the
torus TU . Equivalently, the lattice Λ =C[M0,n]×/C× can be identified with the
set of Laurent monomials {∏uXi j

i j ∣ Xi j ∈Z} in the dihedral coordinates.

Proof. One way to obtain this result is to view M0,n as the complement of
(n2)−n hyperplanes in Cn−3, as explained in Section 1.1. Let f1(x) = 0, f2(x) =
0, . . . be the linear equations cutting out these hyperplanes, and note that the nor-
mal vectors to these hyperplanes span Cn−3. Then the coordinate ring C[M0,n]
is obtained from the polynomial ring C[x1, . . . ,xn−3] by adjoining the inverses
f −1
1 , f −1

2 , . . .. It follows that C[M0,n]×/C× is isomorphic to the lattice of Lau-
rent monomials in the fi. Finally, we have an invertible monomial transforma-
tion between the (n2)−n dihedral coordinates ui j and the (n2)−n linear functions
f1, f2, . . .. This can be obtained directly, or from the equality (3.6).

We shall call

Λ = {∏uXi j
i j ∣ Xi j ∈Z} =C[M0,n]×/C× (1.6)

the character lattice ofM0,n. The dual lattice Λ
∨ is the cocharacter lattice of

M0,n. While the torus TU is intrinsic toM0,n, the basis of characters ui j is not,
but depends on a choice of connected component ofM0,n(R) (Exercise 1.24).
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Example 1.10. Suppose n = 4. ThenM0,4 is the subvariety of (C×)2 cut out by
the single relation u13+u24 = 1. The projection ofM0,4 to the first factor gives
an isomorphismM0,4 ≅C∖{0,1}, and we have C[M0,4] ≅C[u,u−1,(1−u)−1],
where u = u13. The character lattice is Λ = {uX13

13 uX24
24 } = {ua(1−u)b} ≅Z2.

1.4. Affine closure and compactification

The torus TU is an open subset of the affine space AU =C(
n
2)−n = Spec(C[ui j]).

We define a partial compactification M̃0,n of M0,n as the closure of M0,n ↪
TU ↪AU in affine space. The variety M̃0,n has coordinate ring C[ui j]/I, where
I = (Ri j).

The partial compactification M̃0,n has a natural stratification with strata in-
dexed by subdivisions of the n-gon, or in other words, by the faces of the asso-
ciahedron. For a point σ ∈ M̃0,n, define

M(σ) ∶= {(i, j) ∈ diagn ∣ ui j(σ) ≠ 0}.

We may think of M(σ) as analogous to the matroid of a matrix. It follows from
the relations Ri j that if the diagonals (i, j) and (k, l) cross then at least one of
(i, j) and (k, l) belong to M(σ). Thus the diagonals not belonging to M(σ)
form a subdivision of the n-gon by non-intersecting diagonals.

Let ∆ = ∆0,n be the simplicial complex (Section 2) with vertex set equal to
the set of diagonals (i j) of an n-gon, and faces equal to subdivisions D of the
n-gon, considered as a collection of diagonals. We have a disjoint union

M̃0,n = ⋃
D∈∆

MD, MD = {σ ∈ M̃0,n ∣ diagn∖M(σ) =D}.

For example,M∅ =M0,n. Let M̃D denote the closure ofMD in M̃0,n.

Proposition 1.11. Let D be a subdivision of the n-gon into polygons of sizes
n1,n2, . . . ,ns. Then the stratumMD is isomorphic toM0,n1 ×⋯M0,ns and M̃D

is isomorphic to M̃0,n1 ×⋯×M̃0,ns . It is irreducible and codimension ∣D∣ in
M̃0,n.

Proof. We prove the isomorphism M̃D ≅ M̃0,n1 ×⋯×M̃0,ns for the case s = 2.
The general case follows by induction and the other isomorphism is similar.
The diagonal (i j) divides the n-gon into a polygon P1 with vertices i, i+1, . . . , j
and a polygon P2 with vertices j, j+ 1, . . . , i, where all vertex labels are taken
cyclically modulo n. When ui j = 0, we have ukl = 1 for all (kl) crossing (i j).
The relation Rkl = 0 becomes 1+ 0− 1 = 0 while the relation Ri j = 0 becomes
0+1−1 = 0, and are automatically satisfied.

Now let (ab) be a diagonal that does not cross (i j). We assume that (ab) is
a diagonal of P1. The diagonals (cd) that cross (ab) are of two types: diagonals
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of P1 that cross (ab), or diagonals that cross both (ab) and (i j). It follows that
with ui j = 0 and ukl = 1 for all (kl) crossing (i j), the relation Rab = 0 becomes

Rab = uab+∏
(cd)

ucd −1 = 0

where now (cd) varies (only) over diagonals of P1 that cross (ab). These are
the u-equations for the polygon P1. Similarly, we obtain the u-equations for the
polygon P2. More formally, let I′ = I+(ui j). Then we have proven that

C[uab]/I′ ≅ (C[ua1b1]/I1)×(C[ua2b2]/I2)

where I1 and I2 are the u-relations for the polygons P1 and P2 respectively. The
last statement follows immediately from dimension counting dim(M0,ni) = ni−
3.

The affine variety M̃0,n only partially compactifies M0,n. We can use it
to study the compactificationM0,n, the moduli space of stable rational marked
curves, as follows.

Definition 1.12. The moduli spaceM0,n of stable rational curves with n marked
points is the (Zariski-)closure ofM0,n under the cross-ratio embedding ι of (1.2)

M0,n =M0,n ⊂ (P1)(
[n]
4 ).

By definition, the cross-ratios [i j∣kl] are still well-defined onM0,n, but now
they take values in P1 =C∪{∞} rather than P1∖{0,1,∞}. Since the dihedral
coordinates are some of the cross-ratios, it is not hard to see that M̃0,n is an
open subset of M0,n. Indeed, M̃0,n is the locus in M0,n where ui j ≠∞ for
all diagonals (i, j). The action of Sn on M0,n by permuting points extends to
to an action as automorphisms on M0,n. However, the action of α ∈ Sn sends
M̃0,n to another subvariety M̃α

0,n ⊂M0,n. The subvariety M̃α

0,n depends only
on the dihedral ordering on 1,2, . . . ,n induced by α , and often we will view α

as a dihedral ordering. A dihedral ordering on 1,2, . . . ,n is a permutation of the
n points, where two permutations are considered equivalent if they are related
by either cyclic rotation or the reversal w1w2⋯wn ∼ wnwn−1⋯w1. Note that the
cyclic rotation (12⋯n) ∈ Sn sends M̃0,n to itself by sending ui j ↦ ui+1, j+1, and
similarly (n,n−1, . . . ,1) ∈ Sn maps ui j ↦ un+1− j,n+1−i.

By Exercise 1.25, every point σ ∈M0,n belongs to M̃α

0,n for some α . We
view

{M̃α

0,n ∣ α a dihedral ordering}

as open charts coveringM0,n.
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Theorem 1.13. The moduli spaceM0,n is a smooth, projective algebraic variety
and the boundaryM0,n∖M0,n is a simple normal crossings divisor.

Sketch. Since the M̃α

0,n coverM0,n, smoothness ofM0,n follows from smooth-
ness of M̃0,n. This would in principle follow from the Jacobian criterion and
the relations Ri j (1.4). However, I do not know a direct proof along these lines.

Brown [Bro09] proves this result by induction, considering inclusion maps
of the form M̃0,n→ M̃0,n1 ×M̃0,n2 where n1+n2 = n+4.

The statement also follows from the result in Section 5, where M̃0,n is iden-
tified with an open subset of a smooth toric variety. This toric variety is the
toric variety associated to a particular associahedron, and the smoothness fol-
lows from results in the theory of cluster algebras; see [AHHL21a] for further
details.

The moduli spaceM0,n has a natural stratification whose strata correspond
to knowing which cross-ratios are equal to 0, 1, or∞. These strata are indexed
by trees with n leaves labeled 1,2, . . . ,n (Exercise 1.26).

1.5. Positive coordinates

Let us consider the real points M0,n(R). This is an open manifold of dimen-
sion (n−3). There is an action of the symmetric group Sn onM0,n, acting by
permuting the n points σ1, . . . ,σn. Viewing points ofM0,n as 2×n matrices, the
symmetric group Sn acts by permuting the n columns.

Proposition 1.14. The symmetric group Sn acts transitively on the connected
components of M0,n(R). The manifold M0,n(R) has (n− 1)!/2 connected
components, in bijection with dihedral orderings of 1,2, . . . ,n.

Proof. Using the PGL(2) action, we place (σ1,σ2,σn) at (0,1,∞). Define the
positive part (M0,n)>0 ⊂M0,n(R) by

(M0,n)>0 = {(σ3, . . . ,σn−1) ∣ 0 < 1 < σ3 < σ4 <⋯ < σn−1 <∞}, (1.7)

the space of n points in P1(R) arranged in order. This is clearly a connected
component of M0,n(R). By a direct calculation, (M0,n)>0 is the locus in
M0,n(R) where all dihedral coordinates ui j take positive values. The sym-
metric group Sn sends cross-ratios to cross-ratios. The subgroup of Sn that
sends dihedral coordinates to dihedral coordinates is exactly the dihedral sub-
group D2n ⊂ Sn (generated by the cyclic rotation (12⋯n) and the reflection
(n(n−1)⋯21)). It follows that the connected components of M0,n(R) are in
bijection with the cosets Sn/D2n, and the second statement follows.
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We denote the connected components ofM0,n(R) byM0,n(α), where α is
a dihedral ordering of 1,2, . . . ,n.

The positive part (M0,n)>0 (1.7) ofM0,n is diffeomorphic to an open ball.
We realize this using explicit parametrizations:

[1 1 1 1 1 ⋯ 0
0 1 1+x1 1+x1+x2 1+x1+x2+x3 ⋯ 1

]

[1 1 1 1 1 ⋯ 0
0 1 1+y1 1+y1+y1y2 1+y1+y1y2+y1y2y3 ⋯ 1

]

where (x1, . . . ,xn−3) ∈ Rn−3
>0 or (y1, . . . ,yn−3) ∈ Rn−3

>0 . The rational coordinates
(x1, . . . ,xn−3) and (y1, . . . ,yn−3) are called positive coordinates, and are related
by the monomial transformation

xi = y1y2⋯yi.

Each coordinate system consists of regular functions onM0,n that generate the
field C(M0,n) of rational functions. Furthermore, the maps

(x1, . . . ,xn−3) ∶M0,n→ (C×)n−3, (y1, . . . ,yn−3) ∶M0,n→ (C×)n−3

map (M0,n)>0 diffeomorphically onto Rn−3
>0 . In these coordinate systems, we

have the following explicit formulae. For 1 ≤ i < j < n, the 2×2 minor (i j) is
given by

(i j) = xi−1+xi+⋯+x j−2 = y1y2⋯yi−1(1+yi+yiyi+1+⋯+yiyi+1⋯y j−2),

where by convention x0 = 1, and for j = n, we have (in) = 1. The dihedral coor-
dinates are related to the positive coordinates by

ui j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yi(1+yi+1+yi+1yi+2+⋯+yi+1⋯yn−3)

(1+yi+yiyi+1+⋯+yiyi+1⋯yn−3)
if j = n−1

(1+y1+y1y2+⋯+y1y2⋯yi−2)

(1+y1+y1y2+⋯+y1y2⋯yi−1)
if j = n

(1+yi+yiyi+1+⋯+yiyi+1⋯y j−1)(1+yi+1+yi+1yi+2+⋯+yi+1⋯y j−2)

(1+yi+yiyi+1+⋯+yiyi+1⋯y j−2)(1+yi+1+yi+1yi+2+⋯+yi+1⋯y j−1)
else.

We obtain, by inspection,

Proposition 1.15. The dihedral coordinates take values in (0,1) on (M0,n)>0.

For example, for n = 4 we have

u13 =
y1

1+y1
, u24 =

1
1+y1

,
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and for n = 5 we have

u13 =
1+y1+y1y2

(1+y1)(1+y2)
, u14 =

y1(1+y2)
1+y1+y1y2

, u24 =
y2

1+y2
,

u25 =
1

1+y1
, u35 =

1+y1

1+y1+y1y2
.

(1.8)

The next result follows immediately from these formulae.

Proposition 1.16. The rational function field C(M0,n) ofM0,n is C(y1, . . . ,yn−3).
The character lattice Λ(M0,n) is the lattice of Laurent monomials in the n−3
coordinates y1,y2, . . . ,yn−3 and the (n−2

2 ) polynomials

pi j = (1+yi+yiyi+1+⋯+yiyi+1⋯y j−2)

where 1 ≤ i < j−1 < j ≤ n−1.

Note that (n−2
2 )+(n−3) = (n2)−n is the number of diagonals of a n-gon.

1.6. Canonical form onM0,n

Let (M0,n)≥0 ⊂ M̃0,n ⊂M0,n be the analytic closure of the positive component
(M0,n)>0 in M̃0,n. This is a compact semialgebraic set inside M̃0,n(R). It
is cut out by the inequalities ui j ≥ 0. In fact, the coordinates ui j take values
in [0,1] on (M0,n)≥0, and identify (M0,n)≥0 with a closed subspace of the
unit cube [0,1](

n
2)−n. The face structure of (M0,n)≥0 is the same as that of

the associahedron: for each subdivision D of the n-gon, the (open) stratum
(M0,n)≥0∩MD is an open ball of codimension equal to the number of diagonals
∣D∣.

Example 1.17. Let n = 5. The two-dimensional space (M0,5)≥0 has five facets,
given by ui j = 0 for (i j) a diagonal of the pentagon. Consider one of the facets,
which by cyclic symmetry we can take to be u13 = 0. The five u-equations then
reduce to

u24 = 1, u25 = 1, u35+u14 = 1.

So on this facet u13,u24,u25 are constant, and we have a one-dimensional space
sitting inside two-dimensional u14,u35 space, which is isomorphic to (M0,4)≥0,
an interval. It is easy to see that (M0,5)≥0 is combinatorially a pentagon.

Definition 1.18. The canonical form of (M0,n)≥0, or the Parke-Taylor form is
the top-degree differential form

Ω =Ω0,n ∶=
n−3
⋀
i=1

dlogxi =
n−3
⋀
i=1

dxi

xi
=

n−3
⋀
i=1

dlogyi =
n−3
⋀
i=1

dyi

yi
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Since yi is a regular, non-vanishing function onM0,n, this is a regular top-
form onM0,n. It has poles in the partial compactification M̃0,n, and in general
it has both poles and zeroes inM0,n. By Problem 1.28, this form can also be
written as

Ω = ⋀
(i j)

dlog
ui j

1−ui, j
(1.9)

where (i j) ranges over a triangulation D of the n-gon with no interior triangles
(that is, triangles none of whose sides are sides of the n-gon). The “no interior
triangle” condition is necessary. A recent result of Silversmith [Sil23] states
that the field extension C(ui j ∣ (i j) ∈D) ⊂C(M0,n) has degree 2a where a is the
number of interior triangles in the triangulation D.

The Parke-Taylor form Ω encodes a remarkable amount of physics. By
taking different kinds of integrals of this form, one obtains scalar φ

3-amplitudes,
string theory amplitudes, gauge theory amplitudes, and so on.

For each diagonal (i j) ∈ diagn, let M̃i j ⊂ M̃0,n be the divisor cut out by
the equation ui j = 0. Then by Proposition 1.11, M̃i j can be identified with
M̃0,n1 ×M̃0,n2 , where n1 = j− i+1 and n2 = n+ i− j+1. For the notion of residue
in the following result, we refer the reader to [Lam22, Section 2].

Lemma 1.19. The canonical form Ω has a simple pole along M̃i j and we have

Res
M̃i j

Ω =Ω0,n1 ∧Ω0,n2

under the isomorphism M̃i j ≅ M̃0,n1 ×M̃0,n2 .

Proof. Pick a triangulation D with no interior triangles that uses the diagonal
(i j). For all other diagonals (kl) ∈D the function ukl is a regular function on
M̃i j that is neither identically 0 nor identically equal to 1. Thus dlog ukl

1−ukl
has

neither poles nor zeroes on M̃i j. However, dlog ui j
1−ui, j

= 1
ui j(1−ui j)

dui j has a simple
pole along ui j = 0. We have

Resz=0
1

z(1− z)dz = 1

and it follows that

Resui j=0Ω = ⋀
(kl)∈D∖(i j)

dlog
ukl

1−ukl
=Ω0,n1 ∧Ω0,n2 .

For example, the canonical form of M0,4 is du13
u13(1−u13)

which has simple
poles with residues 1 and −1 at the two boundaries u13 = 0 and u24 = 0 (u13 = 1).
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1.7. Positive geometry

Lemma 1.19 is close to saying that (M0,n)≥0 is a positive geometry with canon-
ical form Ω. Informally, a positive geometry X≥0 is a semialgebraic space
equipped with a top-degree rational form Ω(X≥0) whose polar structure reflects
the face structure of X≥0.

Definition 1.20. A positive geometry is a d-dimensional (oriented) semialge-
braic space X≥0 in the real points of a projective d-dimensional complex alge-
braic variety X such that there exists a unique top-degree rational form Ω(X≥0)
on X with the following properties:

1. either d = 0, and X = X≥0 is a point and Ω(X≥0) = ±1 (depending on orien-
tation), or

2. every facet (F,F≥0) of X≥0 is a (d−1)-dimensional positive geometry, and
Ω(X≥0) has simple pole along F satisfying

ResFΩ(X≥0) =Ω(F≥0)

and these are the only poles of Ω(X≥0).

For a more careful discussion of the definition of a positive geometry we
refer the reader to [AHBL17, Lam22].

Note that even though (M0,n)≥0 is combinatorially a polytope (the asso-
ciahedron), it is not actually a polytope. Instead, it can be identified with the
nonnegative part of a toric variety (see Section 5) and it is also a wondertope in
the sense of Brauner, Eur, Pratt, Vlad [BEPV24].

It follows from induction on n and Lemma 1.19 that (M0,n,(M0,n)≥0) is a
positive geometry with canonical form Ω, modulo the statement that Ω has no
poles onM0,n except the simple poles along the divisors M̃i j. We leave this as
Exercise 1.30.

Theorem 1.21 ([AHHL21a]). (M0,n,(M0,n)≥0) is a positive geometry with
canonical form Ω.

Another proof of Theorem 1.21 is given in [BEPV24].

1.8. Exercises and Problems

Exercise 1.22.

1. Show that PGL(k) acts simply-transitively on the set of k+1 distinct or-
dered points in Pk−1.
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2. Verify the dimension ofM0,n stated in Proposition 1.3.

Exercise 1.23.

(a) Prove Lemma 1.5.

(b) Prove the relations (1.4).

(c) Let (A,B,C,D) be a decomposition of [n] into four non-empty cyclic
intervals, in cyclic order. Show that the identity

uA,C +uB,D = 1

holds by writing both terms as cross-ratios.

(d) Show that
1−ui j

ui j

1−ui+1, j+1

ui+1, j+1
= (1−ui, j+1)(1−ui+1, j).

(e) Prove (1.5).

Exercise 1.24. Call a character γ ∈ Λ bounded if it takes bounded values on
(M0,n)>0. Show that γ is bounded if and only if it is a monomial γ =∏i j uai j

i j in
the ui j, where ai j ≥ 0.

Exercise 1.25.

(a) If you know another definition ofM0,n, show that it agrees with Defini-
tion 1.12.

(b) Let σ ∈M0,n. Show that there exists a dihedral ordering τ ∈ Sn such that
uτ(i),τ( j)(σ) ≠∞ for all diagonals (i, j).

Exercise 1.26.

(a) Prove that the closure M̃D of the stratum MD in M̃0,n is the union
⋃D′MD′ over all subdivisions D′ that refine D.

(b) Find a bijection between subdivisions of the n-gon and planar n-leaf trees.
These are trees, embedded in the plane, with n leaves labeled 1,2, . . . ,n in
order when traversing the outside of the tree. Thus the strata of M̃0,n are
labeled by planar n-leaf trees.

(c) Show that the strata ofM0,n are labeled by all n-leaf trees with leaves la-
beled 1,2, . . . ,n. Here, the trees are treated as abstract graphs with labeled
leaves.
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Exercise 1.27. The functions ui j take nonzero real values onM0,n(R). Prove
that the signs of ui j determine the connected component that a point lies in.
What are the possible signs for {ui j}? This can be considered a moduli space
analogue of a matroid.

Problem 1.28. Prove (1.9). Is there a formula for Ω using {ui j ∣ (i j) ∈D} where
D is a triangulation that does have interior triangles?

1.8.1. Canonical form of Gr(2,n)≥0

The positive Grassmannian Gr(2,n)>0 is the locus in Gr(2,n) represented by
2× n matrices all of whose 2× 2 minors satisfy (i j) > 0. Its analytic closure
in Gr(2,n) is the (totally) nonnegative Grassmannian Gr(2,n)≥0. Even though
(M0,n)>0 is a rather straightforward quotient of Gr(2,n)>0 by a positive torus
T>0 ≅ Rn−1

>0 , the combinatorics of (M0,n)≥0 and Gr(2,n)≥0 is remarkably quite
different [Lam16b, Pos06]! Like (M0,n)≥0, the totally nonnegative Grassman-
nian Gr(2,n)≥0 is a regular CW-complex homeomorphic to a closed ball, but it
is not a polytopal complex; see [GKL22b, GKL22a].

We investigate the canonical form Ω(Gr(2,n)≥0) of the positive Grassman-
nian. The map Gr○(2,n)→M0,n from (1.1) is a locally-trivial fibration with
fiber the (n− 1)-dimensional torus T ′. In fact, this family can be trivialized
and we have an isomorphism Gr○(2,n) =M0,n×T ′. The torus T ′ has a canon-
ical form ΩT ′ = ⋀n−1

i=1 dlogti, where ti are a basis of characters of T ′. Define a
top-form on Gr(2,n) by

Ω(Gr(2,n)≥0) ∶=Ω0,n∧ΩT ′

using the isomorphism Gr○(2,n) ≅M0,n×T ′, and noting that (n−3)+(n−1) =
2n−4 = dimGr(2,n).

Exercise 1.29. (a) Show that Ω(Gr(2,n)≥0) has no zeroes on Gr(2,n), and sim-
ple poles only, exactly along the n positroid divisors (i, i+1) = 0 (see [Lam16b,
KLS13] for more on positroid varieties).
(b) Now let π ∶Mat2,nÐ→Gr(2,n) be the natural quotient (rational) map. Then
Θ ∶=π

∗
Ω(Gr(2,n)≥0) is a 2n−4 form on the 2n-dimensional affine space Mat2,n.

Show that (up to a constant) we have

Θ = 1
(12)(23)⋯(n1) det(C1C2dn−2C1)∧det(C1C2dn−2C2),

where C1,C2 denote the two rows of a 2×n matrix, the notation dn−2C1 denotes
a (n−2)×n matrix of 1-forms, all of whose rows are dC1. For example, with
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n = 4, we would have det(C1C2dn−2C1) =

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14
C21 C22 C23 C24
dC11 dC12 dC13 dC14
dC11 dC12 dC13 dC14

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=C11C22dC13∧dC14−C11C22dC14∧dC13±⋯

1.8.2. Canonical class ofM0,n and zeroes of Ω0,n

We recall some statements concerning the intersection theory ofM0,n [Kee92].
The dimension of the first Chow group A1(M0,n) (or the cohomology group
H2(M0,n)) is equal to 2n−1−(n2)−1. For example, for n=4, we get dimH2(P1)=
1. A spanning set is indexed by the classes of the 2n−1 boundary divisors DS =DS̄
where S ⊂ 2[n] is a subset of size ∣S∣ ∈ [2,n−2], and S̄ ∶= [n]∖S. In the notation
of Exercise 1.26, DS is the boundary divisor corresponding to a tree with two
interior vertices, one connected to the leaves in S, and the other to the leaves in
S̄. For any four distinct i, j,k, l ∈ [n], we have the relation

∑
i, j∈S
k,l∉S

[DS] = ∑
i,k∈S
j,l∉S

[DS] = ∑
i,l∈S
j,k∉S

[DS] in A1(M0,n).

The canonical class ofM0,n is given by [Pan97]

K
M0,n
=
⌊n/2⌋

∑
s=2
(s(n− s)

n−1
−2)∑

∣S∣=s
[DS]. (1.10)

For example, for n= 4, we get K
M0,4
=− 2

3([0]+[1]+[∞])=−2[pt], as expected.
For n = 5, we get

K
M0,5
= −1

2
∑
i, j
[Di j].

Exercise 1.30. Compute the order of vanishing of Ω0,n on every divisor DS ⊂
M0,n. In particular, show that the only poles of Ω0,n are the divisors DS such
that DS∩M̃0,n is a divisor in M̃0,n. Hint: use the action of the symmetric group
Sn permuting the n points. For w ∈ Sn, write w∗(Ω0,n) = fwΩ0,n, where fw is a
rational function on M0,n depending on w. Now compute the poles of fw on
M̃0,n.

Exercise 1.31. By definition, the class

[Ω0,n] = [divisor of zeroes]− [divisor of poles]
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of the rational top-form Ω0,n inM0,n is equal to K
M0,n

. Verify the formula (1.10)

by computing [Ω0,n]. Hint: w ∈ Sn acts on A1(M0,n) sending DS to Dw(S). The
canonical class is invariant under the automorphisms, and thus invariant under
the action of Sn. Thus we can compute K

M0,n
by averaging w ⋅ [Ω0,n] over all

permutations w ∈ Sn.

2. Binary geometry

We formalize some of the properties of the relations (1.4) in terms of binary
geometries [AHHLT23, AHHL21a].

2.1. Binary geometries and u-equations

A simplicial complex ∆ on [n] is a collection of subsets ∆ ⊆ 2[n] satisfying:

1. If F ∈ ∆ and F ′ ⊂ F then F ′ ∈ ∆.

2. ∆ is non-empty.

The elements F ∈ ∆ of a simplicial complex are called the faces of ∆. The
dimension dim∆ is the size of the largest face in ∆, minus one. Faces of ∆ that
are maximal under inclusion are called facets. We say that ∆ is pure if all facets
have the same dimension.

We say that ∆ is a flag complex if each {i} is a face of ∆ for each i, and for
r > 2, we have that F = {a1, . . . ,ar} ∈ ∆ whenever {ai,a j} ∈ ∆ for all 1 ≤ i < j ≤ r.
We write i ∼ j if {i, j} is a face of a flag complex ∆, and say that i and j are
compatible. Otherwise, i and j are incompatible.

For S ⊂ [n], let HS ⊂C[n] denote the subspace where xs = 0 for s ∈ S.

Definition 2.1. Let ∆ be a flag simplicial complex on [n]. A binary geometry
Ũ for ∆ is an affine algebraic variety Ũ ⊂Cn of dimension dimŨ = dim∆+1 cut
out by n equations of the form

Ri ∶= ui+∏
j∣ j/∼i

uai j
j −1 = 0, i = 1,2, . . . ,n (2.1)

for integers ai j > 0, satisfying the following property: for a subset S ⊂ [n], the
subvariety ŨS ∶= Ũ ∩HS is non-empty exactly when S ∈ ∆, and in this case ŨS is
irreducible, and pure of codimension ∣S∣ in Ũ .

Note that when ui = 0, the equation R j = 0 gives u j = 1 for any j /∼ i. Suppose
that Ũ is a binary geometry for ∆, and x ∈ Ũ . Let

Fx ∶= {i ∈ [n] ∣ ui(x) = 0}.
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By the assumptions of Definition 2.1, we have Fx ∈ ∆. We have a stratification
of Ũ by the closed subvarieties ŨF , for F ∈ ∆. Let

UF = {x ∈ Ũ ∣ Fx = F}

denote the locally-closed pieces in the stratification. Thus Ũ = ⊔F∈∆UF , and
each UF is itself non-empty, irreducible, and codimension ∣F ∣ in Ũ .

We denote U ∶=U∅. Thus U is the Zariski-open subset of Ũ obtained by
intersecting Ũ with the torus T = (C×)n ⊂Cn. It is an irreducible, closed subva-
riety of the torus T , and thus by definition a very affine variety (see Section 6).
Indeed, each UF is a very affine variety.

Problem 2.2. Which flag simplicial complexes have binary geometries? When
is a binary geometry smooth, and when are ŨF and UF smooth? When do the
equations (2.1) cut Ũ out scheme-theoretically?

Example 2.3. Let ∆ = {∅,1,2,3,12,23,13} be dual to the face complex of a
triangle. (This simplicial complex is not flag, but it still makes sense to consider
the u-equations.) The equations for a binary geometry Ũ for ∆ take the form

u1+1 = 1, u2+1 = 1, u3+1 = 1,

which has a unique solution (u1,u2,u3) = (0,0,0). Since this has the wrong
dimension, there is no binary geometry for ∆.

Example 2.4. Let ∆ = {∅,1,2,3,4,12,23,14,23} be dual to the face complex
of a square. The equations for a binary geometry Ũ for ∆ take the form

u1+ua
3 = 1, u2+ub

4 = 1, u3+uc
1 = 1, u4+ud

2 = 1,

for positive integers a,b,c,d. If we choose a = b = c = d = 1, we obtain a binary
geometry U ≅ C2. For all other choices of a,b,c,d, we have dimU < 2 and we
do not have a binary geometry.

Example 2.5. Let ∆ = ∆0,n be the simplicial complex with vertex set equal to
the set of diagonals (i j) of an n-gon, and faces equal to subdivisions D of the
n-gon, considered as a collection of diagonals. Then M̃0,n is a binary geometry
for ∆0,n.

Other examples of binary geometries are given in [AHHL21a] and [HLRZ20].

Proposition 2.6. Let Ũ be a binary geometry for ∆ and F ∈ ∆. The variety ŨF

is a binary geometry for the link

lk∆(F) = {G ∈ ∆ ∣ F ∩G =∅ and F ∪G ∈ ∆}.

In particular, dimlk∆(F)+dimF = dim∆−1.
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Proof. The link lk∆(F) is a simplicial complex on the set S = { j ∉ F ∣ F ∪{ j} ∈
∆}. On ŨF we have ui = 0 for i ∈ F and by (2.1) we have uk = 1 for k ∉ S.
Thus ŨF is naturally embedded in the affine space CS ⊂ C[n] given by {ui =
0 ∣ i ∈ F}∩{uk = 1 ∣ k ∉ S∪F}. The equations Ri for i ∈ F and Rk for k ∉ S are
automatically satisfied. The equations R j for j ∈ S become

R j∣CS = u j + ∏
l∈S∣ j/∼l

ua jl
l −1.

We have that (ŨF)G = ŨF∪G. It follows that ŨF is a binary geometry for lk∆(F).

Corollary 2.7. Suppose that a binary geometry for ∆ exists. Then ∆ is pure.

Proof. If F,F ′ ∈ ∆ are maximal then lk∆(F) = {∅} = lk∆(F ′). It follows from
Proposition 2.6 that ∣F ∣ = ∣F ′∣.

Remark 2.8. The u-equations (2.1) that we consider are sometimes called per-
fect u-equations. For examples of some more general u-equations see [AHHL21b,
Section 11] and [HLRZ20]. More recent appearances of u-equations include
[AHCD+24, AHFS+23].

2.2. One-dimensional binary geometries

Theorem 2.9. Suppose that Ũ is a one-dimensional binary geometry for ∆.
Then ∆ consists of two isolated vertices and U ≅C.

Proof. By Corollary 2.7, ∆ = {∅,1,2, . . . ,n} must be 0-dimensional, consisting
of n isolated vertices. If n = 1, we see directly that no binary geometry for ∆

exists. If n = 2, we have the two relations

u1+ua
2 = 1, u2+ub

1 = 1

and we have binary geometry if and only if a = b = 1, giving U ≅C.
Now suppose that n ≥ 3. We will show that no binary geometry exists. The

relations are Ri = ui +∏ j≠i u
ai j
j − 1 = 0, where ai j > 0. One solution to these

equations is the point p = (u1,u2,u3, . . . ,un) = (0,1,1, . . . ,1). We shall show
that this is an isolated point of Ũ , contradicting the requirement that Ũ is one-
dimensional and irreducible.

Consider the Jacobian matrix ( ∂Ri
∂u j
)ni, j=1 at the point p. It has the form

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 a12 a13 a14 ⋯ a1n

β2 1 0 0 ⋯ 0
β3 0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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where βi = δai1,1 is the Kronecker delta. If the Jacobian is nonsingular at p then
p must be an isolated point of Ũ . We have detJ = 1−a12β2−a13β3−⋯−a1nβn.
Since each ai j is a positive integer and βi ∈ {0,1}, we have detJ = 0 exactly when
one of the terms a1 jβ j is equal to 1, and the rest of these terms vanish.

We now rule out the case detJ = 0. By relabeling, we may assume that j = 2.
Thus a12 = a21 = 1 and ai1 ≥ 2 for i = 3, . . . ,n. We search for a formal power
series solution (u1(t), . . . ,un(t)) ∈ C[[t]]n to the equations R1, . . . ,Rn, where
(u1(0), . . . ,un(0)) = p. (Assuming Ũ is a curve, the parameter t may be taken
to be a local analytic parameter on the normalization of Ũ , in the neighbor-
hood of a preimage of p ∈U .) We may assume that not all the linear terms of
u1(t), . . . ,un(t) vanish, and considering the linear coefficients [t]R1,[t]R2, . . .,
we deduce that

u1(t) = αt +β t2+⋯, u2(t) = 1−αt +β
′t2+⋯,

u3(t),u4(t), . . . ,un(t) ∈ 1+O(t2),

where α ≠ 0. (This also follows from the Jacobian calculation.) For i ≥ 3, we
have, writing [te] f (t) for the coefficient of te in f (t) ∈C[[t]],

[te]Ri =
⎧⎪⎪⎨⎪⎪⎩

[te]ui(t) if 0 < e < ai1,
[te]ui(t)+α

ai1 if e = ai1.

and thus the equation Ri = 0 gives

ui(t) = 1−α
ai1tai1 +O(tai1+1), i = 3, . . . ,n.

Now let a =mini≥3(ai1) ≥ 2. Then

[ta]R1 = [ta]u1(t)+ [ta]u2(t)+ ∑
i≥3∣ai1=a

a1i(−α
a) = 0

[ta]R2 = [ta]u1(t)+ [ta]u2(t) = 0,

and since a1i > 0 for all i, it follows that α
a = 0, contradicting our choice that α ≠

0. Thus there are no non-trivial power series solutions near p to the equations
R1 = 0, . . . ,Rn = 0, and it follows that p is an isolated point.

A pure d-dimensional simplicial complex ∆ is a pseudomanifold if any (d−
1)-dimensional face F ∈ ∆ is contained in exactly two facets of ∆.

Theorem 2.10. Suppose that Ũ is a binary geometry for ∆. Then ∆ is a pseudo-
manifold.

Proof. Apply Proposition 2.6 to a codimension-one face F of ∆, to deduce that
ŨF is a one-dimensional binary geometry for lk∆(F). Then it follows from
Theorem 2.9 that lk∆(F) consists of two vertices, or equivalently, F is contained
in two facets of ∆.
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2.3. Two-dimensional binary geometries

Proposition 2.11. Suppose Ũ and Ũ ′ are binary geometries for flag complexes
∆ and ∆

′ on disjoint vertex sets. Then Ũ ×Ũ ′ is a binary geometry for ∆×∆
′ =

{F ⊔F ′ ∣ F ∈ ∆,F ′ ∈ ∆
′}.

In the product binary geometry, any vertex of ∆ is compatible with any
vertex of ∆

′. By Proposition 2.11 and Theorem 2.9, there is a unique two-
dimensional binary geometry that is a product of two one-dimensional binary
geometries. This is Example 2.4.

Now let ∆ be a 1-dimensional flag simplicial complex with vertex set [n]
that is a pseudomanifold. Then ∆ can be viewed as a graph, and as a graph it is a
disjoint union of cycles. If we further assume that this graph is connected, then
∆ is the face complex of the n-gon. If n = 4, we have Example 2.4. For n = 5, we
have M̃0,5 with u-equations (0.1). We now give examples of binary geometries
for the hexagon and the octagon.

Proposition 2.12 ([AHHLT23, AHHL21a]). The following u-equations give a
binary geometry for ∆ the face complex of the hexagon, with vertices labeled
u1,v1,u2,v2,u3,v3 in cyclic order:

ui+ui+1vi+1ui+2 = 1, vi+vi+1u2
i+2vi+2 = 1,

where the indexing of ui and vi is taken modulo 3.

Proposition 2.13 ([AHHLT23, AHHL21a]). The following u-equations give a
binary geometry for ∆ the face complex of the octagon, with vertices labeled
u1,v1,u2,v2,u3,v3,u4,v4 in cyclic order:

ui+ui+1vi+1u2
i+2vi+2ui+3 = 1, vi+vi+1u3

i+2v2
i+2u3

i+3vi+3 = 1,

where the indexing of ui and vi is taken modulo 4.

Conjecture 2.14. Let ∆ be the face complex of a n-gon. Then a binary geometry
for ∆ exists if and only if n ∈ {4,5,6,8}.

2.4. Positive binary geometry

Let Ũ be a binary geometry. The nonnegative part U≥0 (resp. positive part U>0)
is the locus inside Ũ where ui ≥ 0 (resp. ui > 0) for all i ∈ [n]. It follows from
(2.1) that ui(x) ∈ [0,1] for x ∈U≥0. Thus

(u1, . . . ,un) ∶U≥0↪ [0,1]n

embeds U≥0 into a hypercube. We define UF,≥0 ∶=UF ∩U≥0 and UF,>0 ∶=UF ∩U>0.
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We call the binary geometry Ũ polytopal if UF,>0 is an open ball, UF,≥0
is a closed ball, and UF,≥0 = ⋃G⊇F UG,>0. In this case U≥0, together with the
stratification UF,≥0 is a regular CW complex. Thus ∆ is the dual of the face
poset of this regular CW complex.

Problem 2.15. Find natural conditions for a binary geometry to be polytopal.

Viewing Ũ ⊂Cn as contained in the closure Ū ⊂ Pn, a projective variety, we
may apply the Definition 1.20 of a positive geometry.

Definition 2.16. Suppose that Ũ is d-dimensional and thus dim∆ = d −1. Let
ΩU be a rational form d-form on Ũ . We say that ΩU is a canonical form for Ũ
if either

1. d = 0 and U = pt and ΩU = ±1, or

2. d > 0, and ΩU has only poles along U{i}, each of these poles is simple,
and for all i ∈ [n] we have Resui=0ΩU =ΩU{i} , where ΩU{i} is a canonical
form for U{i} (see Proposition 2.6). Furthermore, we require that ΩU has
no poles at the hyperplane at infinity Pn∖Cn.

In this case we call Ũ a positive binary geometry.

One way to construct a potential canonical form ΩU is by positively parametriz-
ing U . Namely, let y1, . . . ,yd be regular functions on U which restrict to an
isomorphism:

(y1, . . . ,yd) ∶U>0→Rd
>0.

Then ΩU ∶=⋀ dyi
yi

is a candidate canonical form. Indeed, in many cases we have
the following desirable situation: the functions y1, . . . ,yd generate the rational
function field C(U), and furthermore, each function ui is a rational function

ui =
ai(y)
bi(y)

where ai(y) and bi(y) are polynomials with positive coefficients. This is the
case for the positive parametrization of Section 1.5, and we will revisit this
situation in Section 5.

Remark 2.17. According to the “pushforward heuristic” of [AHBL17, Heuris-
tic 4.1], we more generally expect to be able to construct a canonical form if we
are given a dominant rational map (C×)d Ð→U , which restricts to a diffeomor-
phism Rd

>0→U>0, even if it is not necessarily a birational map.
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2.5. Exercises and Problems

Exercise 2.18.

(a) Prove Proposition 2.12 and Proposition 2.13.

(b) The binary geometries of Proposition 2.12 and Proposition 2.13 are posi-
tive binary geometries. Find canonical forms for them.

Problem 2.19.

(a) Show that there are no monomial relations among the generators ui of a
binary geometry. That is, we have∏i u

ai
i = 1 if and only if ai = 0 for all i.

(b) Is it true that the intrinsic torus of U (Section 6.1) has character lattice
equal to the lattice Λ = {∏i u

ai
i ∣ ai ∈Z} of Laurent monomials in the ui?

We remark that binary geometries are defined over the integers since the
equations (2.1) are integral.

Problem 2.20. Find the Euler characteristic of U for binary geometries Ũ .
When does U have polynomial point count? See Theorem 3.10 and Theorem 6.3
for context.

Problem 2.21. Study the u-equations

u1+u6u8 = 1, u4+u3u5 = 1, u8+u1u2 = 1, u3+u4u7 = 1

u5+u2u4u6 = 1, u2+u5u7u8 = 1, u6+u1u5u7 = 1, u7+u2u3u6 = 1

for the simplicial complex ∆ with maximal facets

{123,124,135,147,157,236,246,358,368,468,478,578}.

Can you prove that this is a binary geometry? What can you say about Ũ and U?
How is this space related toM0,6? This problem is revisited in Section 5.6.2.

3. Scattering equations

3.1. Scattering amplitudes

In particle physics, we are interested in predicting the outcomes of elementary
particle scattering experiments. Let p1, p2, . . . , pn ∈ RD be the space-time mo-
menta of n-particles in D-dimensional space-time. The scattering amplitude is
a function An(p1, p2, . . . , pn) of the momentum vectors, and for the amplitude
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to be non-vanishing, the momenta p1, . . . , pn must satisfy momentum conserva-
tion:

p1+⋯+ pn = 0. (3.1)

The function ∣An(p1, p2, . . . , pn)∣2 is the probability density of measuring an
event with the specified momenta.

To determine the amplitude, we choose a quantum field theory (QFT), which
is a choice of particles and a choice of possible interactions between these parti-
cles. The scattering amplitude An(p1, p2, . . . , pn) is then determined by specify-
ing the type of each of the particles 1,2, . . . ,n, together with information about
the internal symmetries (“polarization vectors”, “quantum numbers”) of each
particle. Roughly speaking, the type of a particle is a representation of some
Lie group, and the additional internal information is a vector in this representa-
tion.

In perturbative QFT, the scattering amplitude has an expansion

An =
∞

∑
L=0

A(L)n , A(L)n = ∑
L-loop Feynman diagrams Γ

∫
RL×D

ωΓ (3.2)

as a sum over the loop order L, where A(L)n is a sum over graphs with n leaves
labeled 1,2, . . . ,n, called L-loop Feynman diagrams. An L-loop Feynman dia-
gram is a graph with first Betti number equal to L. The form ωΓ is a rational
differential form that depends on the momenta p1, . . . , pn.

In these lectures we will focus exclusively on the tree amplitude A(0)n , and
often omit the exponent (0) in our notation. The function A(0)n is a rational
function obtained as the sum over Feynman diagrams that are trees.

3.2. Kinematic space

Space-time RD is equipped with a Lorentzian metric, a nondegenerate symmet-
ric bilinear form with signature (1,D−1). We assume that physics, and there-
fore the scattering amplitude, is invariant under the orthogonal group O1,D−1(R)
preserving the Lorentz metric. For example, this group includes usual rotations
of space, and other linear transformations of space-time studied by Lorentz.

We will mathematically simplify the situation by complexifying the set up,
simultaneously obscuring the physics. Namely, we will consider space-time
momenta as vectors p1, . . . , pn in a complex vector space CD equipped with a
symmetric bilinear form, and the amplitude An(p1, . . . , pn) is then a complex-
valued function invariant under the (complex) orthogonal group O(D), the com-
plexification of O1,D−1(R). Let P denote the n×D matrix with row vectors equal
to p1, . . . , pn. By the first fundamental theorem of invariant theory, the ring of
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invariant (polynomial) functions C[p1, . . . , pn]O(D) is generated by the Mandel-
stam variables

si j = (pi+ p j)2 = 2pi ⋅ p j = s ji

where u ⋅v denotes the symmetric bilinear form on CD, and we use the standard
physics convention that u2 ∶= u ⋅ u. The Mandelstam variables are also (up to
a multiple of 2) the matrix entries of the n× n symmetric matrix M ∶= PPT .
The n× n matrix M has rank at most D. The second fundamental theorem of
invariant theory states that the ideal of relations between the si j is generated by
the (D+1)× (D+1) minors of M. We refer the reader to [Pro07] for more on
the fundamental theorems of invariant theory.

The tree amplitude A(0)n = Atree
n is thus a rational function of the si j. Taking

the dot product of (3.1) with pi, we obtain the relations

∑
j≠i

si j = 0, for each i = 1,2, . . . ,n. (3.3)

In fact, (3.3) is equivalent to (3.1) in the following sense: any symmetric n×
n matrix M with rank ≤ D and row (and thus column) sums equal to 0 is of
the form M = PPT where the rows of P satisfy (3.1). To see this, note that
while M may not be diagonalizable, it has an Autonne-Yakagi factorization M =
UDUT , where U is unitary and D is diagonal. Since M[1,1, . . . ,1]T = 0, we have
DUT [1,1, . . . ,1]T = 0. We have D =QQT for a n×D matrix Q, and thus M =PPT

for P =UQ. It is easy to see that Q can be chosen so that PT [1,1, . . . ,1]T =
QTUT [1,1, . . . ,1]T = 0, that is, P satisfies momentum conservation.

We will furthermore restrict ourselves to scattering of massless particles,
that is, the momentum vectors satisfy p2

i = 0, or equivalently, sii = 0.

Definition 3.1. The (massless) kinematic space Kn is the (n2)− n dimensional
complex vector space of symmetric n×n matrices with diagonal entries equal to
0, and row and column sums equal to 0. Equivalently, the dual K∗n of kinematic
space is the vector space spanned by matrix entry functionals si j = s ji satisfying
sii = 0 and the n equations (3.3).

We will often view a point in Kn as a collection s = (si j) of complex numbers
satisfying sii = 0 and (3.3).

Note that in our definition of kinematic space we have not fixed a dimen-
sion D of space-time. We will view scattering amplitudes in general space-time
dimension as complex analytic functions on Kn. Tree amplitudes Atree

n are then
rational functions on Kn. In Section 4, we return to discuss the special kinemat-
ics when we work in (D = 4)-dimensional space-time of our real world.



MODULI SPACES IN POSITIVE GEOMETRY 47

3.3. Scattering potential onM0,n

Define the planar kinematic functions Xi j ∈K∗n by the formula

Xi j = ∑
i≤a<b≤ j−1

sab, (3.4)

where [i, j−1] = {i, i+1, . . . , j−1} is a cyclic interval and the index of summa-
tion is considered cyclically. For example, X25 = s23+ s24+ s34. We have that Xi j

vanishes when (i j) is not a diagonal of the n-gon. The si j can be expressed in
terms of Xi j via the equation

si j = Xi, j+1+Xi+1, j −Xi, j −Xi+1, j+1. (3.5)

Since K∗n has dimension (n2)−n, we have the following.

Proposition 3.2. The planar kinematic functions {Xi j ∣ (i j) ∈ diagn} form a basis
of K∗n .

Furthermore, we may define dual lattices Kn(Z) ⊂ Kn and K∗n (Z) ⊂ K∗n as
follows:

K∗n (Z) ∶= spanZ{si j} = spanZ{Xi j}
Kn(Z) ∶= {(s) ∈Kn ∣ f (s) ∈Z for all f ∈K∗n (Z)} = {(s) ∈Kn ∣ si j ∈Z}.

The relation between Xi j and si j can be viewed in terms of the cross-ratios
ui j and minors (σi −σ j) on M0,n. Namely, for any point in kinematic space
Kn(Z), we have a regular function onM0,n:

φX ∶=∏
(i j)

uXi j
i j =∏

i< j
(σi−σ j)si j , (3.6)

the equality following from (3.5) and (1.3). Thus, we have:

Proposition 3.3. The integral kinematic space Kn(Z) is naturally isomorphic to
the character lattice Λ(M0,n) of (1.6). Integral dual kinematic space K∗n (Z) is
naturally isomorphic to the cocharacter lattice Λ

∨(M0,n).

We also have natural vector space isomorphisms Kn ≅ Λ⊗Z C and K∗n ≅
Λ
∨⊗ZC.

Corollary 3.4. Any cross-ratio, or more generally any Laurent monomial in
cross-ratios, can be uniquely written as a Laurent monomial in the dihedral co-
ordinates ui j, times a sign.
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Proof. Any Laurent monomial in cross-ratios is of the form ±∏i< j(σi −σ j)si j

for integers si j that define a point in Kn(Z). The sign ± arises since (σi−σ j) =
−(σ j −σi).

Definition 3.5. For arbitrary Xi j ∈ C, or X ∈ Kn, the Koba-Nielsen potential, or
scattering potential is the (multi-valued) function (3.6).

This function is called a likelihood function [ST21], or master function
[Var95] in other contexts. While φX is multi-valued, its (log-)critical point set
inM0,n, the solutions to the equation

dlogφX = ∑
(i j)∈diagn

Xi jdlogui j = ∑
(i j)∈diagn

Xi j

ui j
dui j = 0,

is a well-defined algebraic set.

3.4. Cachazo-He-Yuan scattering equations

The traditional approach to (perturbative) scattering amplitudes is via the Feyn-
man diagrams of (3.2). Around ten years ago, Cachazo, He, and Yuan [CHY14b]
introduced a new approach to the computation of tree-level scattering ampli-
tudes by solving scattering equations. This approach is inspired by Witten’s
twistor string theory [Wit04] which leads to explicit formulae for tree-level
Yang-Mills amplitudes [RSV04].

The scattering equations are the following n equations

Qi ∶=∑
j≠i

si j

σi−σ j
= 0, for i = 1,2, . . . ,n. (3.7)

Here, si j denote the Mandelstam coordinates of a point in kinematic space Kn,
and σ1, . . . ,σn are n distinct points on P1. By convention, if σi =∞ then the term

si j
σi−σ j

is declared to be 0.

Proposition 3.6. The n scattering equations (3.7) are equivalent to the critical
point equation dlogφX = 0.

Proof. Follows from (3.6) and that Qi is up to sign equal to ∂

∂σi
logφX .

Proposition 3.7. The scattering equations are invariant under the action of
PGL(2) on {σ1, . . . ,σn}.

Proof. Exercise 3.38.

Thus we may view the σi in (3.7) as defining a point σ ∈M0,n. We view the
scattering equations in the following three ways:
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1. If a point s = (si j) ∈ Kn has been fixed, we may solve these equations to
find solutions σ ∈M0,n. This is the original perspective of [CHY14b].

2. If a point σ ∈M0,n has been fixed, we may solve these equations to
find solutions s ∈ Kn. There are usually infinitely many such solutions,
but restricting to (n− 3)-dimensional subspaces of Kn we will find that
there is generically a unique solution, defining a scattering (rational) map
from M0,n to a subspace of Kn. This is the perspective of [AHBHY18,
AHHL21b].

3. The scattering equations define a scattering correspondence variety

I = {(s,σ) ∣ (3.7) holds } ⊂Kn×M0,n. (3.8)

This will be useful in Section 4. Note that the equations (3.7) are ho-
mogeneous in the variables si j, so the incidence variety is also naturally
defined in P(Kn)×M0,n. This correspondence has appeared in likelihood
geometry [HS14] but I have not seen it explicitly in the amplitudes litera-
ture.

If a point s ∈Kn has been fixed, then CHY postulate that the (tree-)amplitude
rational function An ∈ C(Kn) is obtained as a sum of some function over the
solutions of the scattering equations. The choice of function is determined by
the choice of QFT. While the CHY scattering amplitudes can be considered for a
variety of theories, we focus on scalar particles in this section. Before we define
the CHY amplitude, we first discuss the solutions to the scattering equations.

3.5. Solving the scattering equations

Let us suppose that s ∈ Kn has been fixed, or equivalently, p1, . . . , pn have been
fixed. We consider the solutions to (3.7) inM0,n.

Example 3.8. Suppose n = 4. Then dimKn = 4−2 = 2, and using (3.3), we have

s12 = s, s13 = −s− t, s14 = t, s23 = t, s24 = −s− t, s34 = s.

where s = X13 and t = X24. We use the PGL(2) action to fix σ1 = 0,σ2 = 1,σ4 =
∞. The scattering equation for i = 4 is automatically satisfied, and the other
equations become

s
−1
+ −s− t
−σ

= 0,
s
1
+ t

1−σ
= 0,

−s− t
σ
+ t

σ −1
= 0,

where σ = σ3. These three equations are equivalent, with solution σ = s+t
s .



50 THOMAS LAM

Theorem 3.9. For generic s ∈ Kn, the scattering equations have (n−3)! solu-
tions.

Theorem 3.9 follows from a theorem of Orlik and Terao [OT95] (in the
setting of hyperplane arrangement complements), or its generalization by Huh
(Theorem 6.3) to very affine varieties. These results state that the number of
solutions to the scattering equations is (generically) equal to the absolute value
of the Euler characteristic ofM0,n

1. The Euler characteristic ofM0,n is easy to
compute by counting points over Fq. After gauge-fixing σ1 = 0,σ2 = 1,σn =∞,
we find that there are (q−2) choices for σ3, and then (q−3) choices for σ4, and
so on. This gives

#M0,n(Fq) = (q−2)(q−3)⋯(q−n+2).

According to the next result, a consequence of the Weil conjectures, we have
χ(M0,n(C)) = (−1)n−3(n−3)!.

Theorem 3.10. Suppose that we have an algebraic variety X defined over Z.
That is, X is cut out by polynomial equations with integer coefficients. Further
suppose that XFq is smooth and has polynomial point count f (q) for all prime
powers q = pn of some prime p. Then the Euler characteristic of the complex
algebraic variety X(C) is given by χ(X(C)) = f (1).

Let us also sketch the original argument of [CHY14a] for Theorem 3.9,
which is based on soft-limits; see also [ABFK+23]. We proceed by induction on
n. We gauge-fix σ1 =∞,σ2 = 0,σ3 = 1, and set snb(ε) = εsnb. Substituting this
into (3.7), we obtain a collection of ε-dependent equations. Setting ε = 0, the
last equation disappears, and we are left with n−1 equations that we can view
as a set of CHY scattering equations for n−1 particles. (Note that we have to
adjust s1 j to assure that momentum conservation is satisfied.). We have (n−1)
equations, not depending on σn, and by induction there are (n−4)! solutions to
this system.

Now, let ∣ε ∣ be nonzero but small. Then the last equation is of the form

ε

n−1

∑
j=2

sn j

σn−σb
= 0.

If σ1, . . . ,σn−1 have been determined, then clearing denominators, this is a poly-
nomial equation in σn of degree n−3, and has n−3 solutions. We now argue
that in a small neighborhood of each of the (n−4)! solutions σ

′ = (σ1, . . . ,σn−1)
there are (n−3) solutions for σ = (σ1, . . . ,σn) that satisfy all the scattering equa-
tions.

1For a discussion of scattering equations when s become non-generic, see [KKT24].
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3.6. φ 3-amplitude from scattering equations

Define the n×n matrix Φ by

Φab ∶= ∂σaQb,

with entries that are functions on Kn×M0,n. Since Qb = ∂σb logφX , the matrix Φ

is a Hessian matrix. It follows from Exercise 3.41 that the matrix Φ has rank at
most (n−3). Let Φ

abc
pqr be the (n−3)×(n−3) matrix obtained by deleting rows

a,b,c and columns p,q,r from Φ.

Lemma 3.11. The reduced determinant

det′Φ ∶=
detΦ

abc
pqr

σabσbcσcaσpqσqrσrp

does not depends on the choice of a,b,c, p,q,r.

Proof. Exercise 3.41.

Definition 3.12. The CHY scalar amplitude is the function on kinematic space
Kn given by

An ∶= ∑
solns

1
det′Φ

1
(σ12σ23⋯σn1)2

(3.9)

summed over the solutions to the scattering equations.

Example 3.13. Choose {a,b,c} = {1,2,4} = {p,q,r} and use PGL(2) to place
(σ1,σ2,σ4) at (0,1,∞). Then Φ

124
124 is a 1×1 matrix with entry

s+ t
σ2 −

t
(σ −1)2 .

There are as many factors involving σ4 =∞ in the numerator as in the denomi-
nator of (3.9). Substituting σ = s+t

s from Example 3.8, we obtain

A4 =
1

s2

s+t −
s2

t

× 1
t
s

2 = −
s+ t
st
= −(1

s
+ 1

t
) = −( 1

X13
+ 1

X24
) .

Note that Example 3.13 is deceptive: for n > 4, the solutions to the scatter-
ing equations are not rational functions in Xi j. For n = 5, it requires solving a
quadratic equation.

The scalar amplitude defined by Cachazo-He-Yuan scattering equations re-
covers the scalar φ

3-amplitude defined as a sum over Feynman diagrams.
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Theorem 3.14 ([DG14]). We have, up to a sign,

An = Aφ
3

n =∑
T
∏

e∈E(T)

1
Xi j

(3.10)

where the summation is over planar trees T (Exercise 1.26) with n leaves, inte-
rior vertices of degree three, and the product is over interior edges of e which
separate leaves i, i+1, . . . , j−1 from j, j+1, . . . , i−1.

The proof of Theorem 3.14 in [DG14] is by induction, verifying that both
sides of satisfy a recursion.

The cubic planar trees appearing in Theorem 3.14 are the “Feynman dia-
grams” (3.2) of a QFT called scalar φ

3-theory, and An =A(0)n is called the planar
φ

3-amplitude (at tree level). The choice of φ
3-theory corresponds to the choice

of degree 3 interior vertices. If we imagine inflowing momenta pi at leaf i, and
assume that momentum is conserved at every interior vertex, then

momentum along edge e = ±(pi+ pi+1+⋯+ p j−1) = ∓(p j + p j+1+⋯+ pi−1),

and Xi j is the dot product of this momentum vector with itself. The appear-
ance of squared momenta, called “propagators”, in the denominator is a general
feature of the rational functions associated to Feynman diagrams.

1

2 3

4

56

e

The momentum traveling along the edge e
is equal to ±(p4+ p5) = ∓(p1+ p2+ p3+ p6),
with square given by Xe = X46 = s45.

Remark 3.15. More generally, for a permutation α ∈ Sn, we define a Parke-
Taylor factor

PT(α) ∶= 1
σα(1)α(2)⋯σα(n)α(1)

. (3.11)

If we replace the factor 1
(σ12σ23⋯σn1)2

in (3.9) by PT(α)PT(β) we obtain partial
amplitudes, which are sums over another (usually smaller) collection of trees;
see Exercise 3.44.

Remark 3.16. Let Y be a smooth complex algebraic variety and f ∶Y →C be a
function on Y . Suppose that a Lie group G acts freely on Y and f is a G-invariant
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function. That is, for g ∈G, we have the equality f = f ○g∗, where g∗ ∶Y →Y is
the automorphism induced by the action of g. Taking differentials, we get

d f = d f ○dg∗. (3.12)

For a vector v ∈ g in the Lie algebra g = LieG, we have a corresponding vector
field Xv on Y . Then (3.12) says that the 1-form d f is annihilated by the vector
field Xv. Indeed, d f is annihilated by the d = dimG dimensional space of vector
fields

{Xv ∣ v ∈ LieG}. (3.13)

The quotient map Y → Y /G induces a map of tangent bundles TY → T(Y /G),
with kernel equal to the subbundle with sections given by (3.13). The 1-form
d f naturally descends to a section of the cotangent bundle T∗(Y /G).

Taking Y = (P1)n∖{diagonals}, and f = φX , and G = PGL(2), this explains
the three-dimensional kernel of Φ. The reduced Jacobian det′Φ of Lemma 3.11
is a Jacobian associated to f , viewed as a function onM0,n =Y /G.

3.7. Delta functions

As we have explained in Proposition 3.3, the scattering potential, and thus the
scattering correspondence (3.8) is intrinsically associated toM0,n. On the other
hand, the reduced determinant of Lemma 3.11 is coordinate dependent: it de-
pends on choosing some of the σi as coordinates. We develop formalism to
reformulate the definition (3.9) in a more conceptual way.

We first introduce the formalism of “holomorphic delta functions” that are
common in the physics literature. Recall that the delta function δ(x) is a distri-
bution on the real line satisfying

∫
∞

−∞
h(x)δ(x)dx = h(0).

We will use this formula to motivate the definition of the holomorphic delta
function, as follows. Let X be an n-dimensional complex algebraic variety, and
suppose that f1, f2, . . . , fn are meromorphic functions defined on X . (If any of
the fi have singularities on X , by convention these singularities are removed
form X .)

Definition 3.17. Let ω be a holomorphic n-form on X . Assume that the equa-
tions f1 = f2 =⋯ = fn = 0 have non-degenerate isolated solutions {p1, . . . , pr} on
X . The integral ∫ δ

n( f1, f2, . . . , fn)ω is defined as:

∫ δ
n( f1, f2, . . . , fn)ω = ∑

p∈{p1,...,pr}

h(p)det(∂ f j

∂gi
)
−1

(p)
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where for each solution p, we let g1, . . . ,gn be local coordinates such that in the
neighborhood of p, we have

ω(x) = h(x)dg1∧dg2∧⋯∧dgn.

If f ′1 = f ′2 =⋯ = f ′n = 0 defines the same solution set as f1 = f2 =⋯ = fn = 0,
then

∫ δ
n( f ′1, . . . , f ′n)ω = ∫ δ

n( f1, f2, . . . , fn)det(∂ f ′i
∂ f j
)
−1

ω (3.14)

So we have the formula δ
n( f ′1, . . . , f ′n) = δ

n( f1, f2, . . . , fn)det( ∂ f ′i
∂ f j
)
−1

. In partic-

ular, δ
2( f ,g) = −δ

2(g, f ) and δ(α f ) = δ( f )/α for a scalar α . We also use the
notation δ

n( f1, f2, . . . , fn) = δ( f1)δ( f2)⋯δ( fn).
Now, define

δ
CHY ∶= σabσbcσca

σ12σ23⋯σn1
∏

i∉{a,b,c}
δ(Qi), (3.15)

which (similar to Lemma 3.11) does not depend on the choice of {a,b,c} ⊂ [n].
The following reformulation of the CHY amplitude is essentially the one given
in [BBBB+15].

Proposition 3.18. The definition (3.9) can also be written as

An = ∫ δ
CHY

Ω0,n

where the three points σa,σb,σc have been gauge-fixed, for example to {0,1,∞}.

3.8. General formalism for scalar amplitudes

We suggest a formalism that produces scalar amplitudes just from the potential
φX , which is canonically associated to the varietyM0,n. There is some similarity
with the approach of Mizera [Miz18] who worked in twisted (co)homology.

Let X be an n-dimensional complex algebraic variety. Let φ be a multi-
valued function, which we call the potential function, and ω be a rational n-form
on X . Let g1, . . . ,gn be local coordinates such that we have

ω(x) = h(x)dg1∧dg2∧⋯∧dgn.

We define the degree n delta function δ
n(φ ;ω) by

δ
n(φ ;ω) ∶= h(x)

n

∏
i=1

δ (∂ logφ

∂gi
) . (3.16)
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If g′1, . . . ,g
′
n is another set of local coordinates, then ω = h′(x)dg′1∧dg′2∧⋯∧dg′n

where

h′(x) = h(x)det
⎛
⎝

∂gi

∂g′j

⎞
⎠
.

It thus follows from (3.14) that δ
n(φ ;ω) is well-defined.

Lemma 3.19. Let φ be a potential with isolated non-degenerate critical points,
and let

ω = h(x)dg1∧dg2∧⋯∧dgn, η = r(x)dq1∧dq2∧⋯∧dqn

be two n-forms. We have

∫ δ
n(φ ;ω)η =∑

p
h(p)r(p)det(∂

2 logφ

∂gi∂q j
)
−1

= ∫ δ
n(φ ;η)ω.

where the summation is over solutions p to dlogφ = 0.

Proposition 3.20. We have δ
n−3(φX ;Ω0,n) = δ

CHY. Thus the CHY scalar am-
plitude is given by

An = ∫ δ
n−3(φX ;Ω0,n)Ω0,n.

Proof. Fixing {σ1,σ2,σn} = {0,1,∞} the potential φ = φX and form Ω0,n be-
come

φ =
n−1

∏
j=3
(−σ j)s1 j(1−σ j)s2 j ∏

3≤i< j≤n−1
σ

si j
i j , Ω = 1

σ23σ34⋯σn−2,n−1
dσ3∧⋯∧dσn−1.

For i = 3,4, . . . ,n−1, we have that ∂σi logφ =Qi, where the latter has been spe-
cialized to {σ1,σ2,σn} = {0,1,∞}. It follows that

δ
n−3(φ ;Ω) = 1

σ23σ34⋯σn−2,n−1
δ(Q3)δ(Q4)⋯δ(Qn−1).

This equals δ
CHY, after noting that in (3.15), two factors in both the numerator

and denominator involve σn =∞, and cancel out.

Example 3.21. Let n = 4 and write Ω0,4 = du
u(1−u) where u = u13. We have

φ = us(1−u)t , ∂ logφ

∂u
= s

u
− t

1−u
, δ

1(φ ;Ω) = δ( s
u
− t

1−u
) 1

u(1−u) ,
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where s = X13 and t = X24. We calculate (noting that δ(a f ) = δ( f )/a)

∫ δ
1(φ ;Ω)Ω = ∫ δ( s

u
− t

1−u
) du

u2(1−u)2

= − 1
s+ t ∫ δ(u− s

s+ t
) du

u(1−u)

= − 1
s+ t

1
(s/(s+ t))(t/(s+ t)) = −(

1
s
+ 1

t
) = −Aφ

3

4 (s,t).

The above formalism suggests the following very general definition.

Definition 3.22. Let U be an n-dimensional very affine variety with character
lattice Λ, and let φ be the intrinsic potential on U . For two top-forms Ω,Ω′ on
U , we define the (partial) amplitude on ΛR,

A(Ω∣Ω′) ∶= ∫ δ
n(φ ;Ω)Ω′ = ∫ δ

n(φ ;Ω
′)Ω =∶ A(Ω′∣Ω).

We expect to obtain top-forms Ω,Ω′ from the general theory of positive ge-
ometries. See Section 6.1 for definitions of Λ and φ , and for further discussion.

3.9. From scattering correspondence to scattering form

Suppose we have a dominant rational map f = ( f1, f2, . . . , fn) ∶ X Ð→Y between
complex algebraic varieties of the same dimension n, and suppose ω is a rational
r-form on X . Then we define the pushforward f∗ω (also called the trace) as
follows. Suppose that the map f has (generically) degree d. Let W ⊂ Y be an
(analytic) open set such that f −1(W) =V1⊔V2⊔⋯Vd is a disjoint union of open
sets V1, . . . ,Vd ⊂ X , where f ∣Vi ∶Vi→W is biholomorphic. We then define

f∗ω ∶=
d

∑
i=1
(( f ∣Vi)−1)∗ω ∣Vi ,

where the form on the right hand side, defined as a rational form on W , is ex-
tended to a rational form on Y by analytic continuation.

Let y1,y2, . . . ,yn be local coordinates on Y . In these coordinates, we may
write the rational map f as f = ( f1, f2, . . . , fn). If f has degree d, the n-equations
f1(x)−y1 = f2(x)−y2 =⋯ = fn(x)−yn = 0 will generically have d isolated solu-
tions. Suppose that ω has degree n, that is, ω is a top form. Then the integral
∫ δ

n( f1(x)−y1, f2(x)−y2, . . . , fn(x)−yn)ω will be a well-defined rational func-
tion on Y .

Proposition 3.23. We have

f∗ω = (∫ δ
n( f1(x)−y1, f2(x)−y2, . . . , fn(x)−yn)ω)dy1∧⋯∧dyn.
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Example 3.24. Let f ∶ C→ C be given by x↦ y = x2, and consider the 1-form
ω = dx

x−a . The pushforward is

f∗ω =ω ∣x=√y+ω ∣x=−√y =
d
√

y
√

y−a
+
−d
√

y
−√y−a

= dy
y−a2 .

On the other hand, using ∂(x2−y)
∂x = 2x, the delta function integral can be com-

puted as

∫ δ(x2−y) dx
x−a

= ( 1
2x(x−a))x↦

√
y
+( 1

2x(x−a))x↦−
√

y
= 1

y−a2 .

Recall the scattering correspondence I ⊂ Kn×M0,n (3.8). Consider the fol-
lowing diagram:

I

M0,n Kn

qp

Definition 3.25. The scattering form on Kn is the (n−3)-form

Ψn ∶= q∗p∗Ω0,n.

The pullback p∗Ω0,n is a rational (n−3)-form on I. By Theorem 3.9, the
map q ∶ I → Kn is a degree (n− 3)! map between two varieties of dimension
(n2)−n, and thus the pushforward q∗p∗Ω0,n is well-defined.

We now give an explicit formula for Ψn.

Theorem 3.26. We have

Ψn =∑
D

sign(D) ⋀
(i j)∈D

dlogXi j (3.17)

summed over triangulations D of the n-gon, or equivalently over maximal sim-
plices in ∆0,n. Here, the signs sign(D) ∈ {+,−} are chosen so that we obtain an
orientation of the simplicial complex ∆.

There is an overall sign-ambiguity in Theorem 3.26, matching the sign-
ambiguity of Ω0,n which depends on an ordering of the positive coordinates,
or equivalently, an orientation of the manifold (M0,n)>0.

We spell out details of sign(D). The choice sign(D) depends on the or-
dering of the elements (i j) ∈D that appear in ⋀(i j)∈D dlogXi j, so that the form
sign(D)⋀(i j)∈D dlogXi j depends only on D, and not the ordering. If we fix an
ordering (i1 j1),(i2, j2), . . . ,(in−3, jn−3) of the diagonals in D, there is a unique
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other triangulation D′ obtained by flipping the diagonal (i1, j1), swapping it for
(i′1, j′1). We ask that

sign(D)dlogXi1, j1 ∧⋯∧dlogXin−3, jn−3 = −sign(D′)dlogXi′1, j
′
1
∧⋯∧dlogXin−3, jn−3

(3.18)
for any twoD,D′ related in this way. This is equivalent to picking an orientation
(that is, a generator for Hn−3(∣∆∣,Z)) on the geometric realization ∣∆∣ of ∆, which
is an orientable manifold (that is, Hn−3(∣∆∣,Z) ≅ Z). Indeed, ∣∆∣ is a sphere, the
boundary sphere of the dual of the associahedron polytope, which is orientable.

Example 3.27. Let n = 4 and as usual we gauge-fix (σ1,σ2,σ4). The canonical
form is dσ

σ−1 =
d(σ−1)

σ−1 , and the scattering equations give σ = X13+X24
X13

. Substituting,
we get

Ψ4 = dlog(σ −1) = dlog(X24/X13) = dlogX24−dlogX13.

The proof of Theorem 3.26 is given in Section 3.11.

Remark 3.28. The combinatorial formula in Theorem 3.26 is used as a defini-
tion of the scattering form in [AHBHY18]. Our definition of Ψn as a push-pull
gives the scattering form a conceptual explanation which can be extended to the
general setting, for example of a very affine variety as in Definition 6.7. See
also [FM21] for a similar approach.

Let us consider the subspace H(c) ⊂Kn given by the linear equations

Xi j +Xi+1, j+1−Xi, j+1−Xi+1, j = −si j = ci j (3.19)

where ci j is a constant, where 1 ≤ i < j−1 < j ≤ n−1. A quick calculation shows
that these are (n−2

2 ) linearly independent equations, so that dimH(c) = n−3.

Lemma 3.29. Let D be a triangulation of the n-gon. Then {Xi j ∣ (i j) ∈D} is a
basis for H(c).

Proposition 3.30. Let ιc ∶H(c)↪Kn denote the inclusion. The pullback dn−3X ∶=
ι
∗
c sign(D)⋀(i j)∈D dlogXi j does not depend on D. The pullback ι

∗
c Ψn is, up to

sign, equal to the planar φ
3-amplitude

ι
∗
c Ψn = ±Aφ

3

n dn−3X .

Proof. Exercise 3.43.

The choice of the affine subspaces H(c) ⊂ Kn may appear mysterious. We
explain them in Section 5.3. We remark that pullbacks of Ψn to other sub-
spaces of Kn are also of physical interest, and are called partial amplitudes (Re-
mark 3.15).
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Example 3.31. Let n = 4. Then the scattering form is (up to sign) the 1-form

Ψn =
dX13

X13
− dX24

X24

on the two-dimensional space K4. Pulling back to the one-dimensional affine
subspace X13+X24 = c, we have −dX13 = dX24, so

ι
∗
c Ψn = (

1
X13
+ 1

X24
)dX13,

so the coefficient of dX13 is exactly Aφ
3

4 .

Example 3.32. Let n = 5. We may use the two linear functions X13,X14 as
coordinates on H(c), and then

X35 = −X14+c14+c24, X25 = −X13+c13+c14, X24 = X14−X13+c13

on H(c). One checks that the sign works out so that all ι
∗
c sign(D)⋀(i j)∈D dlogXi j

is always ±dX13dX14 with the same sign.

Remark 3.33. Recall from Theorem 2.10 that if Ũ is binary geometry for ∆,
then ∆ is a pure pseudomanifold. In particular, it makes sense to ask that ∆

is orientable, or oriented, using the same requirement as (3.18). Now suppose
that Ũ is a binary geometry for a pure, orientable, pseudomanifold ∆. We then
have a combinatorial scattering form ΨU on Λ(U)R, analogous to the formula
in Theorem 3.26, given by

ΨU ∶=∑
F∈∆

sign(F)⋀
i∈F

dlogXi

where the sum is over the maximal simplices F of ∆, and the differential forms
sign(F)⋀i∈F dlogXi are chosen to give an orientation of ∆.

3.10. Scattering map

Restricting the scattering correspondence projection I → Kn to the subspace
H(c), we obtain a rational map [AHBHY18, AHHL21b]

Φ =Φ(c) ∶M0,nÐ→H(c), (σ)↦ (Xab) (3.20)

of degree (n−3)!, between two varieties of dimension (n−3). The map Φ(c)
can be described in coordinates explicitly. First, use PGL(2) to take σn to∞, as



60 THOMAS LAM

usual. Then the scattering equation Qn = 0 disappears, and summing Q1, . . . ,Qk,
we obtain

sk,k+1 = − ∑
1≤i≤k

k+1≤ j≤n−1
(i, j)≠(k,k+1)

σk,k+1
si j

σi j
.

Substituting this into (3.4), we can express each Xab as a sum over si j where (i j)
is a diagonal:

Xab = − ∑
1≤i<a
a< j<b

σa, j
si j

σi j
− ∑

a≤i<b
b≤ j<n

σi,b−1
si j

σi j
− ∑

1≤i<a
b≤ j<n

σa,b−1
si j

σi j
. (3.21)

Note that this equality only holds if we assume the scattering equations Qi =
0. For example, for n = 5, we may use the two linear functions X13,X14 as
coordinates on H(c), and then gauge-fixing (σ1,σ2,σn) to (0,1,∞) as usual,
the scattering map is

X13 =
c13

σ3
+ c14

σ4
, X14 =

σ3c14

σ4
+ (σ3−1)c24

(σ4−1) . (3.22)

Theorem 3.34. We have Φ(c)∗Ω0,n = ι
∗
c Ψn.

Proof. The map Φ(c) is the restriction of the map q to (the inverse image of)
the subspace H(c). The definition of the pushforward of a form commutes with
such pullbacks.

Example 3.35. For n = 4, the scattering map is X = c
σ

, where X = X13, σ = σ3
and c = c13. The canonical form is

Ω0,4 = dlogy1 =
dσ

σ −1
,

where y1 = σ −1. Thus substituting σ = c
X , we get

Φ(c)∗Ω0,4 = −c
dX

X2(c/X −1) = −c
dX

X(c−X) = −(
1
X
+ 1

c−X
)dX .

This agrees (up to sign) with Aφ
3

4 dX , after using X13+X24 = c.

Remark 3.36. There are two other proofs of Theorem 3.34. For the first proof,
combining with Proposition 3.30 and Theorem 3.14, the statement is equivalent
to

Aφ
3

n = ∫ Ω((M0,n)≥0) ∏
(i j)∈D

δ(Xi j −Φ(c)i j)
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where D is a triangulation of the n-gon and Φ(c)i j denotes the Xi j-coordinate
of the point Φ(c) ∈ H(c). Using Proposition 3.18, this reduces to showing the
identity of delta functions

∏
(i j)∈D

δ(Xi j −Φ(c)i j) =
σabσbcσca

σ12σ23⋯σn1
∏

i∉{a,b,c}
δ(Qi),

which is a direct Jacobian calculation.
For the second proof, as explained in [AHHL21b, Section 7], the map Φ ∶

M0,n→H(c) can be interpreted as the algebraic moment map of the toric vari-
ety of the associahedron Assn−3 (see Section 5). The result then follows from the
pushforward formula of [AHBL17], together with the identification of ι

∗
c Ψn as

the canonical form Ω(Assn−3) of the (n−3)-dimensional associahedron Assn−3,
which is the intersection of the affine subspace H(c) with the positive orthant
{Xi j ≥ 0 ∣ (i j) ∈ diagn} ⊂Kn.

Remark 3.37. Another geometric statement [AHBHY18, AHHL21b] is that
when ci j > 0 are positive then (M0,n)≥0 is mapped diffeomorphically onto an
associahedron polytope, and Φ∗Ω((M0,n)≥0) is the canonical form of the as-
sociahedron. For example, with n = 5, as σ vary within (M0,5)>0, we have
(σ3,σ4) in the region 1 < σ3 < σ4 <∞. The image of this region under the map
(3.22) in H(c) is a pentagon, the two-dimensional associahedron.

3.11. Proof of Theorem 3.26

Our proof is a variant of the proof of [AHBL17, Theorem 7.12], which states
that the pushforward of the canonical form of a projective toric variety XP under
the algebraic moment map is equal to the canonical form of the corresponding
polytope P.

Let Ψ
′
n denote the right hand side of (3.17). We first note that both Ψn and

Ψ
′
n are projective, meaning that they are pullbacks of forms from P(Kn). For Ψn

this follows from the fact that the scattering equations, and thus the scattering
correspondence as well, are invariant under the dilation action of C× on Kn.
For Ψ

′
n this follows from the definition of the signs sign(D); see Exercise 3.43.

Thus it suffices to show that Ψn and Ψ
′
n have the same poles on Kn, and the same

residues at these poles. The poles of Ψ
′
n are along the hyperplanes Ki j = {Xi j =

0}. The poles of Ψn come from the image of the poles of Ω0,n. By Lemma 1.19
and Theorem 1.21, the poles of Ω0,n are along the divisors M̃i j = {ui j = 0} of
M̃0,n.

As explained in Section 5.2 and [AHHL21a], the affine variety M̃0,n is the
complement of a hypersurface H in the toric variety XP, where P is an asso-
ciahedron. Under the identification M̃0,n ≅ XP ∖H, the canonical form Ω0,n is
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identified with the canonical form of the torus of XP. Furthermore, the stratifica-
tion of XP into torus orbit closures induces the stratification of M̃0,n into M̃D.
Let us consider the inclusions

Kn×M0,n ⊂Kn×M̃0,n ⊂Kn×XP

and taking the closure of the scattering correspondence we obtain inclusions
I ⊂ I ′ ⊂ I ′′. The projection I ′′ → Kn is a proper map of degree (n−3)!. There
is an open subset a ∶V ↪ Kn such that the pullbacks I ′′ ×Kn V and I ×Kn V are
isomorphic. Thus Ψn = q∗Ω, where Ω is the canonical form of XP, pulled back
to I ′′.

By [AHHL21b, Section 7.1], the restriction of q to (the inverse image of)
a subspace H(c) can be identified with the algebraic moment map of XP. The
divisors M̃i j = {ui j = 0} are sent by q to the facets of P, which are exactly
the hyperplanes Ki j = {Xi j = 0}. By [KR01, Proposition 2.5], taking residues
commutes with pushforward, so we have

ResKi j Ψn =ResKi j q∗Ω = q∗Res
M̃i j

Ω = q∗(Ω0,n1 ∧Ω0,n2)

where the last equality is by Lemma 1.19. On M̃i j, all characters ukl where (kl)
crosses (i j), are equal to 1. So over Ki j, the potential restricts to

φX ∣Ki j×M̃i j
=∏
(ab)

uXab
ab

where the product is over all diagonals that do not cross (i j). This is exactly
the potential of M̃0,n1 ×M̃0,n2 in the notation of Lemma 1.19. Thus the map
q ∶ q−1(Ki j)→Ki j can be identified with the map

q1×q2× id ∶ (Kn1 ×XP,n1)×(Kn2 ×XP,n2)×W →Kn1 ×Kn2 ×W

where the direct sum decomposition Hi j = Kn1 ×Kn2 ×W corresponds to diago-
nals contained in the polygon on one side of (i j), the diagonals on the other side
of (i j), and the diagonals that cross (i j). We deduce that ResKi j Ψn =Ψn1 ×Ψn2 .
On the other hand, it is immediate from the definition of Ψ

′
n that ResKi j Ψ

′
n =

Ψ
′
n1
×Ψ

′
n2

. By induction on n, with the base case n = 4 checked in Example 3.27,
we conclude that ResKi j Ψn =ResKi j Ψ

′
n for any of the hyperplanes Ki j. It follows

that Ψn =Ψ
′
n.

3.12. Exercises and Problems

Exercise 3.38. Prove Proposition 3.7, as follows. The group PGL(2) acts on
P1 as Möbius transformations. For each i = 1,2, . . . ,n, let σ

′
i =

ασi+β

γσi+δ
. Show that

(σ1, . . . ,σn) is a solution to the scattering equations if and only if (σ ′1, . . . ,σ ′n)
is.
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Exercise 3.39.

(a) Fill out the details in the proof of Proposition 4.5.

(b) Write down conditions that guarantee that r(z) in (4.4) is a regular mor-
phism r ∶ P1→ PD−1 of degree n−2.

Exercise 3.40. Solve the scattering equations for n = 5 by hand or by computer.

Exercise 3.41.

(a) Show that ∑n
i=1 σ

ℓ
i Qi = 0 for ℓ = 0,1,2. Thus a solution to n− 3 of the

scattering equations Qi is automatically a solution to the remaining 3.

(b) Prove Lemma 3.11 by using (a) and the following general statement. Let
M be a n×n matrix and suppose that the nullspace K of M has dimension
k. Let ma1,...,ak

b1,...,bk
denote the minor obtained from M by removing rows

a1, . . . ,ak and columns b1, . . . ,bk. Then we have

ma1,...,ak
b1,...,bk

∆a′1,...,a
′
k
(K) =m

a′1,...,a
′
k

b1,...,bk
∆a1,...,ak(K)

where ∆I(K) denote the Plücker coordinates of K viewed as a point in the
Grassmannian Gr(k,n). A similar statement holds for changing b1, . . . ,bk.

Exercise 3.42. Compute the Euler characteristics of M̃0,n andM0,n using the
fact that Euler characteristic is additive under open-closed decompositions into
algebraic sets.

Exercise 3.43.

(a) Show that the formula (3.17) for the scattering form Ψn is cyclic invariant
up to sign.

(b) Prove that Ψn can be written as a polynomial in the forms dlog(Xi j/Xkl).
This says that Ψn is projective in the sense of [AHBHY18].

(c) Prove Proposition 3.30.

Exercise 3.44. Let α be a cyclic ordering of [n]. A (usual, cubic, n-leaf) planar
tree T is compatible with α if there exists an embedding of T into the plane
so that the leaves are cyclically arranged in the order given by α . The partial
amplitude An(12⋯n∣α) is given by

Aφ
3

n (123⋯n∣α) ∶=∑
T
∏

e∈E(T)

1
Xi j

where the sum is over planar trees compatible with α .
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1. Check for n = 4 and n = 5, that the partial amplitudes can be obtained
by using the Parke-Taylor factor PT(12⋯n)PT(α) in (3.9) instead of

1
(σ12σ23⋯σn1)2

.

2. Check that A4(1234∣2134) can be obtained by pulling back the planar
scattering form Ψ4 to the subspace X24 = c, for a constant c. Which partial
amplitude do you get by pulling back to X13 = c?

3. For each partial amplitude A5(12345∣α) find a subspace ι ∶H ↪ K5 such
that the amplitude can be obtained by the pullback ι

∗
Ψ5.

Problem 3.45. Express the reduced determinant of Lemma 3.11 in terms of the
dihedral coordinates ui j.

Problem 3.46. Explore the scattering equations and (4.3) within the setting of
the moduli space of stable, rational, n-pointed maps to P1.

3.12.1. Tropical u-equations

Recall the u-equations (1.4) satisfied by the dihedral coordinates ui j. This equa-
tion has no minus signs (if we place the 1 on the other side of the equality), and
we can formally take its “positive tropicalization”, given by

ui j ↦Ui j, +↦min, ×↦ +, constant↦ 0

obtaining the tropical u-equation

trop(Ri j) ∶=min(Ui j, ∑
(kl) crosses (i j)

Ukl) = 0.

We now take {Ui j ∈Kn} to be the basis dual to {Xi j ∈K∗n }. Thus the tropical
u-equations define a subset of K∗n .

Lemma 3.47. The intersection of the (n2)−n tropical u-equations is a pure poly-
hedral fan trop≥0M0,n in K∗n of dimension n−3, with maximal cones given by

C(D) = span≥0(Xi j ∣ (i j) ∈D) ⊂K∗n

for D a triangulation of the n-gon.

Proof. Let X ∈K∗n belong to the intersection of trop(Ri j)= 0. Clearly, Ui j(X)≥ 0
for all (i j). Let

DX = {(i j) ∣Ui j(X) > 0}.
If (i j) and (kl) are diagonals that cross, then trop(Ri j) = 0 implies that they
cannot both be elements of D. It follows that the possible choices of DX are
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exactly the subdivisions of the n-gon, and conversely, if DX is a subdivision of
the n-gon then X satisfies the tropical u-equations. For a fixed subdivision D′
of the n-gon we obtain a cone C(D′) with dimension equal to the number of
diagonals used, and the set we seek is the union of these cones. The maximal
cones correspond to triangulations D.

The fan trop≥0M0,n is the positive tropical pre-variety associated to the
equations Ri j = 0. It turns out that trop≥0M0,n is equal to the positive trop-
icalization of M0,n in the sense of [SW05]. Note that the rays (that is, the
one-dimensional cones) of the fan trop≥0U are exactly {R≥0 ⋅Xi j}. The monoid
of bounded characters (Exercise 1.24) onM0,n are exactly the characters taking
nonnegative values on these rays.

Let ∆ = ∆0,n be the simplicial complex of subdivisions of the n-gon, as in
Section 1.4. Then the tropical u-equations cut out the cone over ∆. This suggests
that for binary geometries the following is a reasonable definition of positive
tropicalization.

Definition 3.48. Let U be a binary geometry for a flag simplicial complex ∆

on [n]. The positive tropical pre-variety troppre
≥0 U of U is the intersection of the

tropical u-equations trop(Ri) = 0 for i = 1,2, . . . ,n.

It follows from the same calculation as in Lemma 3.47 that troppre
≥0 U is a

pure polyhedral fan whose cones are exactly

C(F) ∶= span≥0(Xi ∣ i ∈ F).

We do not know (Problem 3.49) the relation between troppre
≥0 U and the usual

notion of (positive) tropicalization (Section 6.7). The intersection of the tropical
u-equations is analogous to the definition of the (positive) Dressian [AHLS21b,
SW21].

Problem 3.49. How is the positive tropical pre-variety troppre
≥0 U in Definition 3.48

related to the positive tropicalization of the very affine variety U?

The study of the tropicalization of binary geometries has recently been ini-
tiated by Cox and Makhlin [CM24].

4. Positive geometry of four dimensional space-time

In Section 3, we looked at the the kinematics of n-particle scattering in D-
dimensional space-time. Space-time of the real world is four-dimensional, so
the case D = 4 is of particular physical importance, so we specialize to D = 4
in this section. For physics background to the material of this section, see
[Dix96, Bri, EH15].
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4.1. Spinors

In Definition 3.1, kinematic space Kn for n-particle scattering is defined to be
a complex vector space of dimension (n2)− n. This is viewed as the space of
symmetric n× n matrices of the form M = PPT , where the row vectors of the
matrix P are the momentum vectors p1, . . . , pn ∈ CD. For low D, the rank of
the matrix M is bounded above by D, and the “correct” kinematic space is the
subvariety KD

n ⊂ Kn cut out by the conditions that all (D+1)× (D+1) minors
vanish.

Setting space-time dimension to D = 4 leads to the remarkable algebra and
geometry of spinors. We view C4 ≅Mat2×2 as the space of 2×2 matrices, with
isomorphism chosen so that the symmetric bilinear form is given by p2 = p ⋅ p =
det(p). Equivalently, the inner product is

[a b
c d
] ⋅[a

′ b′

c′ d′
] = 1

2
(ad′+a′d−bc′−b′c).

The massless condition that p2 = det(p) = 0 implies that p has rank ≤ 1 and can
be written as p = λλ̃ where λ (resp. λ̃ ) is a column (resp. row) vector in C2.
The vectors λ , λ̃ ∈C2 are called spinors.

There is a redundancy in this description: for a non-zero scalar t ∈ C×, the
spinors (λ , λ̃) and (tλ ,t−1

λ̃) represent the same momentum vector p. This
feature is (perhaps?) a slight annoyance when we consider scattering of scalar
particles, but an advantage when we consider scattering of gluons. Spinor co-
ordinates are also preferred when considering scattering of fermions (spin 1/2
particles), though we will only consider gluon scattering. For more on spinor-
helicity formalism, see the textbook [EH15].

Lemma 4.1. Suppose the spinors of p and q are (λ , λ̃) and (µ, µ̃) respectively.
Then

2p ⋅q = det(λ ,µ)det(λ̃ , µ̃)
where the determinants are taken by forming 2×2 matrices, using two column
(resp. row) vectors.

Proof. Exercise 4.14.

Now, let λ1, . . . ,λn and λ̃1, . . . , λ̃n be spinors for the n particles. We use the
standard shorthand:

⟨i j⟩ ∶= det(λi,λ j), [i j] ∶= det(λ̃i, λ̃ j)

satisfying the identities

⟨i j⟩ = −⟨ ji⟩, [i j] = −[ ji], si j = ⟨i j⟩[i j].
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Momentum conservation p1 + p2 +⋯+ pn = 0 becomes the identity ∑i λiλ̃i =

[0 0
0 0
], which combining with Lemma 4.1 gives

∑
i
⟨ ji⟩[ik] = 0, for all j,k. (4.1)

Let SO(D) denote the complex special orthogonal group in D ≥ 3 dimen-
sions. The group SO(D) is not simply-connected and its simply-connected
cover is the spin group Spin(D), which is a double cover of SO(D). When D=4,
we have an exceptional isomorphism Spin(4) ≅ SL(2)×SL(2) arising from the
Dynkin diagram isomorphism D2 ≅A1×A1. The covering map SL(2)×SL(2)→
SO(4) has kernel given by the two element group {(I,I),(−I,−I)}. The SO(4)
action on C4 is replaced by the SL(2)×SL(2) action on the pair (λ , λ̃).

We now view λ = (λ1, . . . ,λn) as a 2×n matrix and λ̃ = (λ̃1, . . . , λ̃n) as a n×2
matrix. By the first fundamental theorem of invariant theory, the ring of SL(2)-
invariant polynomial functions on 2× n (resp. n× 2) matrices is generated by
the 2×2 determinants ⟨i j⟩ (resp. [i j]). This ring, also called the Plücker ring,
is the coordinate ring of the cone over the Grassmannian Gr(2,n). Thus the
kinematics of n massless particle scattering in D = 4-dimensional space-time
involves two 2-planes λ , λ̃ in n-dimensional space, and (4.1) says that λ , λ̃ are
orthogonal 2-planes (Exercise 4.15).

Let Ĝr(2,n) denote the cone over the Grassmannian Gr(2,n). Thus the
coordinate ring of Ĝr(2,n) is the ring generated by ⟨i j⟩.

Definition 4.2. Spinor kinematic space is the space Λ
4
n of pairs (λ , λ̃) ∈ Ĝr(2,n)×

Ĝr(2,n) satisfying λ ⊥ λ̃ .

For more on the algebraic geometry of spinor kinematic space, we refer the
reader to the recent work [EPS24].

Remark 4.3. In D=3 dimensions, we have the exceptional isomorphism Spin(3)≅
SL(2), arising from the Dynkin diagram isomorphism A1 ≅ B1. In D = 6 di-
mensions, we have the exceptional isomorphism Spin(6) ≅ SL(4), arising from
the Dynkin diagram isomorphism A3 ≅ D3. Though we will focus on D = 4,
there is special physics appearing for all three choices of space-time dimension
D = 3,4,6.

4.2. Gluon scattering

Elementary particles come with a discrete parameter, spin, which takes values
in 0, 1

2 ,1,
3
2 ,2, . . .. Spin 0 particles are also called scalar particles, and the am-

plitudes that we looked at in Section 3.6 are scattering amplitudes for scalars.
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A particle with nonzero spin has intrinsic angular momentum – it is allowed to
be rotating, and the axis of rotation gives additional degrees of freedom. For
scattering of particles with nonzero spin, the amplitudes depend on not just the
momentum vector of the particle, but also additional information. In the case
of spin 1 particles, the additional information is called a polarization vector.
Thus scattering amplitudes are functions of momentum vectors p1, . . . , pn and
polarization vectors ξ1, . . . ,ξn.

Gluons are elementary particles that mediate the strong force, that is, the ex-
change of gluons leads to an interaction between elementary particles called the
strong force. Gluons appearing in the strong force are massless spin 1 particles
with “color”, and we commonly call any such particle in a QFT a gluon. Color
refers to the symmetries of a compact Lie group called a gauge group. In the
case of the strong force, this gauge group is SU(3). The dependence of the scat-
tering amplitude on the gauge group can often be separated out in the sense that
the amplitude can be factored as the product of a “group theory factor” and a
“kinematic factor”. We ignore the gauge group in our presentation and focus on
the kinematics. That is, we consider “color-stripped amplitudes”. However, let
us remark that some of the beautiful combinatorics and geometry of amplitudes
arises exactly because of the gauge group. For example, taking the rank of the
gauge group to infinity (that is, SU(N) with N →∞) leads to the consideration
of “planar amplitudes”.

For gluon scattering, polarization vectors have two degrees of freedom. We
may consider the polarization vector as a linear combination of a positive helic-
ity polarization vector and a negative helicity one. So to compute amplitudes,
it suffices to compute the 2n helicity amplitudes, where each of the n particles
is given either positive or negative helicity. These amplitudes are typically de-
noted An(1+,2−,3−, . . . ,n+) (particle 1 has helicity +, particle 2 has helicity −,
...) and so on.

It is a remarkable and beautiful fact that the additional information of the
polarization vector, or equivalently of helicity, is stored in the choice of spinors
(λ , λ̃) (which previously appeared redundant). Let T ≅ (C×)n act on Λ

4
n by

letting t = (t1, . . . ,tn) ∈T send (λi, λ̃i) to (tiλi,t−1
i λ̃i). Let h = (h1, . . . ,hn) ∈ {±1}n

denote a helicity vector. Then we have the following assertion:

Helicity h amplitudes are weight vectors for the T -action with weight
(2h1, . . . ,2hn).

(4.2)
In other words, helicity h amplitudes are rational functions on Λ

4
n that scale by

∏i t
2hi
i under the T -action on Λ

4
n. We can also state this projectively, using the

projective variety Proj(C[Λ4
n]) ⊂Gr(2,n)×Gr(2,n).

Definition 4.4. For an appropriate line bundle L on Proj(C[Λ4
n]), helicity h
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amplitudes are rational sections of L with T -weight equal to (2h1, . . . ,2hn).

The coordinate ring C[Λ4
n] of the variety Λ

4
n is the multi-homogeneous co-

ordinate ring of (or multi-cone over) the flag variety Fl(2,n− 2;n) of partial
flags {(0 ⊂ λ ⊂ λ̃

⊥ ⊂ Cn)} of dimensions 2,n− 2 in Cn. (Here, we have used
the isomorphism Gr(2,n) ≅ Gr(n−2,n) sending λ̃ to λ̃

⊥.) The action of T on
Fl(2,n−2;n) is the usual one, though to preserve the conventions on weights
we should take only the subtorus {(t1, . . . ,tn) ∣∏i ti = 1}. We could also think of
helicity amplitudes as rational sections of a line bundle on an appropriate GIT
quotient Fl(2,n−2;n)//T , though I do not know how useful this point of view
is.

4.3. Scattering equations from marked rational maps

We briefly review the origin of the scattering equations, and in this subsection
we work in general space-time dimension D. Let us consider the following
rational map from a n-punctured Riemann sphere P1∖{σ1, . . . ,σn} to CD:

q(z) ∶=
n

∑
i=1

pi

z−σi
, z ∈ P1∖{σ1, . . . ,σn}. (4.3)

The map (4.3) depends on a choice of σ and on momentum vectors p1, . . . , pn ∈
CD, which we assume are massless and satisfy momentum conservation. Let

r(z) = q(z)∏
i
(z−σi) =

n

∑
i=1

pi∏
j≠i
(z−σi), (4.4)

which is now a polynomial in z. Due to the momentum conservation assump-
tion, we have that r(z) has degree ≤ n−2. We may view r(z) as a rational map
r ∶P1→PD−1. The specific form (4.4) says that r(σi) = pi, now viewed as a point
in PD−1. Let (Kn×M0,n)○ ⊂Kn×M0,n denote the dense open subset where r(z)
is a regular morphism of degree n−2. We may then consider the formula for
r(z) (or q(z)) as defining a morphism

(Kn×M0,n)○Ð→M0,n(PD−1,(n−2)),

whereM0,n(PD−1,(n−2)) is the moduli space of n-pointed rational curves of
degree n−2 in PD−1. It would be interesting to study the scattering equations
within the context of the moduli space M0,n(PD−1,(n− 2)) of stable rational
curves.

The null-cone, or light-cone, of CD is the subset of CD consisting of vectors
satisfying p2 = p ⋅ p = 0 (the massless condition). It is a quadric in CD, singular
only at the origin.
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Proposition 4.5. The scattering equations are equivalent to the condition that
r(z) has image in the null-cone of CD.

Sketch Proof. Differentiating r(z)2 = 0, we obtain the condition r′(z) ⋅ r(z) = 0.
Evaluating this equation at z = σi gives equations equivalent to the scattering
equations.

4.4. Scattering equations in four dimensions

When D = 4, we identify C4 ≅Mat2×2 and ask that r(z) has image in rank one
matrices. Alternatively, we view r(z) as a degree-(n−2) map

r ∶ P1∖{σ1, . . . ,σn}→ P3

and ask that the image of r lies in the quadric P1×P1 ⊂ P3.
In this case, we can write the 2×2 matrix r(z) as r(z) = τ(z)τ̃(z)where τ(z)

is a column vector of polynomials, and τ̃(z) is a row vector of polynomials.
This representation is unique (up to rescaling (τ, τ̃)↦ (tτ,t−1

τ̃)) when the four
matrix entries of r(z) do not have a common root, or equivalently, when r(z) = 0
has no solutions. Additionally imposing that r(z) has degree equal to n−2, this
is exactly the situation when r(z) defines a genuine map P1 → P1 ×P1 ⊂ P3

of degree n− 2. The polynomials τ(z), τ̃(z) are rational maps τ, τ̃ ∶ P1 → P1

obtained by composing r with the projections to one of the factors.
Recall the scattering correspondence I ⊂ Kn ×M0,n. We may restrict the

family I →Kn to the subvariety K4
n ⊂Kn of rank ≤ 4 matrices. Let P4

n denote the
space of n×4 matrices P whose rows are massless momentum vectors p1, . . . , pn

satisfying momentum conservation. Then we have a map P4
n → K4

n (sending
P↦ PPT ) and we can pull the family I back to a family Ĩ ′ → P4

n . We let Ĩ ⊂
P4

n ×M0,n denote those irreducible components of Ĩ ′ that map dominantly to
P4

n . Thus the map Ĩ → P4
n is a morphism of degree (n−3)!; the preimages of a

point in P4
n are the solutions to the scattering equations.

Proposition 4.6. The correspondence Ĩ ⊂ P4
n ×M0,n has n−3 irreducible com-

ponents J̃1,J̃2, . . . ,J̃n−3, all of the same dimension 3n− 4 = dimP4
n . For d =

1,2, . . . ,n−3, the d-th irreducible component J̃d corresponds to factorizations
r(z) = τ(z)τ̃(z) where τ(z) has degree d and τ̃(z) has degree d̃ = n−2−d.

Proof. Given a point in Ĩ, sitting over a generic point P ∈ P4
n , we have a corre-

sponding map r(z)= τ(z)τ̃(z) defined by (4.4), mapping P1∖{σ1, . . . ,σn} to the
quadric P1×P1 ⊂ P3. Since r(z) has degree n−2, if τ(z) has degree d then τ̃(z)
has degree d̃ = n−2−d. First note that for a generic point p1, . . . , pn ∈P4

n , neither
τ(z) nor τ̃(z) can be constant. This is because by (4.4) we have r(σi) = pi, and
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this would force all the λi to be parallel, or all the λ̃i to be parallel, which is
generically not the case. Thus 1 ≤ d ≤ n−3.

The possible maps τ ∶P1→P1 (resp. τ̃) is determined by a pair of polynomi-
als of degree ≤ d (resp. ≤ d̃ = n−d−2), belonging to a 2(d+1) (resp. 2(d̃+1))
dimensional affine space. Thus τ(z), τ̃(z) is represented by a point in this affine
space, and an open subset of this affine space arises in this way. The possi-
ble maps r(z) obtained in this way is thus an irreducible (2n−1)-dimensional
space, since (ατ(z))(α−1

τ̃(z)) = τ(z)τ̃(z) for a scalar α . Also dimM0,n = n−3
so we have described an irreducible subvariety of Ĩ of dimension 3n−4; let us
call this family J̃d .

Now, dimP4
n = 4n−4−n = 3n−4, with 4 constraints from momentum con-

servation and n from the massless condition. Since Ĩ → P4
n is generically finite

of degree (n−3)!, we have dim Ĩ = dimP4
n = 3n−4. It follows that each of the

subvarieties J̃d described above is full-dimensional in Ĩ. Over the locus (P4
n )○

where Ĩ → (P4
n )○ has exactly degree (n−3)!, every solution belongs to one of

the J̃d . Thus J̃1, . . . ,J̃n−3 are exactly the irreducible components of Ĩ.

The irreducible components J̃d of Ĩ separate the solutions of the scattering
equations into n−3 sectors. Let En,k denote the Eulerian number, counting the
number of permutations in Sn with k ascents. Thus ∑k En,k = n!. For example,
E3,1 = 1, E3,2 = 4, and E3,3 = 1. In [CHY13], Cachazo–He–Yuan explain the
following beautiful formula (earlier observed in a slightly different setting in
[RSV04]).

CHY Formula.

#{solutions in the k = d+1-th sector} = En−3,k−2. (4.5)

Equivalently, the degree of the map J̃d → P4
n is equal to the Eulerian number

En−3,d−1.

I do not know of an explanation of this CHY formula similar to the proof of
Theorem 3.9 that depends on the calculation of Euler characteristic.

4.5. Twistor strings

According to a proposal of Witten [Wit04], and expanded upon by Roiban–
Spradlin–Volovich [RSV04], gluon scattering amplitudes in Yang-Mills theory
can be obtained from twistor string theory. Indeed, this proposal was one of the
key motivations for the CHY scattering equations.

Substituting z = σi into (4.4), we have the equality of 2×2 matrices

τ(σi)τ̃(σi) = r(σi) =∏
j≠i
(σ j −σi)pi =∏

j≠i
(σ j −σi)λiλ̃i
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and it follows that for some ti, t̃i ≠ 0, we have the equations

tiτ(σi) = ti
d

∑
m=0

τmσ
m
i = λi, t̃iτ̃(σi) = t̃i

d̃

∑
m=0

τ̃mσ
m
i = λ̃i (4.6)

where tit̃i = ∏ j≠i(σ j −σi)−1, and τm (resp. τ̃m) are the coefficients of the 2-
component polynomial τ(z) (resp. τ̃(z)). When λi, λ̃i have been fixed, we view
(4.6) as constraints on the k, k̃-planes (with k = d +1 and k̃ = d̃ +1) C ∈Gr(k,n),
C̃ ∈Gr(k̃,n):

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t1 t2 ⋯ tn
t1σ1 t2σ2 ⋯ tnσn

⋮ ⋮ ⋱ ⋮
t1σ

d
1 t2σ

d
2 ⋯ tnσ

d
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, C̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t̃1 t̃2 ⋯ t̃n
t̃1σ1 t̃2σ2 ⋯ t̃nσn

⋮ ⋮ ⋱ ⋮
t̃1σ

d̃
1 t̃2σ

d̃
2 ⋯ t̃nσ

d̃
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4.7)

stating that λ ⊂C and λ̃ ⊂ C̃. In other words, the existence of τ(z), τ̃(z), gives
the 2-vectors τ0, . . . ,τd , τ̃0, . . . , τ̃d̃ , which witness λ ⊂C and λ̃ ⊂ C̃.

Lemma 4.7. With tit̃i =∏ j≠i(σ j −σi)−1, we automatically have C ⋅C̃T = 0.

Since k+ k̃ = n, we have that C and C̃ are orthogonal complements of each
other. In other words, C = C̃⊥ as points in Gr(k,n). The scattering equations are
now the constraint that λ ⊂C ⊂ λ̃

⊥.
Following [AHBCT11], we view (4.7) using the Veronese map θ ∶P1→Pk−1

(with k = d+1) induced by the map

θ ∶C2→ Symk−1C2 ≅Ck, v↦ v⊗v⊗⋯⊗v.

The representation Symk−1C2 of GL(2) gives a homomorphism θ ∶ GL(2)→
GL(k), and the Veronese map is equivariant with respect to the actions of GL(2):

θ(g ⋅v) = θ(g) ⋅θ(v), g ∈GL(2),v ∈C2.

The map θ ×θ⋯θ ∶ (C2)n → (Ck+1)n descends to a rational Veronese map θ ∶
Gr(2,n)Ð→Gr(k,n) given by the formula

[a1 a2 ⋯ an

b1 b2 ⋯ bn
]z→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ak−1
1 ak−1

2 ⋯ ak−1
n

ak−2
1 b1 ak−2

2 b2 ⋯ ak−2
n bn

⋮ ⋮ ⋱ ⋮
bk−1

1 bk−1
2 ⋯ bk−1

n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Note that θ is only a rational map. It is not, for example, defined on the (n2)
points span(ei,e j) ∈Gr(2,n).
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The matrices C,C̃ of (4.7) are, generically, those of the form θ(V) for V ∈
Gr(2,n). The scattering correspondence can now be viewed as a subvariety of
Gr(2,n)×Λ

4
n:

Jd =Jk−1 ∶= {(V,λ , λ̃) ∣ λ ⊂ θ(V) ⊂ λ̃
⊥} ⊂Gr(2,n)×Λ

4
n. (4.8)

The fiber of Jd over generic (λ , λ̃) can be identified with the fiber of J̃d over
the corresponding P ∈ P4

n , where pi = λiλ̃i.

Definition 4.8. Define the ABCT variety V(k,n) ∶= θ(Gr(2,n)) ⊂ Gr(k,n) as
the closure of the image of θ , a (2n−4)-dimensional irreducible subvariety of
the Grassmannian.

Remark 4.9. Let us mention the following natural appearance of more positive
geometry.

Conjecture 4.10. The closure V(k,n)≥0 ∶= θ(Gr(2,n)>0) is a positive geometry.

Note that the face structure of V(k,n)≥0 and Gr(2,n)≥0 differ, even though
their interiors are naturally diffeomorphic. I expect the face structure of V(k,n)≥0
to be closely related to that of the momentum amplituhedron [DFLP19] (see
Section 4.7.1) in the same way that the face structure of (M0,n)≥0 matches that
of the associahedron.

4.6. Extracting spinor-helicity gluon amplitudes

In Section 3.10, we saw that the scalar amplitude could be obtained by interpret-
ing the scattering equations as a scattering map fromM0,n to kinematic space
Kn. To obtain spinor-helicity amplitudes, we similarly take the scattering cor-
respondence Jd (4.8) and view it as a map from Gr(2,n) to a subvariety of Λ

4
n.

Since dimGr(2,n) = 2n−4, we need a (2n−4)-dimensional subvariety of Λ
4
n.

Let [n] = N ⊔P, where the particles in N have negative helicity and the par-
ticles in P have positive helicity. Let k = ∣N∣ and n−k = ∣P∣. We define an “am-
bitwistor” subvariety ΛN,P of Λ

4
n as follows. Let πN ∶Cn→CN and πP ∶Cn→CP

denote the orthogonal projections. Viewing (λi, i ∈N) as a 2×k matrix defining
a two-plane λN ⊂CN and similarly λ̃P ⊂CP. Define

ΛN,P ∶= {(λ , λ̃) ∈Λ
4
n ∣ (λ , λ̃) ∈Gr(2,π−1

N (λN))×Gr(2,π−1
P (λ̃P))} ⊂Λ

4
n.

Since dimπ
−1
N (λN) = n− k+ 2 and dimπ

−1
P (λP) = k+ 2, the product of Grass-

mannians has dimension 2(n− k)+ 2k = 2n, and the subvariety of the product
satisfying λ ⊥ λ̃ has dimension 2n−4. This is our desired subvariety, and the
correspondence Jd defines a dominant pushforward map

Φ(λN , λ̃P) ∶Gr(2,n)→ΛN,P.
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Note that in ΛN,P, the spinors λi, i ∈ N and λ̃i, i ∈ P are considered fixed, while
the remaining spinors λi, i ∈ P and λ̃i, i ∈N are considered varying.

By [MS14, HZ18, DFLP19, HKZ22], the spinor-helicity amplitude AN,P can
be obtained as the coefficient of

∏
i∈N
(dλ̃

1
i ∧dλ̃

2
i )∏

j∈P
(dλ

1
j ∧dλ

2
j )

in
Φ(λN , λ̃P)∗Ω(Gr(2,n)≥0)∧d4(λλ̃).

To this computation, we pull the (2n−4)-form Θ = Φ(λN , λ̃P)∗Ω(Gr(2,n)≥0)
back to Λ̂

4
n. Wedging with d4(λλ̃) gives us a well-defined 2n-form on Mat2,n×

Mat2,n. We explain in the following example.

Example 4.11. Let us consider the case ∣N∣ = k = 2 and ∣P∣ = n−2, called “MHV
amplitudes”. Then dimπ

−1
N (λN) = n so π

−1
N (λN) =Cn while dimπ

−1
P (λP) = 4. If

(λ , λ̃) ∈ΛN,P then dimλ
⊥ = n−2 so generically we must have λ̃ = λ

⊥∩π
−1
P (λP).

In other words, the projection

ΛN,P→Gr(2,π−1
N (λN)) ≅Gr(2,n), (λ , λ̃)↦ λ

is birational. The composition of Φ(λN , λ̃P) with this projection is an isomor-
phism, and thus the pushfoward form Ω =Φ(λN , λ̃P)∗Ω(Gr(2,n)≥0) is simply
the canonical form on Gr(2,n). As in Exercise 1.29, we pull the form back to a
(2n−4)-form Θ on Mat2,n. We have, with N = {a,b}, up to a constant,

Θ = ⟨ab⟩2
⟨12⟩⟨23⟩⋯⟨n1⟩∏j∈P

(dλ
1
j ∧dλ

2
j )+ other terms,

where the other terms involve dλ
α
i for i ∈ N, and vanish if we assume that λi

is constant for i ∈ N. (Note that this form is invariant under scaling each of the
spinors λi.) Now, the momentum conservation constraint λλ̃ = 0 consists of four
equations, and d4(λλ̃) is the wedge of them. We have, up to a constant,

d4(λλ̃) = ⟨ab⟩2dλ̃
1
a ∧dλ̃

2
a ∧dλ̃

1
b ∧dλ̃

2
b + other terms.

The other terms either involve dλ̃ j for j ∈ P, or they vanish in the product Θ∧
d4(λλ̃). Thus,

Θ∧d4(λλ̃) = ⟨ab⟩4
⟨12⟩⟨23⟩⋯⟨n1⟩∏i∈N

(dλ̃
1
i ∧dλ̃

2
i )∏

j∈P
(dλ

1
j ∧dλ

2
j )

and

AN,P = Agluon
N,P =

⟨ab⟩4
⟨12⟩⟨23⟩⋯⟨n1⟩ .

This is the famed Parke-Taylor formula for MHV amplitudes.
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We can also use the scattering correspondence diagram

Jd

Gr(2,n) Λ
4
n

qp

to define a scattering form on spinor kinematic space, analogous to Defini-
tion 3.25.

Definition 4.12. The Yang-Mills scattering form is the (2n−4)-form

ϒn ∶= q∗p∗Ω(Gr(2,n)≥0)

on spinor kinematic space Λ
4
n.

We expect that ϒn is equal to the scattering form defined in [HZ18]. We
formulate this as a conjecture.

Conjecture 4.13. The (2n−4)-form ϒn coincides with theN = 4 SYM scatter-
ing form defined in [HZ18].

4.7. Exercises and Problems

Exercise 4.14.

(a) Prove Lemma 4.1.

(b) Let n = 4. Prove that

⟨i j⟩4
⟨12⟩⟨23⟩⟨34⟩⟨14⟩ =

[kl]4
[12][23][34][14]

where {i, j,k, l} = {1,2,3,4}.

(c) Prove Lemma 4.7.

(d) Figure out the meaning of, and then prove, the following identity of four-
point amplitudes:

A4(1−,2−,3+,4+)+A4(2−,1−,3+,4+)+A4(2−,3+,1−,4+) = 0.

(e) Prove the identity

A5(1,2,5,3,4) = A5(1,2,4,3,5)+A5(1,4,2,3,5)+A5(1,4,3,2,5)

for any choice of helicities for 1,2,3,4,5.
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Exercise 4.15. Let X ⊂Gr(k,n)×Gr(ℓ,n) denote the subvariety of pairs (V,W) ∈
Gr(k,n)×Gr(ℓ,n) such that V ⊥W . Figure out or look up the generators for the
ideal that cuts out X . In the case k = 2 = ℓ, check that one recovers the equations
of (4.1).

Exercise 4.16. Calculate the helicity amplitude AN,P when ∣N∣= ∣P∣= 3 and n= 6.

Problem 4.17. Use the geometry and topology of Ĩ to prove the CHY formula
(4.5).

Problem 4.18. 2 Recall the subvariety V(k,n) ⊂Gr(k,n) from Definition 4.8.

(a) The variety V(3,6) is a codimension one irreducible subvariety of Gr(3,6).
It is cut out by the condition that 6 points on P2 lie on a conic. Find, in
Plücker coordinates, the relation that cuts out this variety.

(b) Calculate the ideal of V(k,n).

(c) What is the degree of the subvariety V(k,n) ⊂G(k,n)? What is the coho-
mology class [V(k,n)] ∈H∗(Gr(k,n))? (We expect this to be closely re-
lated to, or identical to, the sum of the cohomology classes of the (2n−4)-
dimensional positroid varieties which appear in the formula for the am-
plitude in [AHBC+16].)

4.7.1. Spinor-helicity polytopes

As mentioned in Remark 3.37, the pullback ι
∗
c Ψn of the scattering form to H(c)

is the canonical form of the associahedron polytope, a positive geometry. Anal-
ogously, in momentum-twistor coordinates, the (super-)Yang-Mills amplitude
can be obtained from the canonical form of the amplituhedron [AHT14], an-
other positive geometry. In recent years, interest has turned to the momentum
amplituhedronMn,k ⊂Λ

4
n [DFLP19, HZ18, HKZ22].

Let L be a full-rank (n− k+ 2)× n matrix and L̃ be a full-rank (k+ 2)× n
matrix, viewed as linear maps. They induce (rational) maps on Grassmannians

L̃ ∶Gr(k,n)Ð→Gr(k,k+2), L ∶Gr(k,n)Ð→Gr(n−k,n−k+2)

where the first map is just V ↦ L̃(V) for V ∈ Gr(k,n) and the second map is
V ↦ L(V⊥). These combine to a rational map

(L̃,L) ∶Gr(k,n)Ð→Gr(k,k+2)×Gr(n−k,n−k+2).

2This problem is addressed by Agostini, Ramesh, and Shen [ARS24]. In particular, (b), (c)
have been solved for k = 3.
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Let span(L),span(L̃) ⊂ Cn denote the (n− k + 2)-dimensional (resp. (k + 2)-
dimensional) subspaces spanned by the rows of L (resp. L̃). We have a map

Gr(k,k+2)×Gr(n−k,n−k+2)→Gr(2,k+2)×Gr(2,n−k+2)
≅Gr(2,span(L̃))×Gr(2,span(L))
↪Gr(2,n)×Gr(2,n),

(4.9)

where the first map takes orthogonal complements. In the following, we abuse
notation by letting Λ

4
n refer to a subvariety of Gr(2,n)×Gr(2,n) (instead of the

cones over such). Let Φ(L̃,L) denote the composition of (L̃,L) with (4.9).

Lemma 4.19 ([DFLP19]). The map Φ(L̃,L) lands in Λ
4
n.

Proof. Equip Cn and Cn−k+2 with their natural inner products, and view L ∶
Cn → Cn−k+2 and LT ∶ Cn−k+2 → Cn as linear maps so that ⟨a,L(b)⟩Cn−k+2 =
⟨LT (a),b⟩Cn . Let Y = L(V⊥). Let v ∈ V⊥ and u ∈ Y⊥ ⊂ Cn−k+2. Then we have
⟨v,LT u⟩Cn = ⟨L(v),u⟩Cn−k+2 =0 since L(v) ∈Y . Thus V⊥ ⊂ (LT (Y⊥))⊥ or LT (Y⊥)⊂
V . Here, LT (Y⊥) ⊂ Cn is a 2-dimensional subspace. Similarly, with Ỹ = L̃(V),
we have L̃T (Ỹ⊥) ⊂V⊥. It follows that LT (Y⊥) and L̃T (Ỹ⊥) are orthogonal.

The image of (L̃,L) in Gr(k,k+2)×Gr(n−k,n−k+2) has codimension 4,
and thus dimension 2k+2(n−k)−4 = 2n−4. The subvariety Φ(L̃,L)(Gr(k,n)) ⊂
Λ

4
n also has dimension 2n−4, and it is exactly these subvarieties that the scatter-

ing form ϒn of Definition 4.12 should be pulled back to, to obtain Yang-Mills
amplitudes.

We now specialize to the case where all Grassmannians and matrices are
defined over R. The momentum amplituhedron Mn,k [DFLP19] is defined to
be the image of Gr(k,n)≥0 under the map (L̃,L), or under the map Φ(L̃,L),
when (L̃,L) satisfies the appropriate positivity condition. Positivity conditions
are discussed in [DFLP19, (2.16) and below (2.32)], which we do not review
here. An important motivation of our presentation is the work of He-Kuo-
Zhang [HKZ22], who conjecture that the scattering map of Section 4.5 sends
Gr(2,n)>0 diffeomorphically onto the interior of the momentum amplituhedron.

Remark 4.20. The amplituhedron, defined as a subspace of the Grassmannian
Gr(k,k+m) is a direct generalization of a polytope, with the Grassmannian re-
placing projective space. In contrast, the momentum amplituhedron lives in
the rather more complicated Λ

4
n which can be identified with a partial flag va-

riety. There are nevertheless advantages to the latter setup. The analogue of
the scattering equations, and the twistor string variety V(k,n) ⊂ Gr(k,n) is not
known in the setting of amplituhedron, nor is the analogue of the HKZ conjec-
ture [HKZ22]. In momentum space, the pairs (λ , λ̃) ∈ Λ

4
n exhibits the natural



78 THOMAS LAM

parity duality λ ↔ λ̃ , whereas for the amplituhedron parity duality is more in-
volved [GL20].

We suggest the following definition, an analogue of the Grassmann poly-
topes of [Lam16b].

Definition 4.21. A spinor-helicity polytope is the image

P ∶=Φ(L̃,L)(Gr(k,n)≥0) ≅ (L̃,L)(Gr(k,n)≥0),

when the map is well-defined on the totally-nonnegative Grassmannian.

Problem 4.22. Find conditions on (L̃,L) to guarantee that Φ(L̃,L)(Gr(k,n)≥0)
is well-defined.

In the case of Grassmann polytopes, this problem is solved by Karp [Kar17].
A sufficient condition is discussed earlier in [Lam16b] for “tame Grassmann
polytopes”.

Let us also suggest the following Schubert calculus problem which is the
spinor-helicity version of [Lam16a]. Recall the positroid varieties Π f ⊂Gr(k,n)
[KLS13].

Problem 4.23. What is the cohomology class of [Φ(L̃,L)(Π f )]? When do we
have dimΦ(L̃,L)(Π f ) = dimΠ f , and in that case, what is the degree of the map
Π f →Φ(L̃,L)(Π f )?

5. String amplitudes

In this section, we introduce string theory amplitudes, following the presentation
of [AHHL21b]. For other perspectives, see for example [SS13, Miz20].

5.1. Open string amplitudes at tree level

Recall that we defined the Koba-Nielsen potential φX onM0,n in Definition 3.5.

Definition 5.1. The tree level n-point open superstring amplitude is the function
on kinematic space Kn defined as the following integral:

In(s) ∶= (α ′)n−3∫
(M0,n)>0

φα ′X Ω((M0,n)>0)= (α ′)n−3∫
(M0,n)>0

∏
a<b
(ab)α ′sabΩ0,n.

(5.1)
This function should be thought of as the analytic continuation of the integral in
the domain where the integral converges.
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In string theory, particles are replaced by either circles S1 (in closed string
theory) or intervals [0,1] (in open string theory). The inverse string tension
α
′ is a parameter that measures the size of the string. In the usual formula

for vibrating strings, we have that string tension and string length are inversely
related. As α

′ → 0, the strings shrink in size and one obtains point particle
scattering in the limit. Whereas the field theory scattering amplitude is a sum
over L-loop Feynman diagrams with n distinguished leaves, the string theory
amplitude is an integral overML,n, the moduli space of genus L curves with n
marked points.

We consider only genus zero string amplitude. In closed string theory, the
integral is over all complex points ofM0,n. In open string theory, the integral
is over the set of real points ofM0,n. The choice of a component (M0,n)>0 in
(5.1) is precisely analogous to the sum over planar trees in Theorem 3.14.

Let us consider (5.1) for n = 4. In this case, setting s = s12 and t = s23, we
have

I4(s,t) = α
′∫

1

0

du
u(1−u)u

α
′s(1−u)α ′t = α

′B(α ′s,α ′t), (5.2)

where B(s,t) is the Euler Beta function

B(s,t) = ∫
1

0

du
u(1−u)u

s(1−u)t = Γ(s)Γ(t)
Γ(s+ t) . (5.3)

The integral converges when Re(s),Re(t) > 0 and B(s,t) extends to a meromor-
phic function in the two complex variables s,t. Since the gamma function has
no zeroes, the poles of B(s,t) are the poles of Γ(s)Γ(t) which occur when s or
t is a nonpositive integer. Thus B(s,t) has a pole at s = 0, at t = 0, and a zero
at s+ t = 0. As a function of α

′, the integral I4(s,t) thus has a a simple pole at
α
′ = 0; the prefactor α

′ in (5.2) ensures a well-defined limit as α
′ → 0. Indeed,

field theory amplitudes are recovered from string theory amplitudes in the limit
as inverse string tension goes to 0:

lim
α ′→0

I4(s,t) =
s+ t
st
= 1

s
+ 1

t
= Aφ

3

4 (s,t), (5.4)

where we have used the approximation α
′
Γ(α ′s) ∼ 1

s when α
′ → 0. This limit

is also called a “low-energy” limit of string theory.
The Beta function was studied by Euler and Legendre in the 18th and 19th

centuries. In the 20th century, Veneziano [Ven68] noticed the interpretation of
the Beta function as an amplitude, and this was one of the key ingredients that
started string theory.

The connected components of M0,n(R) are in bijection with dihedral or-
derings of 1,2, . . . ,n. For a dihedral ordering β , we denote by M0,n(β) the
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corresponding connected component, and by Ω(β) its canonical form. We have
the following larger family of partial string amplitudes

In(β ∣γ) ∶= (α ′)n−3∫
M0,n(γ)

φα ′X Ω(β),

where β ,γ are two dihedral orderings. These are string theory versions of partial
φ

3-amplitudes; see Remark 3.15 and [Miz20] for further discussion. When β

is fixed, say β = + is the positive ordering, and γ varies we have a family of
integral functions In(+∣γ). These integral functions are not linearly independent
– they span a vector space of dimension (n−3)!.

5.2. Toric stringy integrals

The string integral (5.1) belongs to a class of integral functions called stringy
integrals in [AHLS21b] and Euler integrals in [MHMT23], which have the fol-
lowing form:

∫
yτ1

1 ⋯yτn
n

pc1
1 ⋯pcr

r

dy1

y1
∧⋯∧ dyn

yn
,

where p1, p2, . . . , pr are polynomials in y1, . . . ,yn, and τ1, . . . ,τn,c1, . . . ,cr are
complex parameters. Besides string amplitudes, Euler integrals also include hy-
pergeometric integrals and various generalizations, and also Feynman integrals.
We refer the reader to the survey [MHMT23] for a discussion of the many beau-
tiful properties of these integrals.

Here we focus on an algebro-geometric perspective. Let p(y) ∈ C[y] be
a polynomial in variables y1, . . . ,yd with non-vanishing constant term, and let
p1(y), p2(y), . . . , pr(y) be the irreducible factors of p. To fix conventions, we
assume that the constant terms in p1(y), . . . , pr(y) are all equal to 1. Let Ty ≅
(C×)d = Spec(C[y±1

1 , . . . ,y±1
d ]) denote the torus with coordinates y1, . . . ,yd . Let

U ⊂ Ty be the open subset where p(y) ≠ 0. The variety U is a very affine variety.

Lemma 5.2. The very affine variety U has character lattice Λ equal to the lattice
of Laurent monomials in the elements y1,y2, . . . ,yd , p1(y), . . . , pr(y).

Proof. Suppose that r(y) = f (y)/g(y) ∈C(y1, . . . ,yd) is a rational function that
is a unit in C[U], and f (y),g(y) have no common factors. Any irreducible
factor h(y) of f (y) or p(y) which is not a monomial in y1, . . . ,yd defines a non-
empty hypersurface h(y) = 0 in the torus Ty. It follows that h(y) must equal
one of the p1(y), . . . , pr(y). Thus r(y) is a Laurent monomial in the functions
y1,y2, . . . ,yd , p1(y), . . . , pr(y). Furthermore, irreducibility implies that there are
no monomial relations between these Laurent monomials (as regular functions
on U). The result follows.



MODULI SPACES IN POSITIVE GEOMETRY 81

Thus U has an intrinsic scattering potential (see Section 6.2)

φτ,c ∶=
d

∏
i=1

yτi
i

r

∏
j=1

p j(y)−ci .

We have chosen the signs of the exponents for reasons that will be clear later.
The variety U can naturally be identified with an open subset of a toric

variety. Let P ⊂ Zd be the Newton polytope of p(y); this is the convex hull
of the exponent vectors of the monomials in p(y). We assume that P is full-
dimensional and let A = P∩Zd = {a1,a2, . . . ,ap} be the set of lattice points in P.
Consider the toric variety XA that is the closure of the image of the map

Ty ∋ (y1, . . . ,yd)↦ (ya1 ∶ ⋯ ∶ yap) ∈ Pp−1. (5.5)

This map is an inclusion as long as the Z-affine span of {a1,a2, . . . ,ap} is equal
to Zd . We will assume this by replacing p(y) with a power of it, not changing
the variety U .

The polynomial p(y) is a linear combination of the monomials yai . Thus
the hypersurface {p(y) = 0} ⊂ Ty is the intersection of Ty with a hyperplane
H ⊂ Pr−1 cut out by the corresponding linear equation. Then U can be identified
with Ty∖H.

If p(y) has positive coefficients, then one of the connected components of U
is simply the positive part (Ty)>0 =Rd

>0 of the torus Ty. We denote this positive
component by U>0. Henceforth, we make the

Assumption 5.3. The polynomial p(y) has positive coefficients.

Definition 5.4. The string integral of U is the integral function

I(τ,c) ∶= (α ′)d∫
U>0

φα ′τ,α ′c Ω

where Ω = dy1
y1
∧⋯∧ dyn

yn
is the canonical form of U>0, and (τ,c) ∈ΛC.

We investigate the convergence of the string integral, assuming that (τ,c) ∈
ΛR.

Example 5.5. We consider the Beta function (5.3). Setting y = u/(1− u), we
have

B(s,t) = ∫
1

0

du
u(1−u)u

s(1−u)t = ∫
∞

0
ys(1+y)−t−s dy

y
.

So B(s,t) is a string integral where we have a single polynomial p(y) = 1+ y.
We may break up the integral as ∫ ∞0 = ∫

1
0 +∫

∞

1 . When y → 0, the integrand
behaves like ys−1dy and ∫ 1

0 ys−1dy converges when s > 0. When y→∞, both
the integrand behaves like ys+(−t−s) = y−t , and ∫ ∞1 y−t−1dy converges when t > 0.
Thus the integral converges (absolutely) if s > 0 and t > 0.
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Let Λ
∨
y be the cocharacter lattice of Ty. The vector space Λ

∨
y,R can be viewed

as the Lie algebra of the real Lie group Ty(R). The exponential map exp ∶Λ∨y,R→
U>0 = (Ty)>0 is an isomorphism, and we may rewrite

I(τ,c) = (α ′)d∫
Λ∨y,R

d

∏
i=1

exp(α ′τiYi)
r

∏
j=1

p j(exp(Y))−α
′c j dY1⋯dYd . (5.6)

where Yi = logyi are coordinates on Λ
∨
y,R. Define the (positive) tropicalization of

rational functions in y1, . . . ,yd by

yi↦Yi, +↦min, ×↦ +, ÷↦ −.

This assignment makes sense for the potential φα ′τ,α ′c even when α
′,τ,c are not

integers, and we obtain

trop(φ) = trop(φα ′τ,α ′c) ∶= α
′(

d

∑
i=1

τiYi−
d

∑
j=1

c jtrop(p j)(Y)).

We view this as a piecewise linear function on Λ
∨
y,R. We call a piecewise linear

function positive if it is positive on Λ
∨
y,R∖{0}. The analysis of Example 5.5 can

be generalized to give the following result. It is often formulated in terms of
Minkowski sums of Newton polytopes [AHHL21b, NP13, MHMT23].

Theorem 5.6 ([AHHL21b, Claim 3]). Suppose (τ,c) ∈ ΛR. The integral (5.6)
converges if and only if the integral

∫
Λ∨y,R

exp(−trop(φα ′τ,α ′c)(Y))dY1⋯dYd (5.7)

converges. This is the case if and only if the piecewise linear function trop(φ)(Y)
is positive on Λ

∨
y,R.

Idea of Proof. Bound the integrand∏d
i=1 exp(τiYi)∏r

j=1 p j(exp(Y))−c j above and
below by multiples of exp(−trop(φτ,c)(Y)).

Example 5.7. We continue Example 5.5. We have

trop(ys(1+y)−t−s) = sY −(s+ t)min(0,Y) =
⎧⎪⎪⎨⎪⎪⎩

sY if Y > 0,
−tY if Y < 0.

This function is positive if and only if s > 0 and t > 0.
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The domains of linearity of the piecewise linear function trop(φ) give a
complete fan F in Λ

∨
y,R, where trop(φ) restricts to a linear function on each

maximal cone of F . The integral (5.7) becomes a sum of integrals over the
maximal cones C of F ,

∫
C

exp(−(a1Y1+⋯+adYd))dY1⋯dYd ,

where ai are linear functions in α
′,τ,c. These integrals are Laplace transforms

of cones, and are rational functions in the ai.

Proposition 5.8. Let C be a full-dimensional cone and ℓ a linear function that
is positive on C∖{0}. Then

∫
C

exp(−ℓ(Y))dY1⋯dYd =Vol(C∩{ℓ(Y) ≤ 1})

where Vol denotes the normalized volume where the standard simplex has vol-
ume 1.

Example 5.9. We have

∫
Rd
>0

exp(−(a1Y1+⋯+adYd))dY1⋯dYd =
d

∏
i=1
∫
R>0

exp(−aiYi)dYi =
d

∏
i=1

1
ai

which is the normalized volume of a simplex with vertices 0, 1
a1

e1, . . . ,
1
ad

ed ,
where ei are coordinate vectors dual to the functions Yi.

Corollary 5.10 ([AHHL21b, Claim 3]). Suppose that (τ,c) are such that trop(φ)
is positive. Then we have limα ′→0 I(τ,c) =Vol(trop(φτ,c)) ≤ 1).

Proof. Summing over maximal cones of F , we deduce from Proposition 5.8
that

∫
Λ∨y,R

exp(−trop(φτ,c)(Y))dY1⋯dYd =Vol(trop(φ)) ≤ 1.

Now,

Vol(trop(φα ′τ,α ′c) ≤ 1) =Vol(α ′trop(φ) ≤ 1) = 1
(α ′)d Vol(trop(φ)) ≤ 1).

The factor 1
(α ′)d cancels out the prefactor of (α ′)d in the definition of I(τ,c).

Finally, by the proof of Theorem 5.6, the integral I(τ,c) is bounded above and
below by (α ′)d times the integral (5.7), up to a factor of γ

α
′

for positive con-
stants γ . Since limα ′→0 γ

α
′ = 1, the result follows.
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Example 5.11. We continue Example 5.7. When s,t >0, the inequality trop(ys(1+
y)−t−s) ≤ 1 cuts out the region [−1/t,1/s] which has volume 1/s+ 1/t. This
agrees with (5.4).

We return to the string amplitude.

Theorem 5.12. The field theory limit of the open string amplitude is given by
the planar φ

3-amplitude:
lim

α ′→0
In(s) = Aφ

3

n (s).

Proof. Let y1, . . . ,yd , where d = n−3 be the positive parameters of Section 1.5.
By Proposition 1.16, the lattice Λ of Laurent monomials in ui j is isomorphic
to the lattice of Laurent monomials in {y1, . . . ,yd}∪{pi j(y)}. ThusM0,n ≅U
where U ⊂ Ty is defined by the non-vanishing of p(y) =∏ pi j(y).

Let Λ
∨ be the intrinsic cocharacter lattice ofM0,n. The functions Ui j and

the functions Yi are linear functions on Λ
∨
R. Define a linear map π ∶ Λ∨R → Λ

∨
y,R

by projection, that is, by the equality Yi = Yi ○π . The key statement is that π

sends maximal cones of trop≥0U to maximal cones of F (Exercise 5.21). The
summation of Theorem 3.14 can be written as

Aφ
3

n = ∑
C⊂trop≥0U

∏
(i j)∈D

1
Xi j

summed over maximal cones of trop≥0U spanned by Xi j,(i j) ∈D. This in turn
matches the summation

∫
Λ∨y,R

exp(−trop(φτ,c)(Y))dY1⋯dYd =Vol(C∩(trop(φ) ≤ 1))

over maximal cones of F .

5.3. Scattering map revisited

We now interpret the scattering equations in terms of the integrals I(τ,c). The
“method of steepest descent” or ”saddle-point method” estimates the asymp-
totics of integrals

∫ f (x)exp(α ′g(x))dx

when α
′→∞, by considering the behavior of the integral near the critical points

of g(x). In our setting, g = logφτ,c, and the critical point equations are those
for logφτ,c, which are exactly the scattering equations in the case of the string
integral. This is also the setting of the positive models of [ST21, Section 6].
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Definition 5.13. The scattering equations for the string integral I(τ,c) are the
critical point equations

dlogφτ,c = 0

on U .

In the string integral, positive coordinates y1, . . . ,yd on U have been distin-
guished. This choice gives a particularly elegant way to formulate the scattering
map of Section 3.10 and an explanation of the subspaces H(c) ⊂Kn. Indeed, we
may write

∏
(i j)
(i j)si j =∏

(i j)
uXi j

i j =
n−3

∏
i=1

yτi
i ∏

i j
p−ci j

i j (y).

Under the positive parametrization of Section 1.5, when i, j satisfy 1 ≤ i < j−1 <
j ≤ n−1 we have

(i j) = pi j(y)× monomial in y1, . . . ,yn−3.

It follows that for such i, j we have ci j = −si j. Thus the subspace H(c) is ob-
tained by fixing the exponents ci j and allowing τi to vary. More abstractly, the
coordinates (y1, . . . ,yn) provide a sublattice Λ

′ ⊂ Λ. The orthogonal sublattice
(Λ′)⊥ ⊂ Λ

∨ is a space of linear functions that are fixed on each subspace H(c).
The constants c are the values that elements of (Λ′)⊥ take.

We now generalize the scattering map Φ(c) of (3.20) to the general setting
of a stringy integral. The scattering equations (Definition 5.13) can be written
as a collection of d equations

1
φ

∂φ

∂yi
= 0, i = 1,2, . . . ,d

which we can write as

τi

yi
=

r

∑
j=1

c j

p j(y)
∂ p j(y)

∂yi
, i = 1,2, . . . ,d.

or

τi = yi

r

∑
j=1

c j

p j(y)
∂ p j(y)

∂yi
, i = 1,2, . . . ,d.

Recall that (τ,c) are coordinates on ΛR. For fixed c, we view this as a (rational)
map

Φ(c) ∶U(R)→H(c) ≅Λy,R

where H(c) ⊂ ΛR is an affine subspace where the c-coordinates are held fixed
and the τ-coordinates vary.
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Theorem 5.14 ([AHHL21b]). Suppose that I(τ,c) converges, or equivalently
by Theorem 5.6, that trop(φτ,c) is positive. Then we have

Φ(c)∗Ωy = lim
α ′→0

I(τ,c)dτ1∧⋯∧dτd

as forms on H(c). Furthermore, Φ(c) sends Rd
>0 to the interior of the polytope

R∨ polar dual to
R = {trop(φ) ≤ 1}

and Φ(c)∗Ωy is the canonical form of R.

Remark 5.15. The scattering map Φ(c) ∶U(R)→H(c) ≅Λy,R can also be iden-
tified with the algebraic moment map of the toric variety XA. See [AHBL17,
Section 7.3] and [AHHL21b].

5.4. u-coordinates

Our setup distinguishes a subsemigroup inside the character lattice Λ. Call a
character χ ∈ Λ bounded if it takes bounded values on U>0. Write χ = a(y)

b(y) in
reduced form, where a(y) and b(y) are polynomials in y1, . . . ,yd .

Lemma 5.16. For a character χ = a(y)
b(y) ∈Λ, the following are equivalent:

1. χ is bounded,

2. the Newton polytope of a(y) is contained inside the Newton polytope of
b(y),

3. the function trop(χ) is positive.

For example, all the five rational functions in (1.8) satisfy this criterion.
Denote by Γ ⊂Λ the subsemigroup of bounded characters.

Lemma 5.17. With our assumption that the Newton polytope P of p(y) is full-
dimensional, we have that

1. Γ generates the rational function field C(y) =C(U), and

2. Γ∪Γ
−1 generate the coordinate ring C[U].

Proof. We may, and will, assume that P is sufficiently large by replacing p(y)
by a large power of it. By Lemma 5.16, the rational functions

ya

p(y) , a ∈ P∩Zd
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belong to Γ. Taking lattice points a′ and a′+ei shows that yi ∈C(Γ). It follows
that C(Γ) =C(y) =C(U).

The condition that trop(χ) is positive from Lemma 5.16 is an open condition
in ΛR, and defines an open polyhedral cone B ⊂ ΛR so that B∩Λ = Γ. Since
Γ ≠ ∅ we have that B is a non-empty full-dimensional cone. It follows that
for B contains adjacent lattice points in all coordinate directions. In particular
y±1

1 , . . . ,y±1
d , p±1

1 (y), . . . , p±1
r (y) all belong to ΓΓ

−1. Thus C[Γ∪Γ
−1] = C[U].

Definition 5.18. The u-coordinates on U are the generators of Γ. The affine
closure of U is Ũ = Spec(C[Γ]).

Proposition 5.19. The partial compactification of Ũ is the affine open XA∖H in
the projective toric variety XA of (5.5). In particular, Ũ has a natural stratification
indexed by the faces of the Newton polytope P.

In the case that U =M0,n, we have Ũ = M̃0,n. In this case the polytope P is
an associahedron.

5.5. CEGM amplitudes and Grassmannian string integrals

An important generalization of M0,n is the configuration space X(k,n) of n
points σ1, . . . ,σn ∈ Pk−1 in general linear position, that is, no k of the points
belong to the same hyperplane in Pk−1. Let Gr(k,n)○ ⊂Gr(k,n) be the subset of
the Grassmannian where all Plücker coordinates are non-vanishing. The space
X(k,n) is isomorphic to the torus quotient Gr(k,n)○/T ′, and is a very affine
variety.

The space X(k,n) has a positive part X(k,n)>0, called positive configura-
tion space [AHLS21b, AHLS21a], the image of the component Gr(k,n)>0 ⊂
Gr(k,n)(R) where all Plücker coordinates are positive. Positive configuration
space can be positively parametrized [Pos06, SW05, AHLS21b] with coordi-
nates y1,y2, . . . ,yd , where d = dimX(k,n) = k(n−k)−(n−1). For example, the
following coordinates y1,y2,y3,y4 positively parametrize the four-dimensional
space X(3,6):
⎡⎢⎢⎢⎢⎢⎣

0 0 −1 −1 −1 −1
0 1 0 −1 −1−y1 −1−y1−y1y3
1 0 0 1 1+y1+y1y2 1+y1+y1y2+y1y2y3+y1y3+y1y2y3y4

⎤⎥⎥⎥⎥⎥⎦
.

The Plücker coordinates ∆I = pI(y) are nonnegative polynomials in y1, . . . ,yd .
We let p1(y), p2(y), . . . be the distinct irreducible factors of these polynomi-
als. This puts X(k,n) in the setting of Section 5.2. The corresponding partial
compactification Ũ from Proposition 5.19 is studied in [AHLS21b].
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Cachazo-Early-Guevara-Mizera [CEGM19] generalized the scattering equa-
tions to X(k,n) and defined corresponding scalar amplitudes, called CEGM
amplitudes or generalized biadjoint scalar amplitudes; see [CE20, CEZ22] for
some recent work in this direction. These amplitudes are the field theory limits
of the Grassmannian string integrals [AHHL21b] which have the form

I(s)= (α ′)d∫
X(k,n)>0

∏
I∈([n]k )

pα
′sI

I Ω(X(k,n)>0)=∫
Rd
>0

∏
I∈([n]k )

pα
′sI

I (y) dy1

y1
∧⋯∧ dyd

yd

where the sI satisfy ∑a2,...,ak
sa1,a2,...,ak = 0 for any a1, the analogue of momen-

tum conservation, which also guarantees the integrand is torus-invariant and
descends to X(k,n).

5.6. Exercises and Problems

Exercise 5.20.

(a) Verify that the integral (5.3) converges when Re(s) > 0 and Re(t) > 0.

(b) Work out the details in the proof of Theorem 5.6. To do so, decompose the
integration domain Λ

∨
y,R ≅ Rd into the maximal cones of the domains of

linearity of trop(φ) and analyze the convergence on each cone separately.

Exercise 5.21. Show that the map π ∶ Λ∨R → Λ
∨
y,R in the proof of Theorem 5.12

sends maximal cones of trop≥0U to maximal common domains of linearity of

trop(pi j)(Y). Then check that the contributions of these cones to Aφ
3

n and to
limα ′→0 In match.

Exercise 5.22. Prove Lemma 5.16.

Exercise 5.23. Prove Proposition 5.19. How is the stratification of Proposi-
tion 5.19 related to the vanishing and non-vanishing of the generators of Γ?

Exercise 5.24. Recall the positive parametrization ofM0,5 by parameters y1,y2.
The five variables u13,u14,u24,u25,u35 are subtraction-free rational functions in
y1,y2.

(a) Consider the (positive) tropicalization trop(φX) as a piecewise-linear func-
tion on Λ

∨
y,R. Compute the domains of linearity of this piecewise-linear

function.

(b) The domains of linearity of trop(φX) give the structure of a complete fan
in Λ

∨
y,R. This complete fan has five one-dimensional cones. Compute the

minimal lattice generators r1,r2, . . . ,r5 ∈Λ
∨
y of these cones.

(c) Verify that the generators ri can be labeled as r13,r14,r24,r25,r35 so that

trop(ui j)(rab) = δ(i j),(ab).
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5.6.1. Simplicial Γ and u-equations

Consider the setting of Section 5.4. The nicest situation is when Γ is generated
by u1, . . . ,ud and these generators also form a basis for the character lattice Λ.
This is the case forM0,n, and the generators are exactly the dihedral coordinates
ui j. We say in this case that Γ is simplicial.

Problem 5.25. Find examples of simplicial Γ.

See [AHHL21b, Section 9] for related discussion. Even when Γ is simpli-
cial, and we have natural coordinates u1, . . . ,ud on Λ, it is not clear when we
obtain a binary geometry in the sense of Section 2. Note that the u-equation Ri

for ui exists exactly because the function 1−ui is a monomial in u1, . . . ,ud .

Problem 5.26. Let u be a generator of Γ. When do we have 1−u ∈Λ, and when
do we have 1−u ∈ Γ? More generally, for which pairs (c,uX) ∈ C× ×Λ do we
have c−uX ∈Λ?

5.6.2. Pell’s space

This problem comes from [HLRZ20, Section 4]. Consider the polynomials
pi(y)= (1+yi) for i= 1,2 . . . ,d and pd+i(y)= (1+yi+yiyi+1) for i= 1,2, . . . ,d−1.
The following is my interpretation of statements in [HLRZ20], which we may
consider conjectures. It extends Problem 2.21 which corresponds to the case
d = 3.

Problem 5.27. 3

(a) Show that the Newton polytope P of p(y) =∏i pi(y) is simple, has 3d−1
facets, and Pd vertices, where Pd is Pell’s number recursively defined by
P1 = 1,P2 = 2,Pd = 2Pd−1+Pd−2.

(b) We have dimΛ = (2d−1)+d. Show that the minimal generators of Γ are
a basis of Λ. Call theses generators u1, . . . ,u3d−1.

(c) Show that Ũ , “Pell’s space”, is a binary geometry for the simplicial com-
plex ∆, defined to be the face complex of P. Find and prove the u-
equations in terms of u1, . . . ,u3d−1.

(d) Study the geometry of Ũ . Is there a moduli interpretation of this space?

3This problem has been addressed by Bossinger, Telek, and Tillmann-Morris [BTTM24].
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6. Very affine amplitudes?

Definition 6.1. A very affine variety U is an irreducible closed subvariety of a
torus.

Examples of very affine varieties include: M0,n, complements of essential
hyperplane arrangements, configuration spaces of points in Pk, and so on. In this
section, we speculate on amplitudes for very affine varieties. In [Lam24], we
study these amplitudes in more detail in the situation of hyperplane arrangement
complements.

6.1. Intrinsic torus

The group Λ =Λ(U) ∶=C[U]×/C× of units of the coordinate ring of U , modulo
scalars, is a free abelian group of finite rank by a theorem of Rosenlicht [Ros57]
and Samuel [Sam66]. Let T = Hom(Λ,C×) be the torus with character group
Λ ≅ Zn, and we denote by Λ

∨ the dual group of cocharacters of T . There is an
inclusion

ι ∶U ↪ T, p↦ ( f ↦ f (p)),
and any closed embedding of U into a torus T ′ is a composition of ι with a
homomorphism T → T ′.

6.2. Scattering potential

Let U ⊂ T ≅ (C×)n be a d-dimensional very affine variety, and let u1,u2, . . . ,un

be the coordinates of T . Then U has a (multi-valued) potential function

φX =
n

∏
i=1

uXi
i

for X = (X1, . . . ,Xn) ∈ ΛC ≅ Cn. When T is the intrinsic torus, we call φX the
intrinsic potential on U .

Definition 6.2. The scattering equations of U are the critical point equations of
the log potential on U :

dlogφX =
n

∑
i=1

Xi dlogui =
n

∑
i=1

Xi

ui
dui = 0.

While φX is in general multi-valued, the equations dlogφX = 0 give a well-
defined subvariety of U .

The following result of Huh generalizes earlier work of Orlik and Terao
[OT95] in the case of hyperplane arrangement complements.
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Theorem 6.3 ([Huh13]). Suppose that U is smooth. For generic X , the criti-
cal point set consists of ∣χ(U)∣ reduced points, where χ(U) denotes the Euler
characteristic.

6.3. Very affine positive geometries

Let U be a very affine variety. We consider positive geometries inside compact-
ifications X of U . For example, one can take X to be a tropical compactification
in the sense of Tevelev [Tev07].

Definition 6.4. A very affine positive geometry is a triple (U,X ,X≥0) where
(X ,X≥0) is a positive geometry, X is a compactification of U , and X≥0 is the
analytic closure in X of a connected component of U(R).

For a very affine positive geometry, there is a natural definition of string
amplitude. Let φZ denote the intrinsic potential of U .

Definition 6.5. The string amplitude of a very affine positive geometry (U,X ,X≥0)
is the function on ΛC defined by analytic continuation of the integral function

I(Z) ∶= (α ′)d∫
X>0

φα ′Z Ω(X≥0),

where Z ∈ΛC.

Definition 6.6. The scalar amplitude of a very affine positive geometry (U,X ,X≥0)
is the rational function on ΛC defined by

A(Z) ∶= ∫ δ
d(φZ;Ω(X≥0))Ω(X≥0),

where Z ∈ΛC, and the delta function δ
d(φZ,Ω(X≥0)) is defined in Section 3.7.

We expect that the scalar amplitude should be the field-theory limit of the
string amplitude, that is, A(Z) = limα ′→0 I(Z). More generally, if we are given
two very affine positive geometries (U,X ,X≥0) and (U,X ,Y≥0) with the same
very affine variety U , we can define the partial string amplitude

IX>0,Y>0(Z) ∶= (α ′)d∫
Y>0

φα ′Z Ω(X≥0), IY>0,X>0(Z) ∶= (α ′)d∫
X>0

φα ′Z Ω(Y≥0)

and the partial scalar amplitude (cf. Definition 3.22)

AX>0,Y>0(Z) = AY>0,X>0(Z) ∶= A(Ω(X≥0)∣Ω(Y≥0)) = ∫ δ
d(φZ;Ω(Y≥0))Ω(X≥0).
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We may also define a scattering form using the scattering correspondence:

I

U ΛC

qp

Definition 6.7. For a very affine positive geometry (U,X ,X≥0), the scattering
form ϒ(X≥0) on ΛC is given by

ϒ ∶= q∗p∗Ω(X≥0).

6.4. Positive parametrizations of very affine varieties

In some cases, we can positively parametrize the very affine U , putting us in the
situation of Section 5, and Definition 6.5 and Definition 6.6 will hold.

Let U ⊂ T be a d-dimensional very affine variety in the intrinsic torus T , and
let ui be the coordinates of the T . Let Λ = {ua1

1 ⋯uan
n ∣ (a1, . . . ,an) ∈ Zn} be the

character lattice. Suppose that we have y1, . . . ,yd ∈ Λ such that C(y1, . . . ,yd) =
C(U). In particular, each ui ∈C(y) is a rational function ui(y) ∈C(y) in y1, . . . ,yd .
Let p1(y), p2(y), . . . , pr(y) ∈ C[y] be the list of all distinct irreducible factors
(assumed to have constant term 1) appearing in the numerator or denominator
of ui(y), excluding y1, . . . ,yd themselves.

Definition 6.8. In this situation, suppose that pi(y) ∈ Λ for i = 1,2, . . . ,r. Then
we say that y1, . . . ,yd give a parametrization of U . We call this a positive
parametrization if the coefficients of pi(y) are all positive.

Lemma 6.9. Suppose y1, . . . ,yd ∈ Λ give a parametrization of U . Then there is
an invertible monomial transformation between {y1,y2, . . . ,yd , p1(y), . . . , pr(y)}
and {u1, . . . ,un}, and {y1,y2, . . . ,yd , p1(y), . . . , pr(y)} also form a basis of Λ.

Proof. There are no monomial relations between y1, . . . ,yd , p1(y), . . . , pr(y),
since we have chosen all the polynomials to be irreducible with constant term 1.
It follows that they form a basis of Λ.

Thus in the case of a (positive) parametrization, we are in the situation Sec-
tion 5.2.

6.5. Tropicalizations of very affine varieties

Now suppose that U is a very affine variety, but we do not have (or do not
know) any natural top-form Ω on U (arising from a positive geometry), nor do
we have a positive parametrization of U . In this case, we can still try to define a
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scalar amplitude by viewing the formula Theorem 3.14 as a Laplace transform
of trop≥0U , cf. Proposition 5.8. We begin by defining the tropicalization of a
very affine variety, and refer the reader to [MS15, Tev07] for more on tropical-
ization.

Let C = ⋃n≥1C((t1/n)) denote the field of Puiseux series, equipped with a
valuation

val ∶C→R∪{∞}, val( f (t))=
⎧⎪⎪⎨⎪⎪⎩

minimal degree appearing in f (t) if f ≠ 0
∞ if f = 0.

Definition 6.10. The tropicalization trop(U) is the subset of Λ
∨
R ∶=Λ

∨⊗ZR≅Rn

obtained by taking the closure of the valuations of all C points of U :

trop(U) ∶= {val(p) ∣ p ∈U(C)} ⊂Λ
∨
R.

The tropicalization trop(U) can be given the structure of a polyhedral fan,
pure of dimension d = dim(U). There are a number of different definitions of
the fan structure on trop(U). We assume that one such fan structure has been
fixed.

Example 6.11. Suppose that U =M0,4. Then the intrinsic torus has coordinates
(u13,u24), and U is given by the single equation u13 +u24 = 1. The tropicaliza-
tion trop(U) consists of the three 1-dimensional cones (rays): R≥0 ⋅(1,0),R≥0 ⋅
(0,1),R≥0 ⋅(−1,−1). The positive tropicalization trop>0(U) consists of the two
1-dimensional cones: R≥0 ⋅(1,0),R≥0 ⋅(0,1).

Let C ⊂ Λ
∨
R be a maximal cone of trop(U). The affine span of C is a d-

dimensional subspace W ⊂ Λ
∨
R. We define a d-form on W that will serve as

an integration measure. Since W is rationally defined, the intersection Λ
∨ ∩W

is a sublattice of Λ
∨ that spans W . We define an integration measure ddW by

declaring that a unit cube in Λ
∨∩W has unit volume with respect to ddW . The

standard simplex in Λ
∨∩W has normalized volume equal to one.

We propose the following general notion of (partial) amplitude for a very
affine variety.

Definition 6.12. Let T denote a subset of maximal cones of trop(U). Then the
T -partial amplitude is the rational function on ΛR

AT (X) ∶= ∑
C∈T
∫

C
e−X ddW =Vol((⋃

T

C)∩{X ≤ 1}) = ∑
C∈T

Vol(C∩{X ≤ 1}),

(6.1)

where X ∈ ΛR is viewed as a linear function on Λ
∨
R. The second equality is by

Proposition 5.8.



94 THOMAS LAM

We view AT (X) as the Laplace transform of T ⊂ Λ
∨
R. In the case the cones

C is simplicial with appropriately chosen generators r1,r2, . . . ,rd that generate
W , we have

Vol(C∩{X ≤ 1}) =
d

∏
i=1

1
(ri,X)

is a product of inverses of linear functions (ri,X) on Λ
∨
R; see Example 5.9.

Remark 6.13. In the case of the configuration space X(k,n) of Section 5.5,
Cachazo-Early-Zhang [CEZ22] have studied subfans T called chirotopal tropi-
cal Grassmannians. See also the recent work of Antolini and Early [AE24].

6.6. Positive components

To proceed to the definition of planar amplitudes, we need to specify a set of
cones T . This roughly amounts to picking a connected component of U(R).
We henceforth assume that U is defined over R.

In the case U =M0,n, the following are roughly equivalent:

1. the choice of a connected component ofM0,n(R);

2. the choice of a positive parametrization ofM0,n;

3. the choice a canonical form Ω0,n onM0,n;

4. the choice of “planar trees” among all n-leaf trees;

5. the choice of an affine compactificationM0,n ⊂ M̃0,n;

6. the choice of a subset of “planar” boundary divisors ofM0,n;

7. the choice of a subsemigroup Γ ⊂Λ of bounded characters;

8. the choice of the Parke-Taylor factor PT(α);

9. the choice of a subfan trop≥0M0,n ⊂ tropM0,n.

Let κ ∶ Λ→ Z/2Z be a group homomorphism. If a basis u1, . . . ,un of Λ is
chosen, we write κ as a sequence in {+,−}n with a + indicating κ(ui)= 0 ∈Z/2Z
and a − indicating κ(ui)=1 ∈Z/2Z. The torus T , as an abstract algebraic variety,
has an alternative group structure denoted Tκ , given by sending the identity
(1,1, . . . ,1) to element ((−1)κ1 , . . . ,(−1)κn), where κi = κ(ui). Equivalently, Tκ

has characters given by (−1)κ(u)u, for u ∈Λ.
The set of real points T(R) of the torus has 2n components. We let T>0 be

the connected component containing the identity, and let Tκ(R) ∶= (Tκ)>0. Thus
T(R) =⊔κ Tκ(R).
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Define a component of U(R) to be a non-empty intersection

Uκ ∶=U ∩Tκ(R)

of the very affine variety with Tκ(R). If non-empty, this is a union of connected
components of U(R), and in many interesting cases Uκ is a single connected
component of U(R). This is the case forM0,n (Exercise 1.27). While Uκ can
consist of multiple connected components, we will use κ ∈π0(T(R)) as an input
to our definition of amplitudes.

6.7. Positive part of tropicalization

Given a choice of component Tκ(R), we may define tropκU in a number of
ways. The first one is the positive tropicalization of [SW05]. Let R>0 ⊂ C be
the semifield consisting of nonzero Puiseux series such that the coefficient of
the lowest degree term is real and positive. Let U(C) denote the C-points of U .
Let U(R>0) ⊂U(C) denote the subset of points p ∈U(C) where u(p) ∈R>0 for
every character u ∈Λ of T .

Definition 6.14. The positive tropicalization trop>0(U) is the subset of Λ
∨
R ob-

tained by taking the closure of the valuations of allR>0 points of U :

trop>0(U) ∶= {val(p) ∣ p ∈U(R>0)} ⊂Λ
∨
R.

The positive tropicalization trop>0(U) is a subfan of trop(U), also pure of
dimension d. Let U(Rκ) ⊂U(C) denote the subset of points p ∈U(C) where
(−1)κ(u)u(p) ∈R>0 for every character u ∈Λ of T .

Definition 6.15. The κ-tropicalization tropκ(U) is the set

tropκ(U) ∶= {val(p) ∣ p ∈U(Rκ) for all u ∈ L} ⊂Λ
∨
R.

We view tropκ(U) as the tropicalization of the component Uκ .

Example 6.16. Continuing Example 6.11,

• trop++(U) = trop>0(U) consists of the two 1-dimensional cones R≥0 ⋅
(1,0) and R≥0 ⋅(0,1).

• trop+−(U) consists of the two 1-dimensional cones R≥0 ⋅ (0,1) and R≥0 ⋅
(−1,−1).

• trop−+(U) consists of the two 1-dimensional cones R≥0 ⋅ (1,0) and R≥0 ⋅
(−1,−1).

• trop−−(U) is empty.

This agrees with ∣π0(M0,4(R))∣ = (4−1)!/2 = 3.
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6.8. Bounded invertible functions

We suggest an alternative to positive tropicalization, using bounded invertible
functions, as in Exercise 1.24.

Definition 6.17. Let Uκ be a non-empty component. Define the submonoid
Bκ ⊂Λ by

Bκ = {u ∈Λ ∣ u∣Uκ
takes bounded values}.

Define the κ-positive part of trop(U) by

tropκ(U) ∶= {q ∈ trop(U) ∣ u(q) ≥ 0 for all u ∈ Bκ}.

Here, u ∈Λ is viewed as a linear function on Λ
∨
R.

We expect that under good conditions, u belongs to Bκ if and only if u(tropκ(U))⊂
R≥0.

Example 6.18. For U =M0,4,

• B++ is generated by u13,u24.

• B+− is generated by u−1
13 ,u24u−1

13 .

• B−+ is generated by u−1
24 ,u13u−1

24 .

Finally, we can take T = tropκ(U) or T = tropκ(U) in (6.1) as the definition
of the planar scalar amplitude of U .
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