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ON THE HARTSHORNE-RAO MODULE OF CURVES

ON RATIONAL NORMAL SCROLLS

ROBERTA DI GENNARO

Dedicated to Silvio Greco in occasion of his 60-th birthday.

We study the Hartshorne�Rao module of curves lying on a rational
normal scroll Se of invariant e ≥ 0 in Pe+3.

We calculate the Rao function, we characterize the aCM curves on Se .
By using a result of Gorenstein liaison theory, we reduce all curves to two
kinds: those consisting of distinct �bers and those with a �few� of �bers. In
such a way, we �nd a set of minimal generators and the Buchsbaum index of
each curve on Se .

Finally, we give an algorithm to check if a curve is aCM or not and, in
the second case, to calculate the Rao function.

Introduction.

In the last years there has been a great interest on the Hartshorne - Rao
module H 1

∗ (IC) =
�

j∈ H 1(IC ( j )) of curves, because it gives many geometric

information. For curves in P
3 there are many results about both the Rao function

h1(IC ( j )) and the structure of the module starting with the book [6].
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Instead, the knowledge on this subject about general curves in projective
space of dimension ≥ 4 is very small and only on the Rao function (cf. [2] and
[11]). An idea to proceed is e.g. to consider curves lying on very well known
surfaces which is the idea of Giuffrida and Maggioni (cf. [3]) in the study of
the Hartshorne-Rao module of curves on a quadric or a cubic surface in P

3.
We begin our study of curves in projective space of dimension ≥ 4 lying on a
surface by considering a smooth reduced normal scroll Se of invariant e ≥ 0 in
P
e+3 (cf. [4]). The �rst one of these surfaces is the quadric in P

3 (for e = 0)
and our results coincide with those in the Appendix of [3].

On those particular surfaces we can get many information on the Rao
module of each curve. Our work proceeds as follows: after giving some general
results on curves on aCM surfaces in the �rst section, in the second one we
calculate the Rao function of a curve on Se, we get the optimal bounds for it
and we characterize the aCM curves on Se . In this section we do not use the
liaison theory as in [3] about the curves on the quadric. In the last section we
investigate the multiplicative structure of the Rao module using a theorem of
Gorenstein liaison theory (cf. [5]) which allows to �shift� the Rao module of a
curve and to reduce our study to two kinds of curves: those consisting of �bers
only and those having �few� �bers. In such a way we �nd a set of minimal
generators for non-aCM curves and their Buchsbaum index. Buchsbaum and
arithmetically Cohen Macauly property of divisors on rational normal scrolls of
any dimension are studied also by U. Nagel in [10], by M. Casanellas in her
PhD Thesis [1] and by Miyazaki in [9]. Our results, founded in a different way
arguing on minimal generators, are the same in the case of surfaces.

Finally we give an algorithm which, by giving as input the invariant e of
the surface and the two parameters of the curve, says if the curve is aCM and,
if the curve is non-aCM , gives the positive values of the Rao function and it
says the kind of simpli�ed curve we get by liaison.

We are very grateful to Prof. S. Greco for important help, to R. Notari for
interesting conversations about liaison theory and to the referee for his notes.

1. Something on curves on aCM surfaces.

Some notation 1.1. We work over an algebraically closed �eld k (of arbi-
trary characteristic) and we use the standard notation and results contained in
Hartshorne�s book [4]. S is an arithmetically Cohen - Macauly (brie�y �aCM�)
surface in the projective space P

n and C is a curve (that is a non trivial effective
divisor) on S of degree d .

We denote by IC and IC
∼= OS(−C) the ideal sheaves of C in P

n and S
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respectively, by H a general hyperplane section and by K a canonical divisor of
S ; pC and pS denote the arithmetic genus of C and S respectively. Moreover,
we omit the environment in the cohomolgy groups, e.g. we use H 0(OS( j ))
instead of H 0(S, OS( j )).

The Hartshorne�Rao module of C is the graded k[x0, . . . , xn]- module

H 1
∗ (IC) :=

�

j∈

H 1(IC ( j ))

We denote by �·� and �·� respectively the largest integer less or equal and the
smallest integer greater or equal to the number in the bracket.

Some general results 1.2. In this section we give some calculations to �nd, for
all j ∈ Z, the Rao function h1(IC ( j )) of C .

Remark 1.1. We begin observing that we consider aCM surfaces because this
property allows us to move our attention from the Rao module to the module�

j∈Z
H 1(OS(−C)( j )). In fact there is the isomorphism of graded modules

H 1
∗ (IC) ∼= H 1

∗ (OS(−C)),

as we prove by considering the long cohomology sequence of

0 → IS → IC → OS(−C) → 0

and by recalling that, since S is aCM, H 1
∗ (IS) = 0 = H 2

∗ (IS)

Now, our study consists to �nd the set of the values of twist where we can
calculate the Rao function.

Proposition 1.2. If the linear systems | j H − C| and |K + C − j H | are non-
effective, we have

h1(IC ( j )) = −pS +
1

2
( j H − C) · (K + C − j H ) − 1

= −pS − pC −
1

2
j 2 deg (S) +

1

2
j H · K + j deg (C)
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Proof. The �rst equality comes by the Riemann - Roch theorem applied to the
divisor j H − C of S :

h0(OS(−C)( j )) − h1(OS(−C)( j )) + h2(OS(−C)( j )) =

=
1

2
( j H − C) · ( j H − C − K ) + 1+ pS.

Now, h0(OS(−C)( j )) = h0(OS( j H −C)) = 0, since j H −C is non-effective
and similarly, by Serre duality, h2(OS(−C)( j )) = h0(OS(K + C − j H )) = 0;
so the thesis.
To prove the second equality, it is enough to note that pC = 1+ 1

2
C · (C + K ),

by the adjunction formula, and deg ( j H ∩ C) = C · j H = j deg (C). �

Now, to study the set of the values of � j� where at least one of the two linear
systems | j H − C|, |K + C − j H | is effective, we use the classical method of
characteristic series.

Proposition 1.3. If at least one of the linear systems | j H−C| and |K+C− j H |

is effective and irreducible and its intersection with the canonical divisor K is
negative, then h1(IC( j )) = 0.

Proof. We begin observing that if D is an effective irreducible divisor and
D · D > 2pD − 2, then H 1(OS(D)) = 0, as we get by considering the
cohomology sequence of 0 → OS(−D) → OS → OD → 0, tensorized by
OS(D), and recalling that H 1(OS) = H 2(IS) = 0. On the other hand, by the
adjunction formula, for a divisor D on S , D · D > 2pD − 2 iff D · K < 0.

So, if the hypotheses hold for j H − C , immediately

h1(IC ( j )) = h1(OS( j H − C)) = 0;

if these hold for the divisor K +C − j H , it is enough to apply Serre duality. �

The above Propositions 1.2 and 1.3 do not consider all possible value of j ;
indeed the linear systems | j H − C| or |K + j H − C| might be effective but
reducible. We will �ll up this gap for rational normal scrolls in the next section.

2. The Rao function of curves on a rational normal scroll.

From now on, S := Se ⊂ P
e+3 is a rational normal scroll of invariant

e ≥ 0, namely the embedding of a rational geometrically ruled surface Fe

(called Hirzebruch surface (cf. [7])) of invariant e via the very ample linear
system |C0+(e+1)f|, which is then the linear system of the hyperplane sections,
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where C0 is a line of sel-intersection C
2
0 = −e and f is a �ber, so f 2 = 0 and

C0 · f = 1 (cf. [4], ch. V). By this embedding, Se is an aCM surface.

Each divisor C on Se is linearly equivalent to aC0 + bf, with a, b∈ Z and
it is effective if and only if a, b ≥ 0 and a+b �= 0. The degree of C ∼ aC0+bf
is a + b, the arithmetic genus is pa(C) = 1+ ab − a − b − 1

2
ea(a − 1). The

canonical divisor is K ∼ −2C0 − (e + 2)f.

Finally, we recall that (cf. [4] V - Cor. 2.18) a general curve C ∼ aC0 +bf
on Se is irreducible if and only if C ∼ C0 or C ∼ f or a, b > 0 and b ≥ ae.

The �rst example of rational normal scroll is the quadric in P
3 (e=0) and

the results of this paper generalized to any invariant e ≥ 0 those appearing in
[3], Appendix C.

We note that some of the following results appear in [7], where the author
gives the values of h1(OS(D)), with D effective divisor on S , but we found a
misleading missprint.

Proposition 2.1. Let C ∼ aC0 + bf. We have:

1. If j ≤ min
�
b − ae + e − 2, a − 2,

�
b−(e+2)

e+1

��
, then h1(IC( j )) = 0;

2. If b − ae + e − 2 < j ≤ min
�
a − 2,

�
b−(e+2)

e+1

��
and α :=

� b− j−2
e

�
, then

h1(IC( j )) = (a − α − 1)
� e

2
(a + α) − b + j + 1

�
;

3. If min
�
a − 2,

�
b−(e+2)

e+1

��
< j < max

�
a,

�
b

e+1

��
, then

h1(IC ( j )) = j (a + b) − pC + 1−
1

2
( j + 1)[ j (e + 2) + 2];

4. If max
�
a,

�
b

e+1

��
≤ j < b − ae and α :=

� j−b
e

�
, then

h1(IC ( j )) = (a + α)
�
j − b + 1+

e

2
(a − α − 1)

�

5. If j ≥ max{a,
�

b
e+1

�
, b − ae}, then h1(IC( j )) = 0.
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Remark 2.2.

i) We note that if e = 0 there is no j such that b − ae + e − 2 < j ≤

min
�
a − 2,

�
b−(e+2)

e+1

��
; so we do not have to calculate α and we do not

consider the division by e.

ii) If C is a reducible curve, b − ae < 0 and so there is no j such that

max
�
a,

�
b

e+1

��
≤ j ≤ b − ae − 1 and h1(IC ( j )) = 0 for all j ≥

max
�
a,

�
b

e+1

��

Proof. Item 3. The interval of the third item corresponds to the case of
Proposition 1.2, so we have only to calculate j deg (C) = j (a+b) and j H ·K .

To complete this proof, we need Lemma 2.4 and 2.3 below.

Lemma 2.3. Let C ∼ b�f then H 1(OS(b
�f)) = 0

Proof. We argue by induction on b�. It is clear, by Riemann-Roch Theorem,
that H 1(OS(f)) = 0. Let b� > 1. By considering the cohomology sequence of

0 → OS(−f) → OS → Of → 0

tensorized by OS(b
�f), we get the thesis by induction, because O(f · b�f) = Of

and H 1(Of) = 0, since f is a rational curve. �

Lemma 2.4. If |a�C0 + b�f| is a reducible linear system on Se, a
� > 0 and

α� =
�
b�

e

�
, then

h1(OSe(a
�C0 + b�f)) = (a� − α�)

� e

2
(a� + α� + 1) − b� − 1

�

Proof. We begin by observing that, if b� �= 0, α� = � b�

e
� = max{i ≤ a�|iC0+b�f

is irreducible }. So, h1(OSe(α
�C0 + b�f)) = 0. The same, if b� = 0

h1(OSe(α
�C0+b�f)) = h1(OSe) = 0 This suggest to proceed by induction on a�.

Let a� = α� + 1. We argue on the sequence

(2.1) 0 → OSe(−C0) → OSe → OC0 → 0

By considering the long cohomology sequence of (2.1) tensored by OSe((α
� +

1)C0 + b�f) we get

· · · → 0 → H 1(OSe((α
�+1)C0+b�f)) → H 1(OC0 (((α

�+1)C0+b�f)·C0)) → 0
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because H 1(OSe(α
�C0 + b�f)) = 0 and H 2(OSe(α

�C0 + b�f)) = 0 by Serre
duality. So, we have only to calculate h1(OC0 (((α

� + 1)C0 + b�f) · C0)). By
Riemann - Roch theorem applied to the divisor (α� +1)C0 +b�f∩C0 on the line
C0 , we get

h1(OSe((α
� + 1)C0 + b�f)) = (α� + 1)e − b� − 1.

Now, let a� > α� + 1. By proceeding with the same argument, tensoring (2.1)
by OSe(a

�C0 + b�f), we get h1(OSe(a
�C0 + b�f)) = h1(OSe((a

� − 1)C0 + b�f)) +

h1(OC0 ((a
�C0 + b�f) · C0)) and by induction and some calculations, the thesis

follows. �

Now we can complete the proof of Proposition 2.1.

Item 1. and Item 5. The intervals of the �rst and the �fth items correspond
respectively to |K + C − j H | and | j H − C| being effective and irreducible
or, at most, to |K + C − j H | and | j H − C| being an union of �bers,

respectively when j = min
�
b − ae + e − 2, a − 2,

�
b−(e+2)

e+1

��
= a − 2 and

j = max
�
a,

�
b

e+1

�
, b − ae

�
= a.

So, in the �rst case, we can apply Proposition 1.3. To apply it, it is enough
to note, with a simple calculation, that for each irreducible curve D �= C0 ,

D · K < 0. Since K − j H + C = C0 if j = a − 3 =
�
b−e−2
e+1

�
and this value

is not in the interval of Item 1 and since j H − C = C0 if j = a + 1 =

�
b

e+1

�

and this value is not in the interval of Item 5, then we have the hypotheses of
Proposition 1.3 and the thesis follows.

Finally, in the cases of unions of �bers, we can apply Lemma 2.3.

Item 2. and Item 4. Recalling that K + C − j H ∼ (a − j − 2)C0 + (b − j e −

j − e − 2)f and j H − C ∼ ( j − a)C0 + ( j (e + 1) − b)f, the result follows
immediately by Lemma 2.4. �

Remark 2.5. We note that if the curve is �large� enough, that means if min
�
b−

ae+e−2, a−2,
�

b−(e+2)
e+1

��
≥ 0 the Rao function is zero in non-positivedegree.

With simple calculations, we give a characterization of aCM curves on Se .

Proposition 2.6. A curve C ∼ aC0 + bf on Se is aCM if and only if
(a − 1)(e + 1) ≤ b ≤ a(e + 1) + 1
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Proof. First, if (a−1)(e+1)−1 ≤ b ≤ a(e+1), we can write b = ae+a−e+l

with 0 ≤ l ≤ e. In this case, m = min
�
a − 2,

�
b−(e−2)

e+1

��
which compare in

Proposition 2.1 is m = a − 2, M = max
�
a,

�
b

e+1

��
is M = a and there is no

j such that b − ae + e − 2 < j ≤ m or such that a ≤ j ≤ b − ae. So we get
that C is aCM , noting that h1(IC (a − 1)) = 0.

If b = (a−1)(e+1), we have m = a−3 and M = a, so the previous arguments
hold, noting that h1(IC (a − 1)) = 0 = h1(IC(a − 2)).

If b = a(e + 1) + 1, we have m = a − 2 and M = a + 1, so the previous
arguments hold, noting that h1(IC (a − 1)) = 0 = h1(IC(a)).

Now, if b > ae+a+1, let b = ae+a+l with l ≥ 2. With a simple calculation
we get h1(IC (a)) = l − 1 �= 0, so C is not aCM .

Finally, if b < ae + a − e − 1, let b = ae + a − e − l with l ≥ 2. We get
h1(IC (a − 2)) = l − 1 �= 0) and again C is not aCM . �

Finally, we get the following optimal bounds.

Corollary 2.7. Let C ∼ aC0 + bf be a non-aCM curve on Se, then there are
the following optimal bounds:

1. If b < ae + a − e − 1

h1(IC ( j )) = 0 for all j ≤ b − ae + e − 1 and j ≥ a − 1

2. If b > ae + a + 1,

h1(IC ( j )) = 0 for all j ≤ a − 1 and j ≥ b − ae − 1.

Proof. It is enough to use Proposition 2.1 to get some bounds.

In the case b < ae+a−e−1, we get h1(IC ( j )) = 0 for j ≤ b−ae+e−2
and j ≥ a, since there is no j such that a ≤ j < b − ae. They are optimized
by verifying that the Rao function vanishes for j = b − ae + e − 1 and for
j = a − 1. Finally, by the arguments of proof of Proposition 2.6, these bounds
are optimal.

The same if b > ae + a + 1: by Proposition 2.1 we get h1(IC ( j )) = 0 for
j ≤ a − 2 and j ≥ b − ae. Again we verify that the Rao function vanishes for
j = a − 1 and for j = b − ae − 1, and h1(IC(b − ae − 2)) = 1. �
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3. Minimal generators.

In this section, we �nd a set of minimal generators for the Rao module of
a non-aCM curve on a rational normal scroll of invariant e ≥ 0.

The idea is to reduce the study of many curves to a certain number of
�bers on Se in general position, thanks to Theorem below originated from the
Gorenstein liaison theory (cf. [5]). Then, we reduce the study of the remaining
curves to some curves with a �little� number of �bers.

Theorem. (cf. [8], Corollary 5.3.4) Let S be a smooth, aCM subscheme of
P
n . Let V be a divisor on S, i.e. a pure codimension one subscheme with no

embedded components. Let V � be any element of the linear system |V + kH |,
where H is the hyperplane section class and k ∈ Z. Then, for 1 ≤ i ≤ dimV ,

H i
∗(V

�) ∼= Hi
∗(V )(−k)

Proposition 3.1. Let C ∼ aC0 + bf be a non-aCM curve on Se.

1. If b > a(e + 1) + 1 then

H 1
∗ (IC) ∼= H 1

∗ (IC� (−a))

where C � is the union of b� := b − a(e + 1) > 1 �bers on Se.

2. If b < (a − 1)(e + 1), then

H 1
∗ (IC ) ∼= H 1

∗

�
IC∗

�
−

� b

e + 1

���

where C∗ ∼ a�C0 + rf with a� = a −
�

b
e+1

�
≥ 2 and 0 ≤ r ≤ e and r is

the reminder of the division between b and e + 1.

Proof. Item 1. If the number of �bers in C is very �large�, C contains a
hypersurface section of Se. In particular, in our hypothesis on b, we have that
C ≥ aH . So the divisor C � = C − aH ∼ b�f is effective and by Theorem, we
get the thesis.

Item 2. In this case again C contains a hypersurface section, but we have to
calculate the degree of this hypersurface.

By considering the Euclidean division between b and e + 1, we can write
C ∼ aC0 +

��
b

e+1

�
(e + 1) + r

�
f where r is the reminder of the division. By

hypothesis, a >
�

b
e+1

�
, so C contains the hyperplane section of degree

�
b

e+1

�
.

Again, by liaison theory we get the result. �
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The following picture (Fig. 1) is an example on how the Rao module of
a �large� curve �shifted� to the left corresponds to the Rao module of distinct
�bers.
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Fig. 1: • = C ∼ 2C0 + 10f
◦ = C ∼ 6f

At this point, we can �nd the degrees of the minimal generators of the Rao
module of any curve C on Se .

We recall a consequence of a general result proved by E. Schlesinger
(cf. [12], Th. 3.2). Recall that the index of speciality of C is � :=
max{ j |h1(OC( j )) �= 0}.

Schlesinger�s Theorem. Let C ⊂ P
n be a curve with index of speciality � .

Then the Rao module of C does not have minimal generators in degree n, for
n ≥ � + 3

Theorem 3.2. Let C ∼ aC0 + bf be a non-aCM curve on Se. By Proposition
2.6, we have two possibilities:

1. If b > a(e + 1) + 1 then the Rao module has a set of minimal generators
consisting of b − 1 elements of degree a.

2. If b < (a − 1)(e + 1) and e > 0, then, denoting by r the reminder of the
Euclidean division between b and e + 1, the Rao module of C has a set
of minimal generators consisting of a −

�
b

e+1

�
− 1 elements, each one of

degree r − j e, for each 1 ≤ j ≤ a −
�

b
e+1

�
− 1.

Remark 3.3. We note that it is not restrictive to assume e > 0 in the second
item because on the quadric in P

3 (i.e. e = 0) the coef�cients a and b are
symmetric and so all possible cases are reconducted to the �rst item.
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Proof. By Proposition 3.1, it is suf�cient to prove that

1�. If C is the union of b ≥ 2 distinct �bers on Se, then the Rao module has a
set of minimal generators consisting of b − 1 elements of degree 0.

2�. If C ∼ aC0 + rf with a ≥ 2 and 0 ≤ r ≤ e, the Rao module of C has a
set of minimal generators consisting of a− 1 elements, each one of degree
r − j e, for each 1 ≤ j ≤ a − 1.

Item 1�. We begin noting that the index of speciality of b �bers on Se is � = −2.
In fact the index of speciality of a line is −2 and the cohomology distributes the
direct sums, so, since we can consider C as a disjoint union of lines, the index
of speciality of C is also −2.

So by Schlesinger�s Theorem, there are no generators in degree greater or
equal than 1.

By Corollary 2.7, we get that the minimal generators can have just degree
0 and since h1(IC ) = h0(OC) − 1 = b − 1, we get b − 1 generators.

Item 2�. First of all, we recall (see Corollary 2.7) that the non trivial components
of the Rao module of the curve C ∼ aC0 + rf occur in degree greater or equal
than r − ae + e and less or equal than a − 2.

Now, the proof proceeds by induction on a.
To prove that the Rao module of the curve 2C0 + rf has just one minimal

generator in degree r − e, we twist the sequence

(3.1) 0 → OS(−C0) → OS → OC0 → 0

by OS(−C0 − rf).
Since C0 + rf is aCM (Proposition 2.6), we get

0 → H 0
∗ (OS(−2C0 − rf)) → H 0

∗ (OS(−C0 − rf)) → H 0
∗ (OC0(e − r)) →

ϕ
→ H 1

∗ (OS(−2C0 − rf)) → 0

Now, H 1
∗ (OS(−2C0 − rf)) =

�
j≥r−e H

1(IC( j )).
Since C0 is a line in P

n , with n = e + 3 we can choose a homogeneous
coordinate system such that C0 has the equations x2 = . . . = xn = 0. So,
if we denote t0 and t1 the restrictions to C0 of x0 and x1 respectively, we
get H 0

∗ (OC0(e − r)) ∼= k[t0, t1](r − e), the k−module of the homogeneous
polynomials in two variables shifted of the degree r − e. This module has a
unique minimal generator Gr−e in degree r − e, so also H 1

∗ (OS(−2C0 − rf))
has a unique minimal generator F−1 = ϕ(Gr−e) in degree r − e, because ϕ is
surjective.
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The same arguments allow us to conclude the proof.
In fact, using again the sequence 3.1 tensored by OS(−(a−1)C0 −rf), we

get

· · · → k[t0, t1](r − e(a − 1))
ϕ
→ H 1

∗ (OS(−aC0 − rf)) →

ψ
→ H 1

∗ (OS(−(a − 1)C0 − rf)) → H 1
∗ (OC0 ((a − 1)e − r)) → · · · ,

We note that H 1
∗ (OS(−(a − 1)C0 − rf) is non trivial in degree greater than

r − (a − 2)e, but in this interval H 1
∗ (OC0 (r − (a − 1)e)) is trivial, because its

non-trivial components occur only in degree less than r − (a − 1)e− 1; so ψ is
surjective.

Now, we assume by induction that H 1
∗ (OS(−(a−1)C0 − rf)) has minimal

generators Gr− je of degree r − j e for 1 ≤ j ≤ a − 2.
We are going to show that the minimal generators of H 1

∗ (OS(−aC0 − rf))
are the image Fr−(a−1)e by ϕ of the unique minimal generator Gr−(a−1)e of
k[t0, t1](r −e(a−1)) in degree r −e(a−1) and, for each 1 ≤ j ≤ a−2, Fr− je

such that ψ(Fr− je) = Gr− je (such elements exist because ψ is surjective). It is
clear that Fr−(a−1)e, . . . , Fr−e generate H

1
∗ (OS(−aC0 − rf)).

Now, Fr−(a−1)e generates ker ψ and so it is linearly independent by the
other generators; moreover, the generators Fr− je for 0 ≤ j ≤ a − 2 are
independent, because such are the Gr− je for 0 ≤ j ≤ a − 2; then none of
the above generators can be omitted. �

Remark 3.4. We can get easily that the index of speciality of a curve C ∼

aC0 + rf with a ≥ 2 and 1 ≤ r ≤ e is � =
�
r−e−2
e+1

�
= −1− δ0,r , where again

δi, j is the Kronecker symbol. So, by Schlesinger�s Theorem the Rao module
of C is generated in degree less or equal than 1 − δ0,r . In Theorem 3.2 we got
that the greatest degree of a minimal generator is r − e ≤ 0, so the bound of
Schlesinger�s theorem is non optimal in this case.

We give a picture (Fig. 2) to show the difference between the Rao module
of a multiple of a �ber and a multiple of C0 on a scroll with invariant e. We can
see that the Rao functions coincide iff e = 0, that means iff we consider two
�bers on a quadric in P

3.
In Fig. 3, we show the Rao function of a curve of the �second� type, which

has a �little� number of �ber and of an union of �bers.
We can note how the slope of the Rao function of this kind of curves

increases by 1 every e steps while j increases by b − ae + e − 1 to −1. In
these degrees we �nd a new minimal generator.

In Figure 4 we put the Rao function of an union of �bers.
We can note that the slope of this Rao function decreases by 1 every e steps

while j decreases by b − 1 to
�

b
e+1

�
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Fig. 2: • = C ∼ 2C0
◦ = C ∼ 2f
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Fig. 3: • = C ∼ 5C0 + 2f; e = 2
◦ = degree of minimal generators

We denote by ρ and σ respectively the smallest and the largest integer such
that h1(IC ( j )) �= 0 and diam(C) := σ −ρ +1; moreover the Buchsbaum index



432 ROBERTA DI GENNARO

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ ...........
....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

...............

• •

•

•

•
•

•

•

•

•

•

•
•

.......

.......

.......

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......


Fig. 4: • = C ∼ 12f; e = 2

of C is the smallest integer k(C) such that (x0, . . . , xn)
i · M(C) = 0. If the

Buchsbaum index is 1 the curve is called arithmetically Buchsbaum (aB ). In
this notation we can prove the following.

Corollary 3.5. For a non-aCM curve C ∼ aC0 + bf, the Buchsbaum index is
the maximum, that is diam(C). In particular C is aB if and only if

b = (a − 1)(e + 1) − 1 or b = a(e + 1) + 1.

Proof. As in the previous theorem and with the same notation, we reduce our
study to the curves bf and aC0 + rf with 0 ≤ r ≤ e. For the �rst ones the result
is known. For the last ones, we are going to show that the minimal generator
Fr−(a−1)e , generates h

1(IC (σ )). In fact, we note that in this case ρ = r−(a−1)e
and σ = a − 2 and, since h1(IC−C0 (a − 2)) = 0, H 1(IC (a − 2)) ⊂ ker ψ , so
it is generated by Fr−(a−1)e .

Finally, to �nd the relations between a and b such that diam(C) = 1 it is
enough to calculate ρ and σ by Corollary 2.7. �
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Finally, we give an algorithm such that, by giving as input the invariant e
and the coef�cients a and b, says if the curve aC0 + bf on Se is aCM or not;
in the second case, it says the kind of curve we get by shifting the Rao module
and the positive values of the Rao function.

In the algorithm, we use the note about the slope of the Rao function.

Program Rao function of C ∼ aC0 + bf
integer a, b, e, d, j, i, m, h1, int
read a, b
read e
if b ≤ a ∗ (e + 1) + 1 then

if b ≥ (a − 1) ∗ (e + 1) then

print ‘‘C is aCM’’

else

int := b/(e + 1)
b := b − int ∗ (e + 1)
a := a − int
j := b − a ∗ e + e − 1
m := 0
print �The Rao function of C is the same of the curve�, a, �C0+�,
b, � f shifted of�, int , �units�.

repeat

m := m + 1
j := j + 1
for i = 1, e
h1 := h1+ m
print �The Rao function in degree� j �is� h1
j := j + 1

endfor

until m < a − 1 and j < 0
d := a + b − 1
e := e + 2
for i = 1, a − 2

h1 := h1− i ∗ e + d
print �The Rao function in degree� j �is� h1

endfor

endif

else

int := b/(e + 1)
if b − int ∗ (e + 1) > 0 then int := int + 1
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j := b − a ∗ e − 2

b := b − a ∗ (e + 1)

print �The Rao function of C is the same of the union of�,

b,�distinct �bers shifted of�, a, �units.�

m := 0

repeat

m := m − 1

for i = 1, e

h1 := h1− m

print �The Rao function in degree� j �is� h1

j := j − 1

endfor

until j > int

int := b/(e + 1)

if b − int ∗ (e + 1) = 0 then int := int − 1

h1 := 0

j := a

e := e + 2

b := b − 1

for i = 0, int

h1 := h1− i ∗ e + b

print �The Rao function in degree� j �is� h1

j := j + 1

endfor

endif

end
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