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ANALYTIC BRANCHES AND HYPERSURFACE SECTIONS

CATERINA CUMINO

Dedicated to Silvio Greco in occasion of his 60-th birthday.

We study the behaviour of analytic branches of a projective variety with
respect to hypersurface sections and we give conditions under which their
number and their orders are preserved.

Introduction.

Let X ⊆ P
n
k be an algebraic variety over an algebraically closed �eld k of

any characteristic. Starting point of this note was a question, posed in [10], if
there is a Seidenberg type theorem for analytic branches; more precisely when is
it true that the number of branches of X at a singular point P equals the number
of branches at P of a �general� hypersurface section of X ?

We approach this problem from different points of view and by different
methods.

In Section 1 we study the case of a closed point P belonging to a singular
subvariety Y ⊆ X , with dim Y ≥ 1; using standard local algebra, we give some
suf�cient conditions under which the number of branches at P and their orders
are preserved by hypersurface sections; then we show by examples that this
fact does not hold in general, but that such conditions are always veri�ed when
Y is 1−codimensional and char k = 0; in these particular hypotheses and if
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moreover X is a hypersurface we prove that our results follow also by Zariski�s
equisingularity theory and they are classically well known in P

3 for multiple
curves on surfaces (see [7]).

In Section 2 we discuss the case of isolated points. When char k = 0
we use local Bertini type theorems, especially a result of Flenner (see [9])
about normality, and we get in particular suf�cient conditions under which
the branches of X at P are well behaved with respect to the general element
of a linear system on X . We observe also that, in any characteristic, when
dim X = 2, something quite different may happen.

Section 3 deals with analytic branches of an algebraic variety X and linear
systems on X from a global point of view and in any characteristic. Main tool
of our work is a Bertini theorem for geometrically unibranch schemes, due
to Zhang (see [17]). We obtain in particular a global statement on the good
behaviour of branches of a projective variety under hyperplane sections.

0. We recall some generalities about the branches of a scheme at its points. For
more details see [10], [2].

De�nition 0.1. Let X be a k-scheme, X be the normalization of Xred and
ν : X → X be the canonical morphism; let x ∈ X . A (geometric) branch of X
at x is a (geometric) point of the k(x)-scheme ν−1(x). The number of branches
of X at x is denoted by b(x) (or bX (x) when necessary). If A is a local ring, the
(geometric) branches of A are the (geometric) branches of spec(A) at its closed
point.

If A is a ring, we denote by min(A) the set of minimal primes of A and by
c(A) their number; max(A) shall denote the set of maximal ideals of A.

Lemma 0.2. Let hA be the henselizationof the local ring A; there is a canonical
bijection between the set of branches of spec(A) and min(hA).

De�nition 0.3. Let A be a local reduced ring and p ∈ min(hA), we call order
of the branch corresponding to p the multiplicity e(hA/p). The branch is said
to be linear if hA/p is a regular ring.

De�nition 0.4. A local ring A is said to be unibranch (UB) if b(A) = 1. A
scheme X is said to be UB at x if OX,x is such.
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1. In this section we examine the behaviour of branches at closed points of an
algebraic variety X ⊆ P

n
k , over an algebraically closed �eld k, with respect to

sections with an hypersurface F . We show at �rst some suf�cient condition
under which the equality bX (P) = bX∩F(P) holds, for a point P belonging to
a reduced irreducible subvariety Y ⊆ X of dimension ≥ 1, when k is a �eld
of any characteristic. Secondly we show that, when Y is a 1-codimensional
subvariety of an hypersurface X and char k = 0, our results are a consequence
of the classical theory of equisingularity.

Theorem 1.1. Let (A,m, k) be a local reduced ring. Suppose that:

1) A is regular;

2) the conductor of A has only one associated prime p;

3) A/p is regular and (A/pA)red is étale over A/p.

Let f ∈ A be an element such that f := f mod p in A/p belongs to a
regular system of parameters. Then there is a canonical map

{branches o f A} ←→ {branches of A/ f A}

which is one to one and preserves the orders of branches.

Proof.
(a) Since f is not in p, it follows by (2) that the conductor is not contained in
any minimal associated prime q to f A; hence (A/ f A)q = (A/ f A)q , for
any such q ; therefore the integral closures of (A/ f A)red and (A/ f A)red
coincide.

(b) Put B = A/p and C = (A/pA)red = A/I ; letm1, · · · ,mn be themaximal
ideals of C . Consider, for each i = 1, · · · , n, the following diagram:

B
h ��

��

Cmi

��
B/ f B

h �

�� Cmi
⊗B B/ f B

Observe that Cmi
⊗B B/ f B = Cmi

/ f Cmi
and that, by hypothesis (3),

B/ f B is regular and h is étale; h� too is étale, therefore Cmi
/ f Cmi

is
regular; ([8] IV2 6.5.2, IV4 17.6.1).

(c) For each m ∈ max(A), put R = Am and R
� = CmC . By hypothesis (1)

and (3), R and R� are regular. Now R�/ f R� = R/( f, t1, · · · , ts) is by (b)
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a regular local ring, hence f belongs to a regular system of parameters of
R, therefore R/ f R is a regular ring.

(d) By hypothesis f ∈m ⊆ rad(A) and by (c) A/ f A is a regular ring, hence

we obtain the bijective map max(A) ←→ max(A/ f A) ←→ max(A/ f A)

and, by (a), the correspondence of the thesis.

Let now A and f be as above; let hA be the henselization of A and let
q ∈ min(hA) be the minimal prime corresponding to a �xed branch of A. Put
D = (hA)/q and D� = D/ f D; since f is in particular a super�cial element with
respect to the maximal ideal of D, by [16] p. 287, we have that e(D) = e(D�)

and the thesis follows.

De�nition 1.2. Let X ⊆ P
n
k be a reduced projective variety and let Y ⊆ X be

a reduced and irreducible subvariety; let P be a closed point of Y ; we say that
a hypersurface H is transversal to Y at P if H does not contain Y nor it is
tangent to it at P .

Remark 1.3. In 1.1 hypothesis (3) is necessary. In fact, consider for example,
in the af�ne space k3, the surface V having equation X Z 2 − Y 2 = 0; let
A = k[U 2,UV , V ] be the coordinate ring of V and let p = (UV , V ) be
the ideal which corresponds to the double line Y = Z = 0; at the origin O
the homomorphism k[U 2] → k[U ] is rami�ed and there is only one branch of
order 2; moreover not all the sections which are transversal to the double line
have, at O , only one branch of order 2: for example the sections of V with
planes having equation aX + bY = 0 (a �= 0, b �= 0), are cubic curves, which
are reducible in a parabola and a line tangent to each other at O .

Theorem 1.4. Let X be a reduced projective variety over an algebraically
closed �eld k, let ν : X → X be the normalization of X and let Y ⊆ X be
a reduced and irreducible singular subvariety such that:

(a) Y �⊆ ν(Sing(X));

(b) ν induces a morphism ν−1(Y )red → Y , which is étale over a non empty
open U ⊆ Y .

Then there exists a non empty open V ⊆ Y such that, for any closed point
P ∈ V and for each hypersurface H transversal to Y at P , we have a map

{branches o f X at P} ←→ {branches o f X ∩ H at P}

which is one to one and order preserving.
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Proof. Since X is normal and ν is a closed morphism, the closed subset
ν(Sing(X) has codimension ≥ 2; consider then the open non empty subset
W = X − ν(Sing(X)): we may restrict W in such a way that, for each closed
point P ∈ W , Y is the unique reduced irreducible singular subvariety which
contains P ; moreover we may suppose that P is regular for Y . By hypothesis
ν−1(Y )red → Y is étale over a non empty open U ⊆ Y . Put now V = U ∩ W
and A = OX,P for each closed point P ∈ V and let p be the prime ideal of A
corresponding to Y ; put moreover B = A/p and let f be an element of the
maximal ideal of A such that f = f mod p belongs to a regular system of
parameters. A and f verify the hypothesis of 1.1 and the thesis follows.

Remark 1.5.
(1) When codim(Y ) = 1, hypothesis (a) is always veri�ed, being
codim(ν(Sing(X)) ≥ 2.

(2) If char k = 0, there always exists an open non empty set U ⊆ Y such
that ν−1(U )red → U is étale. If char k > 0, such a U may be empty and
there are cases of subvarieties not well behaved with respect to transversal
sections, as the following example shows.

Example 1.6. Assume that k is an algebraically closed �eld of characteristic
p > 0. Put A = k[X, Y, Z ]/(Y p + X Z p) = k[x , y, z] = k[U p,UV , V ]
and W = spec(A). The non normal locus of W is the line L : y = z = 0
of multiplicity p on W , which corresponds to the ideal p = (UV , V ). Let
Q = (a, 0, 0), with a �= 0, be a closed point of L . Observe that A =

k[U, V ], A/p = k[U p ], A/pA = k[U ]; then the tangent cone at the point
Q is spec(k[X, Y, Z ]/(Y + bZ )p), where bp = a and, at Q , there is only one
branch of order p. Consider now the surface F : (a−X )(1+Y +bZ +Y Z p)+

Y (Y + bZ )p−1 = 0; F is L-transversal at Q and the corresponding section of
W has at Q one linear branch and one branch of order p − 1, having the same
tangent of multiplicity p. We have in fact:

(V , F) = (Y p + X Z p, (Y +bZ )p(1+Y +bZ +Y Z p)+Y Z p(Y +bZ )p−1) =

= (Y p + X Z p, (Y + bZ )p−1((Y + bZ )(1+ Y + bZ + Y Z p) + Y Z p))

Consider now the same example with char k �= p: in this case we obtain an
L-transversal section of W , which has, at Q , p linear branches corresponding
to p distinct tangents; hence the situation is similar to the case of char k = 0.

Assume now that the ground �eld k is algebraically closed of characteristic
0; let X be a hypersurface of P

n+1
k and let Y ⊆ X be an irreducible singular

subvariety of codimension 1. In these hypothesis Theorem 1.4 is a consequence
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of the classical theory of equisingularitydeveloped by Zariski in the early 1960�s
(see [13]).

Let P ∈ Y be a simple point of Y , put A = ÔX,P and let p be the prime
ideal of Y in A.

De�nition 1.7. ([15] 3.1) The elements y1, · · · , yn−1 of the maximal ideal m
of A are said Y -transversal parameters if their images in A/p form a regular
system of parameters.

Set A(y) = A/(Ay1 + · · · + Ayn−1 ) and call spec(A(y)) an Y -transversal
section of X at P ; observe that dim(A(y)) = 1 (see[15] 3.5), hence spec(A(y))

is a plane algebroid curve if it has no multiple components. Let Q be the generic
point of Y ; then spec(�Ap) is the only Y−transversal section of X at Q , since in
this case dim(�Ap) = 1 and hence the empty set is the only set of Y -transversal
parameters; moreover spec(�Ap) is a plane algebroid curve de�ned over the �eld
k(p).

De�nition 1.8. ([15] 4.1) X is said to be equisingular at P along Y if there
exists a Y -transversal section spec(A(y)) of X at P , such that spec(A(y)) is a
curve and such that spec(�A(y)) and spec(�Ap) have equivalent singularities at P
and at Q respectively.

Here equivalence of singularity of plane curves is intended in the sense
de�ned by Zariski (see [13]), by comparing the successive locally quadratic
transformations which resolve the singularities of the two curves at P and at Q
respectively.

Proposition 1.9. If X is equisingular at P along Y , then all Y -transversal
sections of X at P are curves with equivalent singularities at P .

Proof. See [15] 5.3.

It can be shown in numerous ways (see[14]) that given a hypersurface X ,
whose singular locus Y is non singular and of codimension 1, the points of Y
where X is equisingular form a dense open subset of Y .

Corollary 1.10. Let X and Y be as above, then there exists a non empty open
V ⊆ Y such that:

(a) for each closed point P ∈ V , there is a one to one correspondence
{branches of X at P}←→{branches o f any Y−transversal sect ion
o f X at P} ←→ { geometric branches of X at the generic point
o f Y }

(b) Theorem 1.4 holds for each closed point P ∈ V .
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Proof.

(a) Let y1, · · · , yn−1 be a set of Y-transversal parameters of A. By hypothesis
A is a Cohen-Macaulay ring; moreover dim(A) = n and dim(A/(Ay1 +

· · · + Ayn−1 )) = 1; hence y1, · · · , yn−1 form a regular sequence in A.
Since A is a local ring, y2, · · · , yn−1 is a regular sequence in A/Ay1 ; in
the same way y3, · · · , yn−1 is a regular sequence in A/(Ay1 + Ay2) and
so on. As X is equisingular along Y at x , the ring A/(Ay1 , · · · , Ayn−1)
is reduced; by [10] 6.5 it follows that A/(Ay1 , · · · , Ayn−i ) is reduced, for
each i = 2, · · · , n and that

c(A) ≤ c(A/Ay1) ≤ · · · ≤ c(A/(Ay1 , · · · , Ayn−1))

On the other hand, as a consequence of equisingularity, we have c(A/

(Ay1, · · · , Ayn−1 )) = c(�Ap ) and, shrinking if necessary the open set V ,
we have , by [2] 3.2, c(A) = c(�Ap), hence the conclusion follows by [2]
3.3(i).

(b) By the proof of (a), we have in particular that c(A) = c(A/Ay1 ).

Remark 1.11.

(1) 1.10 generalizes a classical result about �general points� of a multiple
curve on a surface (see e.g. [7] vol.II, pg. 640).

(2) Statement 1.10 does not hold in general in positive characteristic, since it
is based on a concept of equivalence of plane curve singularities which
works only in the zero characteristic case, because of pathologies due to
inseparability (see for example [1]).

2. Let P be a closed point of an algebraic variety X ⊆ P
n
k : we know (see

example 1.6) that the equality bX (P) = bX∩F (P) does not hold in general. In
this section we examine various situations from this point of view ; we discuss
in particular the case of isolated points.

Proposition 2.1. Let P ∈ X be any closed point, assume that k is an al-
gebraically closed �eld of any characteristic and let F be any hypersurface
through P and not tangent to any branch of X at P; then if the branches of X
at P are linear, X ∩ F has at P the same number of branches and they are all
linear.
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Proof. Put A =h
OX,P , let q be a minimal prime of A. Put B = A/q , let m be

the maximal ideal of B and let f ∈ m be an element corresponding to F . For
such an f put B � = B/ f B ; by hypothesis f is super�cial with respect to m and
e(B) = 1, hence e(B) = e(B �) = 1; therefore B � is regular, in particular it is the
ring of a linear branch. Put now A� = A/ f A; we have: e(A) = �qe(A/q) and
e(A�) = �q �e(A�/q �), where q (resp. q �) ranges in the set of minimal primes
of A (resp. A� ) (see [2] 2.7); since f is super�cial, we have e(A) = e(A�) and
hence b(A) = b(A�).

Lemma 2.2. Let k be a �eld of characteristic 0, (A,m) a local excellent
k-algebra, B a �nite normal A-algebra and let x1, · · · , xn be elements of
m; for λ = (λ1, · · · , λn) ∈ kn , put xλ = �λi xi ; suppose moreover m =

rad(x1, · · · , xn). Then:

(i) there is a non empty open set U ⊆ kn such that, if λ ∈U, spec(B/xλB) −

V (mB/xλB) is normal;

(ii) if moreover depth(BM ) ≥ 3, for each M ∈ max(B) and λ ∈ U, then
B ⊗A A/xλA is normal.

Proof. See[9] 3.4 and [5] 1.4, 1.8.

Theorem 2.3. Let X ⊆ P
n
k be a reduced irreducible variety over an alge-

braically closed �eld k of characteristic zero, such that dim(X ) ≥ 3 and let
ν : X → X be the normalization morphism. Let P ∈ X be an isolated sin-
gularity and assume that depth(OX ,Q) ≥ 3 for each Q ∈ ν−1(P). Let S be a
linear system on X , which has P as base point and which separates the tangent
vectors at P (see [12] 7.3, p. 152); then, for a general element F of S, there is
a map:

{branches o f X at P} ↔ {branches o f F at P}

which is one to one and order preserving.

Proof. If P is an isolated normal singularity the thesis follows immediately by
2.2(ii). If P is an isolated non-normal singularity put A := OX,P and let m
be the maximal ideal of A; since P is an isolated singularity, the conductor of
A in A is m-primary; moreover for a regular element f ∈ m, the conductor is
not contained in any minimal associated prime to f A and we deduce (as in the
proof of 1.1, part (a)), that the integral closures of (A/ f A)red and of (A/ f A)red
coincide. Let now m = (x1, · · · , xn); for λ ∈ kn , put xλ = �λi xi ; then by
2.2 there exists a non empty open set U such that for λ ∈U, A/xλA is normal,
therefore we have the conclusion by the correspondence

max(A) ↔ max(A/xλA)
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Nothing we can say if dim(X ) = 2 using the above methods; in this hy-
pothesis, however we can observe that something quite different might happen:
we present in particular a situation at which the equality bX (P) = bX∩F (P)

does never hold.

Proposition 2.4. Assume that k is an algebraically closed �eld of any charac-
teristic. Let X ⊆ P

n
k be a 2-dimensional integral cone and let P be its vertex.

Then, for any general hypersurface F of a suf�ciently large degree containing
P, X ∩ F has at P exactly e(OX,P) linear branches.

Proof. Put A = OX,P and let f ∈ OX,P be an element corresponding to an
hypersurface F passing through P ; let B = A/ f A. Then A/ f A is a 1-
dimensional ring and, since X is a cone, we have Gr(B) = A/ f̃ A, where f̃
is the initial form of f in A. By Bertini�s Theorem (see e. g. [11] 6.11 (2)
with d = 2) and by an argument similar to [4] Lemma 5, it follows that for
any general hypersurface F of a suf�ciently large degree passing through P ,
X ∩ F\P is a (geometrically) reduced scheme; this means in particular that
Proj Gr(B) is reduced. As it is well known, the closed points of Proj Gr(B) are
in 1-1 correspondence with the tangents to X ∩ F at P , hence, by [3] 2.3 and
2.4 (i), it follows that the branches of B are all linear and their number is e(B);
moreover e(B) = e(A), since f is super�cial.

Corollary 2.5. Assume that P ∈ X is an isolated singular point of the surface
X and that the projectivized tangent cone to X at P is integral, then for any
general hypersurface F of suf�ciently large degree passing through P, X ∩ F
has at P e(OX,P) linear branches.

Proof. Put A = OX,P ; it is suf�cient to apply the proof of 2.4 to the �cone�
spec(Gr(A)), since spec (Gr(A/ f A)) is the tangent cone to X ∩ F at P .

3. Using Bertini type theorems, we can study from a global point of view the
behaviour of branches of an algebraic variety X with respect to the general
element of a linear system on X in any characteristic, in particular we deduce a
result on the branches of a projective variety under hyperplane sections.

Theorem 3.1. Let X be a scheme of �nite type over an algebraically closed �eld
k of any characteristic and let f : X −→ P

n
k be a morphism. Then there exists

a non empty open subset U ⊆ (Pnk)
∨ such that, for each hyperplane H ∈U and

for each closed point x ∈ f −1(H ), the branches of X at x are in one to one
correspondence with the branches of f −1(H ) at x .
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Proof. Let P = P
n
k and let Z be the reduced subscheme of P×P

∨ whose set of
closed points is {(x , H ) ∈ P × P

∨|x ∈ H }. Consider the commutative diagram

X
v �� X

f �� P

X ×P Z
��

��

X ×P Z ��

��

Z

��

��
P

∨

where ν is the normalization morphism. Clearly, for each hyperplane H ⊆ P

corresponding to an element s of P
∨, we have, by the commutativity of the

diagram above: f −1(H ) ∼= Xs ∼= X ×P Zs and Xs ∼= X ×P Zs . By the theorem
of generic �atness and by [6] Lemma 4, there exists a non empty open U ⊆ P

such that, for each s ∈U , the induced morphism ν
|X s
: Xs → Xs is birational.

Moreover the �ber of ν
|X s
over a point x ∈ Xs can be identi�ed with the �ber of

ν over x ∈ X .
Now, by [17] Theorem 1.2, we may assume that, for each s ∈ U , Xs is

geometrically UB, or equivalently (see[8]I 3.5) that the normalizationmorphism

(Xs)red → Xs is a universal homeomorphism. This completes the proof.

Corollary 3.2. Let V be a scheme of �nite type over an algebraically closed
�eld k; let S be a �nite dimensional linear system on V and let V −→ P

n
k

be the rational map corresponding to S. Let D be a general element 1 of S,
considered as a subscheme of V . Then at each closed point x ∈ D, but perhaps
at the base points of S, the branches of X at x are in one to one correspondence
with the branches of D at x .

Proof. Let X be the complementary of the base locus of S . Then X is open
and we may apply Theorem 3.1 to the morphism X → P

n
k induced by S .

Corollary 3.3. Let X ⊆ P
n
k be a projective reduced variety over an alge-

braically closed �eld k of any characteristic. Then the number of branches
of X at its closed points is preserved by the generic hyperplane section.

Remark 3.4.

(1) If char k = 0 the last step of the proof of Theorem 3.1 follows also by
[6] Theorem 1 and the following Corollary 1 with P = Normal : in
this hypothesis, indeed, after shrinking the open set U if necessary, Xs
is normal, for each s ∈U .

1 General element means as usual element of a suitable dense open subset of the
projective space parameterizing S .
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(2) If char k = 0 Corollary 3.3 is a consequence of the local statements of the
�rst section. Let indeed H be a generic hyperplane; by [9] 5.2 we have
that H ∩ Nor(X ) ⊆ Nor(H ∩ X ), moreover H does not contain any
component of the non normal locus of X , nor it is tangent to any of them;
let Y be a singular subvariety of X and let V ⊆ X be an open set as in 1.3,
then V ∩ H is non empty ([5] 3.4) and the conclusion follows.

Note added in proofs. recently G. Castaldo and G. Ilardi gave analogous
results about hypersurrface sections in the case of ordinary multiplr subvarieties
of codimension one and char k = 0 (see Communications in Algebra, 29 - 7
(2001), pp. 2923�2933).
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