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ON SEMI C-PERIODIC FUNCTIONS OF TYPE I AND
APPLICATIONS

R. ALDRSONI - G. M. N°GUEREKATA

In this paper, we study the (newly introduced) class of functions called
semi-c-periodic functions of type I with values in a Banach space. We
first investigate their basic properties, including a convolution result and
invertibility of abstract convolution operators on suvh function space. We
prove that an important subclass of such functions is a Banach space under
the sup-norm. We then study the existence and uniqueness of semi-c-
periodic mild solutions for both autonomous and non-autonomous linear
evolution equations. We achieve the existence results using the Banach

fixed point theorem and the method of reduction.
1. Introduction

Periodicity is a key concept in mathematics, with applications spanning multiple
disciplines such as physics, engineering, biology, and economics. It is essential
for modeling wave behavior, oscillatory motion, biological rhythms, and eco-
nomic cycles. Due to its importance, various extensions of periodicity have
been developed to broaden its use, including Bloch periodic, almost periodic,

pseudo-periodic, c-periodic functions, etc.
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Bloch periodicity was studied by Hasler and N’ Guérékata [11], generalizing
both periodic and antiperiodic functions. See for instance [8] for recent and
deeper developments.

The concept of almost periodicity is due to Bohr [20]. Bohr’s contribu-
tions established the groundwork for numerous extensions of periodicity, which
have been applied in harmonic analysis, differential equations, and mathemati-
cal physics.

An important extension is the one of c-periodicity, also referred to as (w,c)
periodicity, introduced by Alvarez et al. [1], see also [1, 2, 15, 17]. This concept
broadens the idea of periodicity by permitting a function to display periodic-
like behavior with a multiplicative factor rather than an exact repetition. c-
periodic functions have been extensively studied with applications to differential
equations and functional analysis, as they naturally emerge in various practical
and theoretical settings, see [1, 2, 13].

An additional refinement of this concept is the one of semi-c periodic-
ity. It offers a more adaptable framework for examining functions that display
periodic-like behavior but permit perturbations or variations. This generaliza-
tion is especially valuable in applied mathematics, where strict periodicity can
be too inflexible to represent real-world phenomena accurately, see [12].

In this work, we consider a complex Banach space X with norm || - || and
consider continuous functions f : R — X. Such a function f(¢) is called c-

periodic if it satisfies:

ft+P)=cf(),
where P > 0 is the c-period and ¢ # 0 is a constant possibly complex scaling
factor. If ¢ = 1, the function is classically periodic, with period P. If ¢ = —1,
the function is anti-periodic, meaning it alternates in sign every P. A c-periodic

function (also called (P,c)-periodic function) can be expressed as:

F() ="u(t),

where u(t) is a periodic function with period P. This means that instead of sim-
ply repeating with a constant factor, the function’s amplitude may grow or decay
over time, making it more flexible for mathematical modeling. Alvarez, Gomez,

and Pinto [1] analyzed the fundamental properties of (P,c)-periodic functions,
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demonstrating their significance in fractional integro-differential equations. Fur-
thermore, research by Larrouy and N’Guérékata[16] highlighted their role in
ergodic processes and biological models. This concept enables the study of
periodic functions under perturbations, making it highly relevant in functional
analysis and applied mathematics. While c-periodicity requires an exact peri-
odic structure with a multiplicative factor, semi-c-periodicity introduces a re-
laxed condition, allowing approximate periodicity. A function f: R — X is

semi-c-periodic if:
Ve > 0,3P > O such that || f(t+mP) —c"f(t)|| <€ VmeZNVteR. (1)

This concept, introduced by Khalladi et al. [12], is particularly useful in ana-
lyzing functions that exhibit near-periodic behavior but allow for perturbations.
Clearly every c-periodic function is also semi-c-periodic. Still, the converse is
not always true unless additional constraints, such as uniform convergence, are
imposed [18]. This distinction makes semi-c-periodicity particularly relevant in
settings where periodicity is disturbed by external influences.

Several research works have advanced the development of semi-periodicity
and its applications. For example, the book M. Kosti¢’s [13] provides a rigorous
examination of various types of periodic functions, including semi-c periodic
functions, discussing their properties, functional spaces, and applications in dif-
ferential equations. The paper by M.T. Khalladi, M. Kostié¢, M. Pinto, A. Rah-
mani, and D. Velinov, see [12], establishes the equivalence of semi-c-periodicity
and c-periodicity when the absolute value of c is not equal to 1, analyzing their
fundamental properties. Moreover, the notable contribution from H. Ounis and
J.M. Sepulcre, see [20], where the study of semi-c- periodic functions extends
to the complex plane, exploring their relationships with almost automorphic
and c-uniformly recurrent functions and addressing an open problem related to
semi-c-periodicity in the real domain. Despite advances in the study of semi-
c-periodic functions, there are still gaps in the understanding of their stabil-
ity in functional spaces and their applications in differential equations, which
makes this study of particular importance. Driven by these contributions, this
paper seeks to enhance the understanding of semi-c-periodic functions, concen-
trating on their theoretical properties and applications in differential equations.

It specifically examines their stability under operations like convolution while
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also establishing new findings regarding the existence and uniqueness of semi-
c-periodic solutions in differential equations.

The structure of the paper is as follows. In Section 2, we recall the definition
of semi-c-periodic functions of type I and present several basic properties of this
class of functions. We also define a suitable norm and prove that the resulting
space is a Banach space. In Section 3, we investigate the convolution of semi-
c-periodic functions and prove that the space is closed under convolution. In
Section 4, we apply the theory to investigate the existence and uniqueness of
semi-periodic mild solutions for both autonomous and non-autonomous linear

differential equations.

2. Fundamental Properties of Semi-c-Periodicity

In this section, we recall the fundamental definition of semi-c-periodic functions
with values in Banach spaces and study some of its properties.

Throughout the paper, (X,||-||) will denote a complex Banach space and ¢ €
C—{o0}.

Definition 2.1. [3, 5] A continuous function f : R — X is said to be c-periodic
if there exists P > 0 such that f(t + P) = cf(¢) for all r € R. Here P is known
as a c-period of f.

Definition 2.2. [13] (Semi-c-periodicity of type I)
Let I =[0,00) and S =N or /=R and S = Z. A continuous function f: I — X

is said to be semi-c-periodic of type I if:
Ve>0,3P>0,YmeS Vel |f(t+mP)—c"f(t)] <e.
P is aclled a semi-c-period of f.

Example 2.3. [12] Let p and ¢ be odd natural numbers such that p — 1 =
0(mod g), and let ¢ = ¢(/9), The function

N (it/(2ng+1))
f)=Y S5, 1eR

2
n=1 n

is semi-c-periodic because it is the uniform limit of [ - (1 4 2g)...(1 + Ng)]
-periodic functions
N (it/(2ng+1))
fu(t) = 267, teR(NeN)
n=1

n2
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Definition 2.4. [13] (Semi-c-periodicity of type II)
Let I =[0,00) and S=Nor /=R and S = Z. A continuous function f: I — X
is said to be semi-c-periodic of type II if:

Ve>0,3P>0,YmeS,Vrel,|c"f(t+mP)—ft)| <e

We will assume that ¢ # 1 and ¢ # —1.
Notation: We will denote by Sp.(1,X) the space of all functions f : I — X.that

are semi-c-periodic of type L.

Remark 2.5. A semi-c-periodic function may be unbounded ([12]). Semi-c-
periodic functions, as defined in this paper, are not necessarily bounded unless
otherwise stated.

Indeed, without additional conditions, such as boundedness imposed explic-
itly, a semi-c-periodic function may exhibit unbounded behavior. For example,
a function f : R — X that satisfies the semi-c-periodic condition for |c| # 1 can
grow exponentially, or logarithmically, or polynomially and be unbounded.

Therefore, in our analysis, we restrict attention to semi-c-periodic functions
that are bounded unless otherwise stated. This restriction is natural and suffi-
cient for the results concerning completeness and convolution in Sp. (R, X).

In the present work, we will consider only semi-c-periodic functions of type

We first start with characterizing c-periodic functions, Proposition 2.2 [1].

Proposition 2.6. A continuous function f : R — X is c-periodic with c-period
P if and only if f(r) = ¢'/Pg(r) where g is a periodic function of period P.

Theorem 2.7. [13] Let |c| = 1. A continuous function f : R — X is semi-c-
periodic if and only if there exists a sequence of c-periodic functions (f,) such
that lim,,_,e f,,(t) = f(¢) uniformly in R.

Theorem 2.8. Suppose that f, f, f> are semi-c-periodic and y, & are scalars,
then the following are also semi-c-periodic:

@) vfi+6f
(i) Af where A is a bounded linear operator X — X

(i) fz(z) :== f(t+7), T is a fixed real number.

Proof. Obvious. O
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Theorem 2.9. Let |c| < 1 and f, be semi-c-periodic functions, n = 1,2, ... such
that lim,_,e f,,(t) = f(#) uniformly in 7 € R. Then f is semi c-periodic.

Proof. Let € > 0 be given. Then there exists N € N such that
Ifu) = f(O)]| <&, VreR, ifn>N.
Since f;, is semi-c-periodic, there exists P > 0 such that
| fu(t+mP) =" fu(t)|| <&, VtERVmEZ.
Thus, we have:

1f (t+mP) = f(O)| < [1f (t +mP) = fu(t +mP)]|
+ [ falt +mP) =" fu (1)
+le" falt) = " f (D).

Applying the given bounds:
|f(t+mP)— f(t)|| <e+e+]|c|"e <3 e.
Since € is arbitrary, it follows that f is semi-c-periodic. O

Theorem 2.10. Let |c| > 1 and suppose that f : R — C is semi c-periodic with
inf|f(z)| > y > 0. Then the function g : R — C defined by g(r) = % is also

semi c-periodic.
Proof. Let € > 0 be given. Then there exists P > 0 such that:

If(t+mP) —"f(1)| <€, VteRYmeL.

Thus, we have:

1 1
Oll= Hf(t+mP) 0
_ ’ f&+mP)—c"f(t)
" f(t)f(t +mP)
< Wt +mP) —c"f{B)]|

B |c|my?

1g(t+mP) —c"g
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Since || f(t +mP) — " f(t)]| < &, it follows that:

m £
(e +mP) =g} < -

Since € is arbitrary, this proves that g is also semi-c-periodic.

Lemma 2.1. Let P >0, t € [0,P], and m € Z\ {0}. Define
em(t) =€/ P,
Then for all such m and t € [0, P], we have
et <ep(—t) <e.

Proof. We consider two cases. If m > 0, then —¢/(mP) € [~1/m,0], so e~! <
e~ t/mP) < 1. 1f m < 0, then —t /(mP) > 0 and still bounded above by 1/|m|, so
again e~! < e~"/("P) < ¢ Therefore, for all m # 0 and 1 € [0, P], the inequality
holds. O

Now for f € Sp.(R,X), define

A= sup sup |len(=2)f()l].-

meZ\{0} t€[0,P]
Proposition 2.11. || -||* is a norm on Sp. (R, X).

Proof. Clearly, for any scalar A € C,
[Af1[* = sup sup [|c"(=£)Af(1)]]
m#0¢€(0,P]

=|A[sup sup [c"(=1)f ()]l
m#01€0,P]

= Al

The triangle inequality follows from that in X:
I +&ll" = sup sup [|c"(=)(f (1) + (1))l
m#0t€[0,P]

<sup sup (|[¢"(=2)f ()] +[[<"(=1)g(@)])
m#01€(0,P]

<P+ llell”
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Now suppose || f||* = 0. Then,
lc™(—=t)f()|| =0, forallme Z\{0},t<[0,P],

so f(t) =0forallz € [0,P]. Let 7 € [P,2P]. Then r = T+ P for some T € [0, P).
By semi-c-periodicity of f, for every € > 0,

If(6) —cf(7)] < e.

But f(1) =0, so || f(z)|| < € for every € > 0. Hence f(t) = 0. Repeating this
argument, we conclude that f(r) = 0 for all # > 0. The case t < 0 follows
similarly using negative shifts. Thus, f = 0, and we have shown that || - [|* is a

norm. H
We show using the above lemma, equivalence of norms.

Proposition 2.12. The norms

[fllp == sup [[f(£)] and [[f[]*:= sup sup [|c"(=2)f(1)]]

re(0.7] meZ\{0} re[0.P]

are equivalent on Sp. (R, X).

Proof. From Lemma 2.11, for all m € Z\ {0} and ¢ € [0, P], we have:

é\lf(t)ll <" (=0)f DI < el f@)ll
é sup [[f(0)] < sup [lc"(=0)f(1)[| < e sup [If(1)]]

r€[0,P] r€[0,P] r€[0,P]

1
~|Ifllp< sup sup [[c"(=2)f(1)] <elfllr
e meZ\{0}t€[0,P]

1
SIAlle < AT < ellfllp

and hence the norms are equivalent. 0

Theorem 2.13. Let |c| < 1. The space
BS,.(R,X) :=Sp.(R,X)NBC(R,X)

is a Banach space when equipped with the supremum norm.
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Proof. Let (f,) C BSp(R,X) be a Cauchy sequence. Then (f,) is a Cauchy
sequence in BC(RR,X), so there exists f € BC(R,X) such that f, — f uniformly
on R.

Let € > 0. Then there exists N € N such that for all » > N, we have

I fu(t) — F(O)| < g, V¢ €R.

Since each f, € Sp.(R,X), there exists P > 0 such that forallm € Z, r € R,
€

| fu(t +mP) — " fu(2)]| < 3

Now consider:
1f(+mP) =" f(@)|| < || f (£ +mP) — fult +mP)|
+ | fu(t +mP) — " fu (1)
" fult) =" f (1)
<SS - )l

3
JELELE,
-3 3 3 7

Hence, f € Sp.(R,X), and since f € BC(R,X), we have f € BS,.(R,X).

Therefore, BS,(R,X) is complete with respect to the supremum norm. [

2.1. Uniformly close c-periodic functions on R, with |c| # 1

In this section we will analyze under which conditions c-periodic functions f;
and f, with |c| # 1 can be uniformly close, that is there exists M < oo so that for
all z: |f1(z) — fo(r)| < M. We will argue that in all cases f; = f>.

Proposition 2.14. Suppose |c| # 1 and that f} and f, are c-periodic, uniformly
close, and have the same period P. Then f| = f5.

Proof. Let P, P; be the c-periods of f1 and f, respectively. Without loss of
generality we may assume that P = P, = P = 1. Using Proposition 2.6 we can
write these functions as:

filt) = cgit),

with each g; periodic of period P = 1. Since f; and f, are uniformly close there
exists M < oo such that
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|fi(t)— fo(t)| <M forallt

Therefore
g1(t) —ga(t)| < c'M

If |c| > 1 we conclude that as t — oo,

21(t) — g2(t)| tends to 0. Since both g;
and g, are periodic with period P = 1, we conclude that |g;(t) — g2(z)| = O for
all ¢t and that therefore f| = f>.

If |c| < 1 we conclude that as t — —oo |g;(t) — g2(¢)| tends to 0. Since both g,
and g, are periodic with period P = 1 we conclude that |g;(¢) — g2(¢)| = O for
all ¢t and that therefore f| = f>.

0

We next consider the case where P; and P, are different.

Proposition 2.15. Suppose |c| # 1 and that f; and f, are c-periodic, uniformly
close, with different periods P, # P». Then f| = f, =0.

Proof. Without loss of generality we may assume that P, = 1 and that P, > P;.

Using Proposition 2.6 we can write these functions as:
i) =cgi(),
with g, periodic of period P, = 1, and
ft)=cPrai (o),

with g periodic of period P, > 1. Therefore the difference between g; and g»
is bounded, i.e. there exists k > O for that for all ¢:

lg1(r) —ga2(1)| <k

With f and f, uniformly close there exists M < oo so that

|fi(t)— fo(t)| <M forallt

Suppose |c| > 1, then we obtain

lg1(t) — /P go ()| < |e| "M
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Since P, > 1 and since g is bounded we see that as r — oo, g;(¢) tends to 0.
Since g; has period 1, we conclude that g;(¢) = O for all 7 and that therefore
f1(¢) = 0 for all ¢. But then:

P2 (1) < M

and therefore
82(0)| < |e| /"M

Letting t — oo we again conclude that also g>(¢#) — 0 and therefore as g» has
period P, also g»(7) = 0 for all r. We conclude that also f>(r) = 0 for all 7.

If |c| < 1 we can let t — —co and draw the same conclusions: fi(t) = f2(t) =
0 for all 7.

2.2. Convolution

Theorem 2.16. Suppose that g € L' (R) has compact support and f is c-periodic
(resp. semi-c-periodic). Then the convolution F = f * g defined by

Fi)=(F+0)0):= [ ft-s)
is also c-periodic (resp. semi-c-periodic).
Proof. We first note that under the above assumptions, F(¢) is well-defined.
Suppose that f is c-periodic with c-period P . Then f(r+ P) = ¢f(¢) for all t and
F(t+P)= /w ft+P—s)g(s)ds = /w cf(t—s)g(s)ds = cF(r)

Therefore F = f * g is again c-periodic with c-period P.
Now suppose f is semi c-periodic. Since g has compact support, there exists
M < oo for which [7_ |g(s)|ds < M.

Let € > 0, and choose &€ > 0 so that €M < €. Then there exists a semi-
period P so that for all integers m:

f(t+mP)—c"f(1)|| <&

Then for all ¢ and integers m:

oo

Ft+mP)— "F(1) = / (F(t +mP—s)— " f(t —5))g(s)ds

—oo
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Therefore
P+ mP) = PO < [ llf(e+mP—s) = (e =5)ll]g(5)lds

|F(t +mP) — F(1)|| < s'/ lg(s)|ds < &M < &

Therefore the convolution is again in Sp. (R, X).
O

Remark 2.17. Let ¢ € L'(R) with compact support and A € C. Consider the
operator A, , defined by

Ajpu:=Au+Qxu

Then it is clear that Ay (Sp.(R,X)) C Sp.(R,X). Moreover A, , acts contin-
uously in Sp.(R,X), that is there exists a constant C > 0 such that

1A% pull < Cllull,Vu € Spe(R, X).

Let’s now present a result on the invertibility of the convolution operators in

Spe(R,X). Consider the Fourier Transform.

a(g):=2A+¢(S)

where @ (&) is the Fourier transform of the function @. a(§) is the symbol of the
operator Ay ,. And since limg_,., (&) = 0, the symbol a(§) is a well defined
continuous function on R = RU {0}, and a(e) = A.

Now we state and prove

Theorem 2.18. Suppose ¢ € L'(R). Then the operator A; ,, is invertible in
Spe(R,X) ifa(&) # 0 forall & € R.

Proof. Suppose a(&) # 0 for all £ € R. Then the function % is well-defined

on R and in view of the classical Wiener’s theorem, we get

AR RG]

where y € L' (R). It is easy to check the A, L is the inverse to the operator A,
which acts in Sp.(R,X) in view of the above remark.
O
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Remark 2.19. The boundedness result for semi-c-periodic functions can be ex-
tended to all |c| < 1, as outlined in Kosti¢’s framework on semi-c-periodicity.

This extension holds under the given conditions of the space.

Theorem 2.20. Consider the Volterra integral equation. Suppose that a(s) €
L'(R) decays exponentially fast: there exist constants C > 0 and 4 > 0 such
that:

lot(s)| < Ce bl

Suppose that & (&) — 1 never vanishes and suppose that

/ lo(s)|ds < 1,

If f(t) € Sp.(R,X), then the solution u(t) of the equation

ﬂ+/:u0—®a@ﬁh

Proof. We define the operator F' as:

1) —l—/_o;u(t —s)o(s)ds.

We analyze the difference between Fu(t) and Fv(r):

exists and is in Sp. (R, X).

|Fu(t)—Fv(t)|| = H/Z(u(l—s) —v(t—s))a(s)ds| .

By applying the norm inside the integral:
HFMOW—FWﬂHf{[:HuU—W)—VO—WNHa@Nd&
Let C = [*_|o(s)|ds then C < 1 and:
[Fu = Fvljoo < Cllut = vl|eo-

Therefore F is a contraction. Since F is a contraction mapping, Banach’s Fixed

Point Theorem guarantees the existence of a unique fixed point u*, meaning:

w (1) = Fu'( +/ (t — s)a(s)ds.

Thus, u*(r) is the unique solution to the given integral equation.
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3. An application to some evolution equations

In this section, we consider semi-c-periodic mild solutions of abstract differen-

tial equations. Recall that a mild solution of the equation

u (1) = Au(t) + £ (1)

is a function u(¢) defined by the variation of constants formula

)= [ Ta-9)f(5)ds

where (7'(t));>0 is the Cp-semigroup generated by the operator A. A semi-c-
periodic mild solution is one where f € Sp.(R,X) and the resulting function u
also belongs to Sp.(R,X).

Definition 3.1. [14] A strongly measurable family of operators (7'(¢));>0 C
B(X), the space of bounded linear operators on X, is said to be uniformly inte-
grable if ||[7][|: = | 7(1)dr < o

Consider the linear differential equation
u'(t)=Au(t)+ f(t), teR, A €C ()
Theorem 3.2. If Re A <0 and f € Sp.(R,X), then Eq.2 has a unique solution
in Sp. (R, X).

Proof. It has been proved (cf. for instance [18]) that Eq.2 has a unique solution

of the form

u(t) = /t A f(s)ds, 1 €R

—oo

Let € > 0 and let P > 0 be so that
||f(t+mP)—c"f(t)|| <€, allme Z,teR.
Then

t t
Hu(t—l—mP)—cmu(t)H S/ eRel(tfs))Hf(s_{_mP)_cm (s)Hds < 8/ e\Re/l\(tfs))ds
Therefore for all m € Z,t € R,
£
Re A|

and we conclude that u(z) is also semi-c-periodic. The proof is complete. O

[Ju(t +mP) —"u(t)|| <




ON SEMI C-PERIODIC FUNCTIONS OF TYPE I AND APPLICATIONS 785

Theorem 3.3. Assume that the operator A generates an uniformly integrable
semigroup (7'(¢);>0). Then for each f semi-c-periodic, there exists a unique

semi-c-periodic mild solution of the equation
u'(t)=Au(t)+ f(t), teR 3)

Remark 3.4. Note that a function u € C' (R, X) is called a strong solution on R
of Eq.(3) if u € C(R,D(A)) and Eq.(3) holds on R. If merely u(¢) € X) instead
of D(A), we say that u is a mild solution of Eq.(3), and can be represented by
u(t) = [*T(t—s)f(s)ds (cf. for instance [14]).

Proof. Let u(t) be a mild solution of the above equation. Then we have

u(r) :/_;T(t—s)f(s)ds

Now let € > 0 be given. There exists P > 0 such that for all m € Z and all
t € R, we have
1f(t+mP) —c"ft)]| <e.

So,

lult +mP) — "u(s)]| = “/t:mPT(t+mP—s)f(s)ds—/;T(t—s)f(s)ds

- H/_th(t—s)(f(s—FmP) —c"f(s))ds

< [ ATl 1Gs+mP) =5 (s)] ds
ge/t 1Tt 5)|ds
= &[T
for all integer m and all real #, which proves the theorem. O

Example 3.5. Let A = —61 with § > 0 and / the identity operator. Then 7'(¢) =
e 1. So
u(t)=—08u(t)+f(t), teR )

has a unique strong solution defined by u(r) = [ _ e3¢~ f(s)ds which is

semi-c-periodic.



786 R. ALDRSONI - G. M. N’ GUEREKATA

4. The nonautonomous linear equation

In this section, we assume that X is of finite dimension, say X = C". This
assumption simplifies the analysis, especially when transforming the system
into its Jordan canonical form. We note that extending the results to infinite-
dimensional Banach spaces would require additional conditions on the operator
A(r), such as generating a strongly continuous semigroup or being a closed,
densely defined operator. Unless otherwise stated, the results in this section rely
on the finite-dimensional setting. We consider inhomogeneous linear evolution

equations of the form
W) =Au(t)+f(t), teRut)eX, (5)

A(+) is a 7-periodic linear matrix-valued function and f is a X-valued semi-c-
periodic function.

First, we note that by Floquet Theory of periodic ordinary differential equa-
tions, without loss of generality we may assume that A is independent of ¢.

Next we will show that the problem can be reduced to the one-dimensional
case (cf. for instance [18]). In fact, if A is independent of ¢, by a change of
variable if necessary, we may assume that A is of Jordan normal form. In this
direction, we can go further with the assumption that A has only one Jordan

block. That is we are dealing with the system of equations of the form

i () A 1 0 ... 0 fi(2)
i (1) 0 A 1 ... 0 fa(t)
1 (1) 0 0 0 .. 2 )

Let us consider the last equation for u,(¢). We have
un(t) = 2'Mn(t) +fn<t)
If RA < 0, then we can easily check that
t
up(t) = / M) £ (s)ds

is the unique solution of Eq. (5). By Theorem 3.2, u,(¢) is in Sp.(R,X). Let us

consider next the equation involving u,_; and u,. That is

1 (1) = Aty (1) + un (1) + fr1(2)
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Since u,, is in Sp. (R, X), by repeating the above argument we can show that
uy—1 is also in Sp.(R,X). Continuing this process, we can show that all u; are
in Sp.(R,X). Thatis u(t) = (u1(t),...,u,(t)" is in Sp.(R, X).

Conclusion. Note that in this paper we consider functions with the same
semi-c-periods in order to obtain a vector space. We believe that the main result
(Theorem 2.14) can be generalized. A future work must be conducted for un-
bounded functions in a more general setting to include completeness and further

applications.
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