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VECTOR BUNDLES ON REDUCIBLE CURVES

EDOARDO BALLICO - LUCIANA RAMELLA

Dedicated to Silvio Greco in occasion of his 60-th birthday.

Let X = X1∪· · · ∪ Xs be a reduced and connected union of irreducible
projective curves X1, . . . , Xs . Fix integers r, k, d, δ with 1 ≤ k < r . Which
vector bundles E on X of rank r and degree d are an extension of a vector
bundle G of rank r − k and degree d − δ by a vector bundle H of rank k
and degree δ ? Namely, which vector bundles E on X of rank r and degree d
have subbundles H of rank k and degree δ ? What happens if E is �general�
in a suitable sense ? Here we solve this problem under certain assumptions
on E and X and relate this question to the computation of the Lange invariant
sk(E) of E giving the maximal degree of the subsheaves of E with constant
rank k.

Introduction.

In this paper we study some problems concerning vector bundles and
torsion-free sheaves on a reducible connected projective curve X . Almost all
our results concern multistable vector bundles, i.e. the vector bundles E on
X such that for every irreducible component Y of X the vector bundle E|Y

is stable. We denote by M(Y ; r, d) the moduli scheme of stable locally free
sheaves (vector bundles) on Y with rank r and degree d . Quite often we will
assume that the vector bundle E on X is �general� in a suitable sense.

Now we state our main results. The de�nitions used are described in 1.
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Theorem 1. Let X be a reduced and connected projective curve and X1, . . . ,

Xs its irreducible components. Assume that the normalization of every Xi has
genus at least 2.

Fix integers r and k with r > k ≥ 1 and (a1, . . . , as), (b1, . . . , bs) ∈

Z
s such that ai

k
< bi

r−k
for every i . Then there exist multistable vector

bundles H, E,G with rank(H ) = k, rank(E) = r , rank(G) = r −

k, mult ideg(H ) = (a1, . . . , as), mult ideg(E) = (a1 + b1, . . . , as + bs),
mult ideg(G) = (b1, . . . , bs) (see De�nition 1.5.3) and �tting in an exact
sequence

(1) 0 → H → E → G → 0

Furthermore, if every singular point of X lies on at most two irreducible
components, we may take as H (resp. G) a general multistable vector bundle
on X (see De�nition 1.11) with rank k and multidegree (a1, . . . , as) (resp. rank
(r − k) and multidegree (b1, . . . , bs)) .

Moreover, for any such H and G the middle term E of a general extension
as (1) is a multistable vector bundle.

Theorem 2. Let Y be an integral projective curve whose normalization has
genus at least 2. Set g := pa(Y ). Fix integers r, d with r ≥ 2 and let a, b, u, v

be the unique integers such that a + b = u + v = d and

(r−1)(g−1) ≤ b−(r −1)a ≤ (r−1)g, (r−1)(g−1) ≤ (r−1)v−u ≤ rg.

Then there is a non-empty Zariski open set W of M(Y ; r, d) with the following
properties:

(a) For every E ∈W there is H ∈ Pica(Y ) and G ∈ M(Y ; r − 1, b) such that
E �ts in an exact sequence (1).

(b) For every E ∈W there is H ∈ M(Y ; r − 1, u) and G ∈ Picv(Y ) such that
E �ts in an exact sequence (1).

(c) For a general H ∈ Pica(Y ) and a general G ∈ M(Y ; r − 1, b) the middle
term of a general extension (1) is an element of W .

(d) For a general H ∈ M(Y ; r − 1, u) and a general G ∈ Picv(Y ) the middle
term of a general extension (1) is an element of W .

(e) For every E ∈W there is no integer a� > a such that E is an extension of
a rank (r − 1) vector bundle of degree (d − a�) by a line bundle of degree
a�.

(f) For every E ∈W there is no integer u� > u such that E is an extension of
a line bundle of degree (d − u�) by a rank (r − 1) vector bundle of degree
u�.
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Teorem 3. Let X be a nodal union of two smooth curves X1 and X2 meeting
(quasi-transversally) at a point. Assume g1 := pa(X1) ≥ 2 and g2 :=
pa(X2) ≥ 2. Fix integers r, k, d1 and d2 with r > k ≥ 1.

Let E be a general multistable vector bundle on X (see De�nition 1.11)
with rank r and multidegree (d1, d2). Let ei , �i , i = 1, 2, be the only integers
with ei , �i ∈ {0, 1, . . . , r − 1} and ei + k(r − k)(gi − 1) ≡ kdi modulo r ,
�i + k(r − k)gi ≡ kdi modulo r .

Then the Lange invariant sk(E) of E (see De�nition 1.6) satis�es the
following conditions:

sk(E) ≥ e1 + e2 + k(r − k)(g1 + g2 − 2),

sk(E) ≤ k(r−k)(g1+g2−1)+min {e1+�2, �1+e2, e1+e2+min {k2, (r−k)2}}.

Teorem 4. Let X be a connected curve of compact type such that all of
its irreducible components have genus at least two. Order the irreducible
components X1, . . . , Xs of X so that X [i−1] := X1 ∪ · · · ∪ Xi−1 is connected
and card (X [i−1]∩Xi ) = 1 for every integer i with 2 ≤ i ≤ s. Set gi := pa(Xi).

Fix a multidegree (d1, . . . , ds) associated to this ordering and integers
r, k, a1, . . . , as such that r > k ≥ 1, kd1 − ra1 ≥ k(r − k)(g1 − 1) and
kdj − raj ≥ k(r − k)gj for every 2 ≤ j ≤ s.

Then a general multistable vector bundle E on X (see De�nition 1.11) with
multidegree (d1, . . . , ds) �ts in an exact sequence (1) with H and G multistable
vector bundles respectively of rank k and r−k andmultidegree (a1, . . . , as) and
(d1−a1, . . . , ds −as). Furthermore we may assume that H and G are general.

The last assertion of the above Theorem means that the general extension
of a general G and a general H is multistable and that the family of all middle
terms of general extension (1) with G multistable rank (r − k) vector bundle
with multidegree (d1−a1, . . . , ds −as) and H multistable rank k vector bundle
with multidegree (a1, . . . , as) covers a dense subset of the set of all multistable
vector bundles on X with rank r and multidegree (d1, . . . , ds).

We work over an algebraically closed �eld k of characteristic 0.

1. Preliminaries.

De�nition 1.1. Let R be a ring and M be a R-module. The torsion module of
M is Tors(M) := {m ∈ M / am = 0 for some non-0-divisor a ∈ R}. M is
called torsion-free if and only if Tors(M) = (0).

If X is a scheme and F is a coherent sheaf on X , then F is called torsion-
free if Fx is a torsion-free OX,x -module for every x ∈ X .
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Remark 1.2. A subsheaf of a torsion-free sheaf is torsion-free.
If X is a smooth scheme, then a sheaf F on X is torsion-free if and only if

it is locally free (i.e. it is a vector bundle).
If X is a nodal curve (i.e. for every singular point P of X the completion

of OX,P is isomorphic to k[[x , y]]/(xy)), then a sheaf F on X is torsion-free
if and only if it is a sheaf of depth 1, as de�ned in [17] p. 146 De�nition 1 and
Lemma 2.

Let Y be an integral projective curve. Recall that for any rank r torsion-
free sheaf F on Y its degree deg(F) is de�ned by the relation deg(F) =

χ(F) + r(pa(Y ) − 1).
We recall the following de�nition.

De�nition 1.3. Let F be a torsion-free sheaf on an integral projective curve.
Denote by µ(F) := deg(F )

rank(F )
the slope of F . We say that F is stable (resp.

semistable) if for every subsheaf A of F we have µ(A) < µ(F) (resp.
µ(A) ≤ µ(F)) or equivalently for every quotient sheaf Q of F we have
µ(Q) > µ(F) (resp. µ(Q) ≥ µ(F)).

Assume pa(Y ) ≥ 2. For all integers r, d with d > 0 let M(Y ; r, d) be the
moduli scheme of stable locally free sheaves E on Y with rank r and degree
d . The scheme M(Y ; r, d) is a Zariski open subset of the moduli scheme of
all torsion-free stable sheaves on Y with rank r and degree d . The scheme
M(Y ; r, d) is a non-empty smooth irreducible algebraic variety with dimension
r2(pa(Y ) − 1) + 1 (see [15] remark at p. 167).

De�nition 1.4. Let Y be an integral projective curve and F be a rank r torsion-
free sheaf on Y . Fix an integer k with 1 ≤ k < r and consider a rank k subsheaf
A of F of maximal degree. The integer sk(F) := k(deg(F)) − r(deg(A)) is
called a Lange invariant of F . The name is due to its introduction and study in
[12].

Note that a rank r torsion-free sheaf F on an integral projective curve Y is
stable (resp. semistable) if and only if sk(F) > 0 (resp. sk(F) ≥ 0) for every
1 ≤ k < r .

From now on X denotes a reduced and connected projective curve with
irreducible components X1, . . . , Xs .

De�nition 1.5.

1. Let F be a torsion-free sheaf on X . The sheaf F|Xi
/T ors(F|Xi

) is a torsion-
free sheaf on the irreducible component Xi , let ri be its rank . We call the
ordered s-ple (r1, . . . , rs) the multirank of F . If ri = r for every i , we say
that F has a constant rank r .



VECTOR BUNDLES ON REDUCIBLE CURVES 391

2. If F is a torsion-free sheaf on X with constant rank r , then its degree
deg(F) is de�ned by the formula deg(F) = χ(F) + r(χ(OX )).

3. If E is a vector bundle on X , then it has a constant rank r , in this case we
will call the ordered s-ple of integers mult ideg(E) := (deg(E|X1), . . . ,

deg(E|Xs
)) the multidegree of E . We have deg(E) =

�s
i=1 deg(E|Xi

).
4. A vector bundle E on X is called multistable (resp. multisemistable ) if
for every irreducible component Xi of X the vector bundle E|Xi

is stable
(resp. semistable).

5. Let F be a torsion-free sheaf on X with constant rank r such that it is a �at
limit of a �at family {Fλ}λ∈T of locally free sheaves with T integral and
quasi-projective. The multidegree of Fλ for a general λ ∈ T is well-de�ned
and we will say that such multidegree is the multidegree of F with respect
to the partial smoothing {Fλ}λ∈T .

De�nition 1.3 of stable (resp. semistable) sheaf and De�nition 1.4 of Lange
invariant can be extended to reducible reduced and connected curves X , by
considering subsheaves of constant rank.

De�nition 1.6. Let F a torsion-free sheaf on X with constant rank r .

1. Fix a positive integer k < r .The pure Lange invariant of order k of F is the
integer sk(F) := k(deg(F))−r(deg(A)), where A is a subsheaf of F with
constant rank k and A has maximal degree among all such subsheaves.
Since we require that A has constant rank, it easy to check that sk(F) is a
well-de�ned integer.

2. We say that F is stable (resp. semistable) if sk(F) > 0 (resp. sk(F) ≥ 0
for every 1 ≤ k < r ).

Remark 1.7. The above de�nitions were used for example by Ellingsrud,
Hirschowitz in [7] and Heine, Kurke in [9].

The properness of the Quot -scheme implies that the function sk(F) is
lower semicontinuos in �at families of torsion-free sheaves on X with constant
rank r and in �at families of curves.

We point out that a multistable (resp. multisemistable) vector bundle E
on X is stable (resp. semistable) in the sense of the above de�nition (see [2]
Lemma 1.1).

A different de�nition of stability is given by Seshadri in [17]. In 4 we will
give some remarks on the differences between the two de�nitions.

De�nition 1.8. A reduced and connected projective curve X is said to be of
compact type if the scheme Pic0(X ) is compact. Recall that the group scheme
Pic0(X ) is compact if and only if each irreducible component of X is smooth,
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X has only ordinary nodes as singularities and the graph associated to the
irreducible components of X is a tree. The last assertion means that we may
order the irreducible components of X (say X1, . . . , Xs ) in such a way that for
2 ≤ i ≤ s , X [i−1] := X1 ∪ · · · Xi−1 is connected and card (X [i−1] ∩ Xi) = 1.

De�nition 1.9. Let X be a reduced and connected projective curve.

1. We say that X is quasi-nodal if every P ∈ Sing(X ) such that P lies on at
least two irreducible components of X is an ordinary node of X .

2. We say that X is of quasi-compact type if X is quasi-nodal and the graph
associated to the irreducible components of X is a tree.

Note that if X is a curve of quasi-compact type with irreducible compo-
nents X1, . . . Xs , then pa(X ) =

�s
i−1 pa(Xi).

Remark-De�nition 1.10. Let X be a reduced and connected projective curve
with irreducible components X1, . . . , Xs such that every singular point of X
is contained in at most two irreducible components. Consider the natural
morphism π : X1 � · · · � Xs → X (the symbol ��� denotes the disjoint union).
The morphism π induces the following exact sequence

(2) 0 → OX → π∗(OX1 ⊕ · · · ⊕ OXs
) → OS → 0

where S is the 0-dimensional scheme given by the singularities of π . Hence S
is supported on the points P ∈ X lying on two different irreducible components
of X .

A vector bundle E on X with rank r and multidegree (d1, . . . , ds) gives
the following exact sequence

(3) 0 → E → E|X1 ⊕ · · · ⊕ E|Xs

β
→ E|S → 0

where E|S
∼= O⊕r

S and, for 1 ≤ i ≤ s , E|Xi
is a vector bundle on Xi with rank r

and degree di .
Now we describe the morphism β . Let Z be a connected component

of the 0-dimensional scheme S given by the intersections of the irreducible
components of X . Assume that P := Zred lies on X1 and X2.

The 0-dimensional algebra OZ is local and it has OP = k as residue �eld.
Since Z is 0-dimensional, we have (E|X1)|Z

∼= (E|X2)|Z
∼= E|Z

∼= O⊕r
Z . The

morphism β is given, locally at P by an isomorphism of (E|X1)|Z with (E|X2)|Z
which will be called the gluing datum of E|X1 and E|X2 at P .

Notice that Hom(O⊕r
Z , O⊕r

Z ) is a matrix algebra overOZ and a matrix gives
a gluing datum if and only if it is invertible. In particular, seeing OZ as a �nite
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dimensional vector space over k and hence as an irreducible variety, the set of
all gluing data is parametrized by an irreducible variety denoted Gl(r, OZ ).

On the other hand, for any choice of rank r and degree di vector bundles Ei

on Xi , i = 1, . . . , s , and of gluing data at each common point of two irreducible
components of X (i.e. for every surjective morphism E1 ⊕ · · · ⊕ Es → O⊕r

S )
there is vector bundle E on X with E|Xi

= Ei .

De�nition 1.11. Let X be a reduced and connected projective curve with
irreducible components X1, . . . , Xs such that every singular points of X lies
on at most two irreducible components.

1. A vector bundle E on X with rank r and multidegree (d1, . . . , ds) is called
generalmultistablevector bundle if the restriction E|Xi

is a general element
(i.e. an element of an open set) of the moduli space M(X ; r, di), for
1 ≤ i ≤ s and the gluing data are general.

2. We will say that an irreducible �at family {Eα}α∈T of vector bundles on
X with rank r and multidegree (d1, . . . , ds) is a general family of vector
bundles on X with that rank and multidegree if for a general α the vector
bundle Eα is general multistable and for every point P lying on two
irreducible components of X the gluing data of Eα at P are general.

2. Proof of Theorem 1.

We will prove simultaneously Theorem 1 and the following result which
considers also curves of geometric genus 1.

Proposition 2.1. Let X be a reduced and connected projective curve and
X1, . . . , Xs its irreducible components. Assume that the normalization of every
Xi has genus at least 1.

Fix integers r and k with r > k ≥ 1 and multidegrees (a1, . . . , as) and
(b1, . . . , bs) such that ai

k
< bi

r−k
for every i . Then there exist multisemistable

vector bundles H, E,G with rank(H ) = k, rank(E) = r , rank(G) =

r − k, mult ideg(H ) = (a1, . . . , as), mult ideg(E) = (a1 + b1, . . . , as + bs),
mult ideg(G) = (b1, . . . , bs) and �tting in an exact sequence (1) : 0 → H →

E → G → 0.

We may �nd H,G and E such that for every irreducible component Xi

with normalization of genus at least 2 the restrictions H|Xi
, E|Xi

and G |Xi

are stable and furthermore the bundles H|Xi
,G |Xi

are general in their moduli
scheme.
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We may �nd H,G and E such that for every irreducible component Xi

which is smooth of genus 1 the bundles H|Xi
, E|Xi

and G |Xi
are polystable (i.e.

they are direct sum of stable vector bundles with the same slope).
We may �nd H,G and E such that for every irreducible component Xi

which is singular and with normalization of genus 1 the bundles H|Xi
and G |Xi

are stable and general in their moduli scheme and the bundle E|Xi
is polystable.

Remark 2.2. Let Y be an integral projective curve and π : Z → Y its
normalization. For every vector bundle E on Y we have π∗π

∗(E) ∼= E ⊗

π∗(OZ ) and there is a natural map f : H 1(Y, E) → H 1(Y, π∗π
∗(E)). Since

π∗(OZ )/OY is supported by a �nite set, we have H 1(Y, π∗π
∗(E)/E) = (0).

Hence f is surjective. Moreover we have H 1(Y, π∗π
∗(E)) = H 1(Z , π∗(E)),

since π is �nite.
Take vector bundles A, B on Y and apply these observations to the vector

bundle Hom(B, A). We obtain that every extension of π∗(B) by π∗(A) is a
vector bundle isomorphic to a vector bundle π∗(U ) with U extension of B by
A.

Lemma 2.3. Let X be a reduced and connected projective curve, H and G be
vector bundles on X and C be the union of some irreducible components of X .
Then for every exact sequence

(4) 0 → H|C → M → G |C → 0

of vector bundles on C there is an extension

(5) 0 → H → N → G → 0

of vector bundles on X such that the sequence (4) is the restriction of the
sequence (5) to C.

Proof. Let J be the ideal sheaf of C in X . Since dim(X ) = 1, h2(X, J ⊗

Hom(G, H )) = 0 holds. Hence the natural restriction map H 1(X, Hom(G,

H )) → H 1(C, Hom(G |C , H|C)) is surjective and we conclude.

Lemma 2.4. Let Y be an integral projective curve and π : Z → Y its
normalization. For every vector bundle F on Z there is a vector bundle E
on Y with F ∼= π∗(E).

Furthermore, if π∗(E) is stable (resp. semistable), then E is stable (resp.
semistable).
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Proof. The result is true and well-known if rank(F) = 1 because Pic(Y ) is
an extension of Pic(Z ) by an af�ne commutative connected group. Since for
every integer r ≥ 2 a rank r vector bundle on Z is obtained making r −1 times
an extension by a line bundle, we obtain an exact sequence of vector bundles
0 → L → F → G → 0, with rank(L) = 1, rank(G) = r − 1. By the
inductive hypothesis there exist vector bundles L � and G � on Y with L = π∗(L �)

and G = π∗(G �). So by Remark 2.2 there exists an extension E of G � by L �

with F = π∗(E).
We have deg(π∗(A)) = deg(A) for every vector bundle A on Y . Assume

E non-stable (resp. non-semistable) and let Q be a quotient sheaf of E with
µ(Q) ≤ µ(E) (resp. µ(Q) < µ(E)) and rank(Q) < rank(E).

Set B := π∗(Q)/Tors(π∗(Q)). We have deg(B) ≤ deg(Q) (see [5]
Prop. 3.2.4 part (2) or, in the rank 1 case [6] Lemma 1). There is a morphism
f : π∗(E) → B which is surjective outside �nitely many points. Hence
rank(Im( f )) = rank(B) < rank(E) and deg(Im( f )) ≤ deg(B). So π∗(E)

is not stable (resp. not semistable).

Proof of Theorem 1 and Proposition 2.1. It is suf�cient to prove the �rst part
of Theorem 1 and Proposition 2.1. First we consider Theorem 1. By [16] Thm.
0.1 and Thm. 0.2, the result is true if X is smooth. Now assume s = 1. Since
the normalization of X has genus at least 2, the result is true by the smooth case
just quoted and by above Remark 2.2 and Lemma 2.4.

Let s ≥ 2. For general multistable H and G , the restrictions H|Xi
and

G |Xi
are general stable bundles on Xi and by the case s = 1 we obtain

as general extension of G |Xi
by H|Xi

a stable bundle Ei . The restriction
map H 1(X, Hom(G, H )) → H 1(Xi , Hom(G |Xi

, H|Xi
)) is surjective, for i =

1, . . . , s (see Lemma 2.3), then we obtain as general extension of G by H a
multistable vector bundle E .

Proposition 2.1 is done in the same way, just quoting [3] 1 for the particular
case of smooth elliptic curves.

3. Proofs of Theorems 2, 3 and 4.

We need the following well-known result.

Lemma 3.1. Let Y be an integral projective curve with g := pa(Y ) ≥ 2.
For all integers r and d with r > 0 and a general E ∈ M(Y ; r, d), we have
h0(Y, E) = max{0, d + r(1− g)} and h1(Y, E) = max{0, r(g − 1) − d}.

Proof. The result is obvious and well-known for r = 1. Assume r ≥ 2.
For d ≥ r(g − 1), take a general L ∈ Pic g−1(Y ) and a general M ∈
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Pic d−(r−1)(g−1)(Y ), then set F := L⊕(r−1) ⊕ M . By the case r = 1 we have
h1(Y, F) =0 and by Riemann-Roch h0(Y, F) = d + r(1− g).

The proofs of [11] Prop. 2.1 and Cor. 2.2 work verbatim when Y is a
singular irreducible projective curve with arithmetic genus g ≥ 2.

Hence every vector bundle on Y is the �at limit of a �at family of stable
vector bundles on X . Thus by semicontinuity we conclude for d ≥ r(g − 1).

The case d < r(g − 1) is similar and left to the reader.

Proof of Theorem 2. We will consider parts (b), (d) and (f), the other parts
requiring only sraightforward modi�cations.

By Theorem 1, for Y integral, we know that for general H ∈ M(Y ; r−1, u)

and a general G ∈ Picv(Y ) the general extension of G by H is stable. In this
way varying G, H and the extension class we obtain an irreducible constructible
subset T of M(Y ; r, d).

We want to check that T is dense in M(Y ; r, d), i.e. that dim(T ) =

r2(g − 1) + 1. Since for every H ∈ M(Y ; r − 1, u) and every G ∈ Picv(Y )

we have h0(Y, Hom(G, H )) = 0 by de�nition of stability, we obtain

h1(Y, Hom(G, H ))=(r−1)(g−1+µ(G)−µ(H ))=(r−1)(g−1)+(r−1)v+u.

Since dim(Picv (Y )) = g and dim(M(Y ; r − 1, u)) = (r − 1)2(g − 1) + 1,
to conclude that dim(T ) has the expected value it is suf�cient to prove that for
general H and G and every extension (1) the family of all H � ∈ M(Y ; r − 1, u)

which are contained in E and for which the inclusion H � → E is near to the
inclusion of H in E given by (1) has the expected dimension (r − 1)(g − 1) +

(r − 1)v − u = χ(H∨ ⊗ G).
By the theory of the Quot -scheme it is suf�cient to prove that h1(Y, H∨ ⊗

G) = 0 for general H and G . This is true by Lemma 3.1 applied to the integer
r � := r − 1. Hence we have proved parts (b) and (c).

Now we will prove part (f). Assume the existence of an integer u� > u for
which part (f) fails. The proofs of [11] Prop. 2.1 and Cor. 2.2 work verbatim
for a singular irreducible curve and show that any rank r − 1 vector bundle on
Y is the �at limit of a �at family of stable vector bundles. Hence the isomorphic
classes of the possible quotient bundles depends on at most (r − 1)2(g − 1) + 1
parameters, while the possible line subbundles depend on at most g parameters.

Fix any extension (1) with E stable. Since E is simple, we have
h0(Y, Hom(G, H )) = 0. Hence h1(Y, Hom(G, H )) = rank(G)rank(H )(g −

1+ µ(G) − µ(H )).
Since u� > u, we obtain that the set of all isomorphism classes of middle

terms of such extension cannot cover an open subset of M(Y ; r, d).
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We cannot expect exactly the same type of results for reducible curves and
to show the differences we will analyze the case of curves of compact or quasi-
compact type with two irreducible components.

Lemma 3.2. Let Y be a smooth projective curve with genus g ≥ 2 and E be a
rank r degree d stable vector bundle on Y . Let e be the only integer such that
0 ≤ e ≤ r − 1 and e + k(r − k)(g − 1) ≡ kd modulo r .

If E is general, the Lange invariant of E is sk(E) = e + k(r − k)(g − 1).
Moreover each irreducible component T of the algebraic set of all maximal

degree rank k subbundles of E has dimension e.

Proof. The �rst assertion follows by [16] Thm. 0.2 and [13] Cor. 3.13
and Rem.3.14, or [11] 4. Now let H be a general member of T , we have
deg((E/H ) ⊗ H∨) = k(deg(E/H )) − (r − k)(deg(H )) = k(deg(E)) −

r(deg(H )) = sk(E) = e + k(r − k)(g − 1).
Furthermore h1(Y, (E/H ) ⊗ H∨) = 0, because deg((E/H ) ⊗ H∨) ≥

k(r − k)(g − 1) and we may assume that the pair (H, E/H ) is general
in the product of the two moduli schemes (see [11] 4, [12] and [4] for an
explanation of way this follows from [16] Thm. 0.1). Thus by Riemann-Roch
h0(Y, (E/H )⊗H∨) = e and the last assertion follows from the theory of Quot -
schemes.

Lemma 3.3. Let X be the union of two smooth curves X1, X2 meeting quasi-
transversallyat a point P . Denote by π : X̃ := X1�X2 → X the normalization
of X . Consider a rank r vector bundle E on X and the following exact
sequences induced by X and E :

(6) 0 → OX → π∗(OX1 ⊕ OX2) → O{P}
∼= k → 0

(7) 0 → E → E|X1 ⊕ E|X2

β
→ E|P

∼= k ⊕r → 0

Let 1 ≤ k < r . A saturated rank k subsheaf H of E is given by a pair (H1, H2),
where Hi is a rank k subbundle on Xi , i = 1, 2, holding the following exact
sequence

(8) 0 → H → H1 ⊕ H2 → Im(β|(H1⊕H2)) → 0

where Hi = H|Xi
/Tors(H|Xi

) and Im(β|(H1⊕H2)) is the vector subspace of
E|P

∼= k⊕r generated by H1|P and H2|P .
Moreover we have the following assertions:
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1. The completion at P of the sheaf H is isomorphic to R⊕a ⊕m
⊕(k−a) , where

R is the completion of the local ring OX,P , m is the maximal ideal of R
and a := dim(H1|P ∩ H2|P). The �ber at P of the restriction H|Xi

of H

to Xi , i = 1, 2, has as completion the module R⊕a ⊕ R⊕(k−a)
i ⊕ k⊕(k−a) ,

where Ri is the completion of OXi
at P . Thus k⊕(k−a) gives the torsion of

H|Xi
.

2. deg(H ) = deg(H1) + deg(H2) − (k − a).

Proof. Every rank k subsheaf H of E is torsion-free, i.e. of depth 1 as in [17]
parts VII and VIII. Then the �rst assertion follows by [17] p. 165 and Prop. 3
at p. 166. Note also that as R-module m is isomorphic to R1 ⊕ R2 (see [17] p.
165).

For the second assertion, note that Im(β|(H1⊕H2)) is a vector space of
dimension b = 2k−a, because it is the vector subspace of E|P

∼= k⊕r generated
by the k-dimensional vector spaces H1|P and H2|P , meeting at a vector space
with dimension a.

Moreover we have χ(H ) = χ(H1) + χ(H2) − (2k − a) = deg(H1) −

k(g1 − 1) + deg(H2) − k(g2 − 1) − (2k − a) = deg(H1) + deg(H2) − (k −

a) − k(g1 + g2 − 1).

Proposition 3.4. Let X be the union of two smooth curves X1, X2 meeting
quasi-transversally at a point P . Then for a vector bundle E on X we have

sk(E|X1) + sk(E|X2) ≤ sk(E) ≤ sk(E|X1) + sk(E|X2) + r(min {k, r − k}).

Proof. Let Hi be a maximal rank k subsheaf of E|Xi
, i = 1, 2. By Lemma 3.3,

every subsheaf N of E satis�es deg(N) ≤ deg(H1) + deg(H2) and we obtain
the �rst inequality.

Since two k-dimensional vector subspaces V1 and V2 of E|P
∼= kr satisfy

dim(V1 ∩ V2) ≥ max{0, 2k − r}, for the subsheaf H of E de�ned by H1

and H2 we have deg(H ) ≥ deg(H1) + deg(H2) − (k − max{0, 2k − r}) =

deg(H1) + deg(H2) − min{k, r − k} (see Lemma 3.3). For a maximal rank k
subsheaf N of E we have deg(N) ≥ deg(H ) and so we conclude.

Proof of Theorem 3. Note that (see Lemma 3.2) a maximal rank k subbundle of
Ei has degree

1
r
(kdi − ei − k(r − k)(gi − 1)), i = 1, 2. Then by Proposition

3.4 a maximal rank k subsheaf N of E satis�es deg(N) ≤ 1
r
(k(d1 + d2) − e1 −

e2 − k(r − k)(g1 + g2 − 2)) and deg(N) ≥ 1
r
(k(d1 + d2) − e1 − e2 − k(r −

k)(g1 + g2 − 2)) − min{k, r − k}.
Since E2 is a general stable vector bundle, it has rank k subbundles H �

2

with degree a2 :=
1
r
(kd2 − �2 − k(r − k)(g2)) (see [16] Thm. 0.3).
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We have deg((E2/H
�
2) ⊗ H

�∨
2 ) = k(d2 − a2) − (r − k)a2 = kd2 − ra2 ≥

k(r − g2)g2. Hence χ((E2/H
�
2) ⊗ H

�∨
2 ) ≥ k(r − k).

Moreover the full statement of [16] Thm. 0.3 implies that the set of all
�bers over P of all possible rank k degree a2 subbundles H

�
2 of the �xed bundle

E2 covers an open dense subset of the Grassmannian of the k-dimensional
vector subspaces of E2|P ∼= kr .

Hence we may �nd at least one such H �
2 which may be glue to the

maximal rank k subbundle H1 of E1 obtaining a locally free subbundle H �

of E with the quotient E/H � locally free (see Remark 3.6) and deg(H �) =
1
r
(k(d1 + d2) − e1 − �2 − k(r − k)(g1 + g2 − 1)). Hence Theorem 3 follows.

Remark 3.5. Use the notation of Lemma 3.3. A general multistable rank r
vector bundle E on X with multidegree (d1, d2) is given by a triple (E1, E2, β),
with Ei a general element of M(Xi ; r, di), i = 1, 2 and β : E1 ⊕ E2 → O⊕r

P

a general morphism, i.e. β is a general isomorphism from E1|P ∼= kr to
E2|P ∼= kr .

For i = 1, 2, consider a component irreducible Ti of the algebraic set of
all maximal degree rank k subbundles of E|Xi

and the morphism ϕi : Ti →

G(k, E|P) associating to Hi ∈ Ti the �ber Hi|P , here G(k, E|P) denotes the
Grassmannian of the k-dimensional vector subspaces of the vector space E|P

∼=

kr . Let φ := ϕ1 × ϕ2 and U be the open set given by the pairs (V1, V2) of k-
dimensional vector subspaces of E|P such that dim(V1∩V2) = max{0, 2k−r}.

We can prove that the open subset φ−1(U ) of T1 × T2 is non-empty.
Indeed let Hi be an element of Ti , i = 1, 2, since the above morphism β

is general, we have that (β(H1|P), H2|P) is an element of the open U .
Thus for the subsheaf H of E de�ned by H1 and H2 we have deg(H ) =

deg(H1) + deg(H2) − (k − max{0, 2k − r}) = 1
r
(kd1 − e1 − k(r − k)(g1 −

1) + kd2 − e2 − k(r − k)(g2 − 1)) −min{k, r − k} = 1
r
(k(d1 + d2) − e1 − e2 −

k(r − k)(g1 + g2 − 2)) − min{k, r − k}.
A problem to compute sk(E) for general E is also to consider saturated

rank k subsheaves H of E such that for at least one index i ∈ {1, 2} the
saturation of H|Xi

/T ors(H|Xi
) is not a maximal degree rank k subbundle of

E|Xi
.

Remark 3.6. We use the notation of the proof of Theorem 3. Let Ni a rank k
maximal subbundle of Ei := E|Xi

, i = 1, 2. The subsheaf N of E de�ned by
N1 and N2 is a subbundle, i.e. the quotient E/N is locally free, if and only if
we have dim(N1|P ∩ N2|P ) = k.

We can choose gluing data of E1 and E2 (the morphism β ) to have the
above condition. In this case we have sk(E) = e1 + e2 + k(r − k)(g1 + g2 − 2).
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Proof of Theorem 4. The case s = 1 is [16] Thm. 0.2. Now let s ≥ 2,
assume that the result is true for the curve X [s−1] := X1 ∪ · · · ∪ Xs−1. Since
kds − ras ≥ k(r − k)gs , by [16] Thm. 0.3, a general Es ∈ M(Xs; r, ds) is an
extension of some Gs ∈ M(Xs; r − k, ds − as) by some Hs ∈ M(Xs; k, as) and
we may assume that the pair (Hs,Gs) is general.

Let us consider the vector bundles H �, E �,G � as in the statement of
Theorem 4 for the curve X [s−1]. Set {p} := X [s−1] ∩ Xs . By assumption P
is a smooth point of X [s−1] and Xs .

As in the proof of Theorem 3, by using the full statement of [16] Thm.
0.3, we obtain that the set of all �bers over P of all possible rank k degree
ds subbundles Hs of the �xed bundle Es covers an open dense subset of the
Grassmannian of the k-dimensional vector subspaces of Es|P

∼= kr .

Hence we may �nd at least one such Hs whichmay be glue to H
� obtaining

a locally free subbundle H of E with the quotient G := E/H locally free (see
Remark 3.6).

Theorem 3.7. Let X be a reduced and connected smoothable projective curve.
Let E be a torsion-free sheaf on X with constant rank r and such that E is a
�at limit of a �at family of locally free sheaves on a �at family of curves.

Then for every integer k with 1 ≤ k < r we have sk(E) ≤ k(r − k)pa(X ).

Proof. Let X := {Xλ}λ∈� be a �at family of curves, with Xλ smooth for
general λ ∈ �. Let E := {Eλ}λ∈� be a �at family of sheaves with Eλ sheaf on
Xλ for every λ ∈ � and Xo = X , Eo = E for o ∈ �. Restricting if necessary
� to a smaller neighborhood of o, we assume Eλ locally free for every λ �= o.

By [1] Thm. 0.1, for every λ �= o we have sk(Eλ) ≤ k(r − k)pa(Xλ).
Hence we may apply the properness of the relative Quot -scheme to obtain
the semicontinuity for the function sk(E). Hence we have sk(E) = sk(Eo) ≤

sk(Eλ) for general λ and we conclude.

4. Further remarks.

The �rst two results of this section (i.e. Propositions 4.1 and 4.2) concern
the extension of vector bundles from some component of a reduced curve X to
all X . In particular Proposition 4.2 may be used to de�ne a notion of �general�
without taking a polarization of X . The other examples of this section (i.e.
Example 4.3 and Proposition 4.5) point out to a difference between the notion
of stability given in De�nition 1.6 (according to [7], [9]) and that one given
in [17], even in the rank 1 case. Furthermore Example 4.4 point out another
phenomenon which may arise for non-locally free sheaves.
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Proposition 4.1. Let X be a reduced and connected projective curve and D be
the union of some of the irreducible components of X .

(a) Let F be a vector bundle on D. Then there exists a vector bundle E on X
with E|D

∼= F .
(b) Let {Ft}t∈T be a �at family of vector bundles on D parametrized by an

integral quasi-projective variety and s ∈ T . Then there exist an open �nite
map α : U → T with s ∈ α(U ) and a �at family {Eλ}λ∈U of vector bundles
on X parametrized by U such that for every λ ∈U we have Eλ|D

∼= Fα(λ) .
If {Ft }t∈T is induced by a vector bundle on D×T , then we may take U = T
and α = idT .

Proof. Now we prove the assertion (a). Let C be the closure in X of X \ D.
We may assume C �= ∅, otherwise D = X . Take a �nite open covering {Uj }j∈J

of X such that the open covering {Uj ∩ D}j∈J of D is a trivializing covering for
F , moreover for every j ∈ J either Uj ∩ D = ∅ or Uj contains a unique point
of Y ∩ D and such that for every P ∈ Y ∩ D there is a unique index jP ∈ J with
P ∈UjP . Set J

� := { j ∈ J : Uj ∩ D �= ∅}.
The transition functions of the vector bundle F with respect to the covering

{Uj ∩ D}j∈J of D de�ne a vector bundle G on the open subset W :=
�

j∈J � Uj

of X . We have G |D
∼= F .

Take the open covering of X formed by X \ D and by the open sets Uj ,
j ∈ J �.

By construction X \D does not intersectUi ∩Uj for every i, j ∈ J �, i �= j .
Hence we may use arbitrary transition functions on (X \ D) ∩ Uj , j ∈ J �, to
de�ne together with G a vector bundle E on X with E|D

∼= F .
For the assertion (b), note that up to a quasi-�nite extension of T , near s

we may �nd an open covering {Uj }j∈J of X as in the proof of part (a) such that
{Uj }j∈J is a trivializing open covering for Ft for all t �near� to s in the �nite
�at topology. Hence the �rst assertion of part (b) follows.

By Lefschetz principle we reduce to the case in which k is the complex
number �eld. By GAGA it is suf�cient to prove the same assertion for complex
analytic vector bundles. Now the existence of such good �simultaneously
trivializing � open covering is obvious because every complex analytic vector
bundle on one-dimensional reduced complex space without compact positive
dimensional components (i.e. Stein) is trivial; indeed the proof in the case of a
smooth Stein Riemann Surface given in [8] Thm. 30 (i.e. reduction to the rank
1 case and use of the exponential sequence) works verbatim in the general case.

Proposition 4.2. Let X be a reduced and connected projective curve and D be
the union of some of the irreducible components of X . Let E be a vector bundle
on X . Set F := E|D. Then the natural restriction map τ : H 1(X, End(E)) →



402 EDOARDO BALLICO - LUCIANA RAMELLA

H 1(D, End(F)) is surjective and the natural restriction map ρ from the germ
�(E) at E of the local deformation space of E to the germ �(F) at F of the
local deformation space of F is surjective.

Proof. Let J be the ideal sheaf of D in X . Since dim(X ) = 1, we have
h2(X, J ⊗ End(E)) = 0. Hence τ is surjective.

Note that H 1(X, End(E)) (resp. H 1(D, End(F)) is the tangent space at
the point parametrizing E (resp. F ) of the germ �(E) (resp. �(F)). Since
dim(X ) = dim(D) = 1, we have H 2(X, End(E)) = H 2(D, End(F)) = (0).
Hence both deformation functors are unobstructed, i.e. the germs �(E) and
�(F) are smooth. Since τ is the differential of ρ , the map ρ from the germ
�(E) to the germ �(F) is a submersion at E , as wanted.

Recall that a stable sheaf according Seshadri ([17] p. 153) is simple ([17]
part c) of Prop. 10 and Prop. 12 at p. 154). Now we give examples of rank 1
torsion-free sheaves, that are stable according De�nition 1.6 but non-simple, so
they are not stable according [17].

Example 4.3. We give examples of reduced connected curves X with rank 1
torsion-free sheaves L on X such that h0(X, End(L)) ≥ 2.

Let X be a quasi-nodal projective curve with at least two irreducible
components. Fix one of the irreducible components, D, of X . Let L be a
rank 1 torsion-free sheaf on X such that L is not locally free at every point of
D wich is common with another irreducible component of X .

Call S the union of these singular points of X , i.e. S := (Sing(X ) ∩ D) \

Sing(D). Fix λ, µ ∈ k \ {0}. Multiply a germ of a section of L over D \ S by
λ and over X \ D by µ. The case a = 0, b = c = 1 of [17] Prop. 7 at p. 171
shows that this automorphism of L |X\S extends to an automorphism of L over
each point of S . Hence h0(X, End(L)) ≥ 2.

Note that if X is the union of two smooth irreducible curves X1, X2
meeting quasi-transversally at a point P , the sheaf L = OX (−P) satis�es the
above conditions.

De�nition 4.4. Let X be a reduced curve and F a torsion-free sheaf on X . We
de�ne Sing(F) := {P ∈ X : F is not locally free at P}.

Obviously, we have Sing(F) ⊆ Sing(X ) for any reduced curve X and any
torsion-free sheaf F on X .

Proposition 4.5. Let X be a quasi-nodal projective curve. Let L be a rank 1
torsion-free sheaf on X . Set S := {P ∈ Sing(L) : P belongs to two irreducible
components of X }.
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Let f : Z → X be the partial normalization of X which normalizes
exactly the points of S. If c is the number of connected components of Z , then
h0(X, End(L)) = c.

Proof. The proof of the above example gives easily the inequality h0(X,

End(L)) ≥ c. Hence it is suf�cient to prove the opposite inequality. Set
M := f ∗(L)/T ors( f ∗(L)). Since L is torsion-free, we have an injective map
H 0(X, End(L)) → H 0(Z , End(M)). Hence it is suf�cient to prove that for
every connected component Y of Z the sheaf M|Y is simple.

By construction M|Y is locally free at every point of Y common to two
irreducible components of Y . Hence for every irreducible component W of Y
the sheaf M|W is torsion-free. Hence M|W is simple ([5] Lemma 3.5.1 part 1).
Fix P ∈ Yreg and call W the irreducible component of Y containing P .

In order to obtain a contradiction, we assume M|Y not simple. Hence, just
using that the �ber of M at P is one-dimensional, we obtain the existence of
α ∈ H 0(Y, End(M|Y )), α �= 0, with α vanishing at P .

Since M|W is simple, we have α|W ≡ 0. Since M|Y is locally free at
every point of Y common to two irreducible components of Y , we obtain for
the same reason that α vanishes identically on every irreducible component of
Y intersecting W . And so on. Since Y is connected, in a �nite number of steps
we obtain a contradiction.

If we do not assume the condition � a1
k

< bi
r−k

for every i � (resp. �
a1
k

≤ bi
r−k

for every i �) in the statement of Theorem 1 (resp. Proposition 2.1)
the situation may be completely different as shown by the following example,
which explains why we study mainly multisemistable and multistable vector
bundles.

Example 4.6. Let X be a quasi-nodal projective curve with s irreducible
components, say X1, . . . , Xs . Assume s ≥ 2. Set S := X1∩(X2∪· · ·∪Xs) and
σ := card(S). Set gi := pa(Xi) ≥ 1. Fix integers ai and bi for 1 ≤ i ≤ s , with
the condition b1 ≤ a1 − σ − 2g1 + 1. Fix L, M ∈ Pic(X ) with deg(L|Xi

) = ai
and deg(M|Xi

) = bi for every i .

Let E be any extension of M by L .

(a) Since deg(L|X1) ≥ deg(M|X1) + 2g1 − 1, the restriction of this extension
to X1 splits, i.e. E|X1

∼= (L|X1 ⊕ M|X1). So E is not multisemistable.

(b) By Riemann-Roch we have h0(X1, Hom(M|X1 , L|X1)(−S)) �= 0 and
hence there exists u ∈ H 0(X1, End(E|X1)) with u|S = 0. Thus we may
extend u to v ∈ H 0(X, End(E)) with v|X1 = u and v|Xi

= 0 for every
i ≥ 2. Hence E is not simple. Thus by [17] part c) of Prop. 10 p. 154, E
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is not stable in the sense of [17] pp. 153-154 for any choice of polarization
on X .

(c) If deg(L) =
�s

i=1 ai <
�s

i=1 bi = deg(M), the above example shows
also that, without any restiction, the so-called Lange conjecture (see [16])
is false for reducible curves, at least for certain polarizations, in the sense
of [17] p. 153, even in rank two and for vector bundles.

Furthermore this example shows that Theorem 1 does not hold for stable
sheaves in the sense of [17].

The main difference between the notion of stability considered in [17] pp.
153-154 and in [7], [9] is not that in [17] a choice of a polarization is added, but
that in [7] and [9] the sheaf has constant rank and one have to check the slope
inequality only for proper subsheaves with constant rank. With the de�nition of
[17] pp. 153-154, one has to check the stability or semistability of a sheaf of
constant rank (or even of a vector bundle) by considering the slope inequality
for all subsheaves, even of non-constant rank. As shown by Example 4.3 and
Proposition 4.5 this is essential to obtain that stability implies simpleness ([17]
part c) of Prop. 10 and Prop. 12 at p. 154).
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