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ON THE OSCULATORY BEHAVIOR OF SURFACE SCROLLS

ANTONIO LANTERI

Dedicated to Silvio Greco in occasion of his 60-th birthday.

A lower bound for the dimensions of the second osculating spaces to any
surface scroll is given, relying on the special feature of osculating hyperplane
sections to such surfaces. Moreover a class of counterexamples to the even
dimensional part of a conjecture of Piene-Tai is provided.

Introduction and statement of the results.

Let S ⊂ P
N be a non-degenerate smooth complex surface embedded in the

projective space, let L = (OPN (1))S be the hyperplane line bundle and let V be
the vector subspace of H 0(L) giving rise to the embedding. For every integer
k ≥ 0 let Jk L be the k-th jet bundle of L and let jk : V ⊗ OS → Jk L be the
sheaf homomorphism sending any section s ∈ V to its k-th jet jk,x(s) evaluated
at x , for every x ∈ S . Then the k-th osculating space to S at x is de�ned as
Osckx(S) := P(Im( jk,x)). Identifying PN with P(V ) (the set of codimension 1
vector subspaces of V ) we see that Osckx(S) is a linear subspace of P

N . To avoid
that it �lls up the whole ambient space we assume that N is large enough; for
instance, for k = 2, a reasonable assumption is that N ≥ 6 or even 5, depending
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on the regularity of the surface we are dealing with. Recalling that Jk L has rank�
k+2
2

�
, we have

dim(Osckx(S)) ≤

�
k + 2

2

�

− 1.

For k ≥ 2 it may happen that this is a strict inequality for every point x ∈ S .
Note that if this happens for k = 2, i. e., dim(Osc2x(S)) ≤ 4 for all x ∈ S ,
then the homogeneous coordinates of the points of PN lying on S (and hence
any section s ∈ V ) satisfy a second order linear partial differential equation in
terms of local coordinates (a Laplace equation, in the classical terminology of
projective differential geometry) [10]. Differentiating further up to the order k,
this equation gives more relations and one can easily see that

(#k) dim(Osckx (S)) ≤ 2k for every x ∈ S.

Of course, once N is �xed, this is meaningful only for k ≤ m :=
�
N−1
2

�
.

Note that this is exactly what happens for scrolls. Actually in this case there
are local coordinates (u, v) around every point x ∈ S such that the homogeneous
coordinates xi , (i = 0, . . . , N) of the points of S near x , locally, can be written
as xi = ai(u) + vbi (u), where ai and bi are holomorphic functions of u. Since

every section s ∈ V is a linear combination s =
N�

i=0

λi xi we thus see that the

second derivative svv vanishes at every point. Thus dim(Osc2x (S)) ≤ 4 for
every x ∈ S , hence (#k ) holds for every k. Apart from scrolls, sporadic surfaces
satisfying (#k ) for every k are known: they have been found by Togliatti [12],
sec. 3, Dye [2], Theorem 4, and Perkinson [9], Theorem 3.2.

There is a conjecture of Piene and Tai [10], related to the inequalities (#k ),
stating the following.

Let S ⊂ P
N (N ≥ 5) be a non-degenerate complex smooth surface such

that (#k ) holds for every k and (#m ) is an equality, where m is de�ned above.
Then (S, L, V ) is either (F0, [C0 +m f ], H 0) if N = 2m+1 (balanced rational
normal scroll), or (F1, [C0 + (m + 1) f ], H 0) if N = 2m + 2 (semibalanced
rational normal scroll). Here Fe denotes the Segre-Hirzebruch surface of
invariant e ≥ 0, C0 stands for a section of minimal self-intersection and f
for a �bre.

For N odd the conjecture is true, as proved by Ballico, Piene and Tai [1],
by using adjunction theory. In this paper I prove the following results.

Theorem A. For any linearly normal elliptic scroll S ⊂ PN (N ≥ 6) of
invariant −1, we have dim(Oscmx (S)) = 2m.
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In particular, for N even the conjecture above is not true, even in the setting
of scrolls (compare with the discussion in [9], end of p. 496 concerning the
setting of toric surfaces).

Theorem B. Let S ⊂ PN (N ≥ 5) be any scroll over a smooth curve; then
dim(Osc2x(S)) ≥ 3 for every x ∈ S.

The meaning of Theorem B is that the osculatory behavior of scrolls is
not so bad, as we will see. The proof of both results simply relies on the
consideration of the linear system of k-osculating hyperplane sections to a
smooth projective surface and its special feature in case of a surface scroll.
Finally I would like to note that both theorems can be easily rephrased in terms
of Weierstrass schemes associated to the Wronski system coming from the jet
bundles Jk L (see [8], Section 4). I am indebted to Dan Laksov for drawing my
attention to [8].

The paper is organized as follows. In Section 1 I discuss linear systems of
k-osculating hyperplane sections and prove Theorem B in two different ways.
Theorem A is proved in Section 2, where the subject is reconsidered with the
help of the jumping sets of suitable ample and spanned line bundles. In Section
3 I describe a further pathology of the osculatory behavior of surfaces, which
makes clear the meaning of Theorem B.

The word surface will always mean smooth complex projective surface.
Let S ⊂ P

N , L , V be as at the beginning. I denote by |V | the linear system
de�ned by the vector subspace V ⊆ H 0(S, L) (which, in general, is not a
complete linear system, in spite of the notation). Sometimes I refer to S as the
abstract surface and to the pair (S, V ) as the embedded surface. Accordingly,
I say that (S, V ) ((S, L) if V = H 0(L)) is a scroll to mean that S, L, V
are as above with S a P

1-bundle over a smooth curve, |V | very ample, and
L f = OP1(1) for every �bre f of S . I adopt the additive notation for the tensor
product of line bundles and, with a little abuse, I do not distinguish between a
line bundle and the corresponding invertible sheaf. In particular, if (S, V ) is a
scroll and f is a �bre, L− f stands for the line bundle L⊗OS(− f ); moreover
I denote by |V − f | the linear system {(s)0 − f | s ∈ V and (s)0 ⊃ f } and
by V (− f ) the corresponding vector subspace of H 0(S, L − f ). Of course,
up to adding f as a �xed component, |V − f | can be identi�ed with a linear
subsystem of |V |.

1. Linear systems of osculating hyperplane sections.

Let S , L and V be as in the Introduction. Recall that a hyperplane H ∈ PN∨

is said to be k-osculating to S at x if H ⊇ Osckx (S). Identifying the dual
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projective space PN∨ with the linear system |V |, H corresponds to the divisor
(s)0 of a section s ∈ V and the fact that H is k-osculating to S at x is equivalent
to the condition jk,x (s) = 0, i. e., (s)0 ∈ |V − (k + 1)x |. In other words, the
dual of P(Ker jk,x) can be identi�ed with the linear system |V − (k + 1)x | of
hyperplane sections having a point of multiplicity ≥ (k + 1) at x . From the
equality dim V = dim(Ker( jk,x))+dim(Im( jk,x )), we thus get for every k ≥ 1,

(1.0k) dim(Osckx(S)) + dim(|V − (k + 1)x |) = N − 1.

Remark 1.1. Let S ⊂ P
N = P(V ) be a non-degenerate surface. Then

dim(Osckx(S)) = 2 + codim(|V − (k + 1)x |, |V − 2x |).

Proof. Since Osc1x(S) is the projective tangent plane to S at x , the equality
simply follows by subtracting (1.01) from (1.0k). �

Now suppose that (S, V ) is a scroll and let fx be the �bre of S through
a point x ∈ S . If D ∈ |V − 2x | then D = fx + R, where R is an effective
divisor in the linear system |V − fx |, passing through x , i. e., R ∈ |V − fx − x |.
This follows immediately from the fact that Dfx = 1 for every D ∈ |V |, since
(S, L, V ) is a scroll. Actually, if D ∈ |V − 2x | would not contain fx , then we
would get

1 = D fx ≥ multx(D) multx( fx ) ≥ 2,

a contradiction. Moreover, if D ∈ |V − 3x |, then R must have a double point at
x , i. e., R ∈ |V − fx − 2x |. But then, arguing as before we have D = 2 fx + T ,
where T is an effective divisor in the linear system |V − 2 fx |, passing through
x , i. e., T ∈ |V − 2 fx − x |. More generally, iterating this argument we have

Remark 1.2. Let (S, V ) be a scroll and let fx be the �bre through any point
x ∈ S . Then

|V − (k + 1)x | = fx + |V − fx − kx | = . . . = k fx + |V − k fx − x |.

In particular,

(1.2.1) dim(|V−(k+1)x |) = dim(|V− fx−kx |) = . . . = dim(|V−k fx−x |).

Now let (S, V ) be a scroll. We give two different proofs of Theorem B
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1.3. First proof of Theorem B. In view of Remark (1.1) it is equivalent to show
that |V − 2x | �= |V − 3x | for every x ∈ S . Since (S, V ) is a scroll, by Remark
(1.2) we know that |V −3x | = 2 fx +|V −2 fx − x |. Assume, by contradiction,
that

|V − 2x | = 2 fx + |V − 2 fx − x |

for some point x ∈ S . Then every hyperplane tangent to S at x is tangent along
the whole �bre fx . As a consequence the tangent plane to S is constant along
fx . But this contradicts the �niteness of the Gauss map γ : S → G(2, N)

sending every point y ∈ S to Osc1y(S), regarded as a point of the grassmannian

G(2, N) of planes of PN (e. g., see [13], Theorem 2.3, c), p. 21 ). �

The second proof of Theorem B relies on two lemmas of some interest in
themselves. The former one will be helpful also in Section 2.

Lemma 1.4. Let (S, V ) be a scroll. Then Bs(|V − fx |) = ∅ for every x ∈ S.

Proof. (inspired by [11], Lemma 0.10.1) Let y ∈ S and let D be the pull-back
via the embedding given by V of a hyperplane of PN containing fx , but not
containing y if y /∈ fx , and not containing the tangent plane to S at y if y ∈ fx .
In both cases we have that D = fx + R, with R � � y . �

Now, for any x ∈ S , let ϕx : S − − → P be the map associated with the
linear system |V − fx |. Then Lemma 1.4 says that ϕx is a morphism. We have
dim |V | ≥ 3, since |V | is very ample, hence dim |V − fx | ≥ 1 for every x ∈ S .
Since ϕx(S) is non-degenerate in the projective space P(V (− fx )), this says that
dimϕx(S) ≥ 1.

Lemma 1.5. Let (S, V ) be a scroll and let ϕx be the morphism de�ned above.

i) dimϕx(S) = 1 for some (equivalently every) point x ∈ S if and only if
(S, L, V ) = (P1 × P1, OP1×P1(1, 1), H 0(L)).
Let dimϕx(S) = 2.

ii) If (S, L) = (Fe, [C0 + (e + 1) f ]), e > 0 then every �bre of ϕx is either a
�nite set or a �nite set plus the fundamental section.

iii) In any other case every �bre of ϕx is a �nite set.

Proof. If dim(ϕx(S)) = 1 then ϕx contracts a positive dimensional family
of curves. The proof will be done by analyzing which curves on S can be
contracted by ϕx . Note that |V − fx |, hence |L − fx |, has no �xed components
by Lemma 1.4. So, for any irreducible curve C ⊂ S there exists a divisor
D ∈ |L − fx | not containing C among its components, hence DC ≥ 0. This
shows that L − fx is nef. Let C0 and f denote a fundamental section and a
�bre of S , respectively. Since (S, V ) is a scroll we have that L ≡ [C0 + m f ]
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(numerical equivalence) for a suitable integer m. Let q and e denote the
irregularity and the invariant of S . Since L − fx ≡ [C0 + (m − 1) f ] is nef, we
get

(1.5.1) m − 1 ≥

�
e, if e ≥ 0,
e/2, if e < 0.

Now let C ⊂ S be an irreducible curve contracted by ϕx . Then (L− fx )C = 0;
moreover C2 ≤ 0, since dimϕx(S) ≥ 1. Since (L − fx ) f = 1, C cannot be a
�bre: so there are two possibilities: either j) C = C0 , or jj) C ≡ aC0 + bf for
some integers a, b satisfying the conditions:

(1.5.2) a > 0 and b ≥

�
ae, if e ≥ 0,
ae/2, if e < 0,

by [3], p. 382. In case jj) we get

(1.5.3) 0 = (L− fx )C = (C0 +(m−1) f )(aC0 +bf ) = −ae+b+(m−1)a.

If e ≥ 0 both summands in the right hand being non negative by (1.5.1), (1.5.2),
this implies b = ae and m = 1, which, in view of (1.5.1) gives e = 0; hence
b = 0 and then C ≡ aC0 . But this contradicts the fact that C is irreducible,
unless we are in case j). On the other hand, if e < 0, we can continue (1.5.3) as
follows:

0 = (−ae/2 + b) + a(m − 1 − e/2),

where both summands are non negative in view of (1.5.1), (1.5.2). We thus get
b = ae/2, m − 1 = e/2, hence [C] ≡ a(L − f ). But this gives a contradiction,
since C2 ≤ 0, while (L− f )2 = (L2−2) ≥ 0, the equality implying that (S, V )

is the quadric surface, i. e., e = 0, a contradiction. Now suppose we are in case
j). Thus

0 = (L − fx )C = (C0 + (m − 1) f )C0 = −e + m − 1.

Due to (1.5.1) it cannot be e < 0; so e ≥ 0 and m = e + 1. But then
degLC0

= LC0 = (C0 + (e + 1) f )C0 = 1. Since L is a very ample line
bundle, this clearly implies q = 0. Thus S = Fe and L = [C0 + (e + 1) f ]. If
e = 0, then L = [C0 + f ], hence |V − fx | = |L − fx | = |C0 |. In this case ϕx
is just the projection of F0 = P

1 × P
1 = C0 × f onto the second factor. On the

other hand, if e > 0 then C0 is the only curve contracted by ϕx . This proves all
the assertions. �
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1.6. Second proof of Theorem B. As already noted, it is equivalent to show that
|V − 2x | �= |V − 3x | for every x ∈ S . Since (S, V ) is a scroll, by Remark 1.2
the linear system on the left corresponds to |V − fx − x |, while that on the right
corresponds to |V − 2 fx − x |. So we have the equality |V − 2x | = |V − 3x | if
and only if

(1.6.1) fx ⊆ Bs(|V − fx − x |).

But this cannot happen. To see this, consider the morphism ϕx : S → P,
de�ned by the linear system |V − fx |. Since N ≥ 5, by Lemma 1.5 ϕx has a
2-dimensional image and all its �bres cut every �bre of the ruling projection at
a �nite set. On the other hand

Bs(|V − fx − x |) =
�

D∈|V− fx |, D�x

supp(D) = ϕ−1
x (ϕx(x)).

Therefore the base locus of |V − fx − x | must intersect every �bre of the ruling
of S (in particular fx ) at �nite set only. This shows that (1.6.1) cannot occur. �

Remark 1.7. Let (S, V ) be a scroll over a smooth curve B and let π : S → B
be the projection. Then S = P(E), where E is the very ample vector bundle of
rank 2 given by π∗L . Then the very ampleness of E is equivalent to the equality

(1.7.1) h0(E(−π(x) − π(y))) = h0(E) − 4,

for every x , y ∈ S (e. g., see [4], Lemma 1). On the other hand, since all
elements of |V | have intersection 1 with any �bre, we see that |V − x − x �| =

fx + |V − fx | for any x
� ∈ fx , x

� �= x . Hence, due to the very ampleness of |V |

we have dim(|V − fx |) = dim(|V |) − 2. Now, let y ∈ S . For the same reason
as before we see that |V − fx − y − y �| = fy + |V − fx − fy |, where y � is any
point of fy distinct from y . As in (1.6) we have

Bs(|V − fx − y|) =
�

D∈|V− fx |,D�y

supp(D) = ϕ−1
x (ϕx(y)).

By Lemma 1.5 this set cuts out a �nite (possibly empty) set on fy . Thus there
exists a point y � ∈ f y such that y � /∈ Bs(|V− fx−y|). Hence |V− fx−y−y

�| has
codimension 1 in |V − fx − y|. On the other hand |V − fx − y| has codimension
1 in |V − fx |, by Lemma 1.4. Putting everything together we get

dim(|V − fx − fy |) = dim(|V − fx − y − y �|) =

= dim(|V − fx − y|) − 1 = dim(|V − fx |) − 2.
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Thus the very ampleness of |V | implies that

(1.7.2) dim |V − fx − fy | = dim |V − fx | − 2 = dim |V | − 4.

Note that when V = H 0(S, L) (1.7.2) is clearly equivalent to (1.7.1) in view
of the isomorphism H 0(S, L) ∼= H 0(B, E). Thus (1.7.2) can be regarded as a
generalization of (1.7.1) to non complete linear systems.

2. Linearly normal elliptic scrolls of invariant−1.

2.1. Proof of Theorem A. Let C be a smooth curve of genus 1. Recall that
the P1 bundle of invariant −1 over C is the surface S = P(E), where E is the
holomorphic vector bundle of rank 2 de�ned by the non-split extension

(2.1.1) 0 → OC → E → L → 0,

where L ∈ Pic(C) has degree 1. Let π : S → C be the ruling projection, let C0

be the tautological section on S and let δ be a divisor on C of degree m+1 ≥ 3.
Then the line bundle L := OS(C0 + π∗δ) is very ample (e. g., see [3], Ex. 2.12
(b), p. 385) and the map associated with |L| embeds S as a scroll of degree
2m + 3 in P2m+2. Set V = H 0(L) and let x be any point of S . Then

(2.1.2) dim(Oscmx (S)) = 2m + 1 − dim(|L − (m + 1)x |),

by (1.0m ). On the other hand, since (S, L) is a scroll we have

(2.1.3) |L − (m + 1)x | = m fx + |L −m fx − x |,

by Remark 1.2. Note that the line bundle L −m fx = OS(C0 + π∗(δ −mπ(x)))
is spanned, since deg(δ −mπ(x)) = 1 (see [3], Ex. 2.12 (a), p. 385). Hence

(2.1.4) dim(|L − m fx − x |) = dim(|L − m fx |) − 1.

On the other hand, by twisting (2.1.1) by OC(δ − mπ(x)) we immediately
see that h0(L − m fx ) = h0(E(δ − mπ(x))) = 3. Combining this with
(2.1.3) and (2.1.4) gives dim(|L − (m + 1)x |) = 1 and then (2.1.2) shows
that dim(Oscmx (S)) = 2m, for every point x ∈ S . �

Theorem A, especially case m = 2, can be seen from a slightly more
general point of view, suggested by the discussion in Section 1. Actually, if
(S, V ) is a scroll, by combining Remark 1.1 with (1.2.1) we get

dim(Osc2x(S)) = 2 + codim(|V − 3x |, |V − 2x |)
= 2 + codim(|V − fx − 2x |, |V − fx − x |),
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for every x ∈ S . So dim(Osc2x (S)) = 3 if and only if dim(|V − fx − 2x |) =

dim(|V − fx − x |) − 1. Now suppose that L − f is ample for a �bre f of
S . Since ampleness is a numerical condition, this means that L − f is ample
for every �bre f of S . By Lemma 1.4 we know that the vector subspace
V (− f ) ⊆ H 0(L − f ) spans L − f . Under the assumption above, �x a �bre f
of S . Then, from [7], Proposition 3.1 we have the equality

{x ∈ f | dim(|V − f − 2x |) = dim(|V − f − x |) − 1} = J1(V (− f )) ∩ f,

where J1(V (− f )) is the �rst jumping set of (S, V (− f )), i. e., the rami�cation
locus of the morphism de�ned by |V − f |. This argument proves the following

Proposition 2.2. Let (S, V ) be a scroll and assume that L− f is ample, where
f is a �bre of S. Then

{x ∈ S | dim(Osc2x(S)) = 3} =
�

f

�
f ∩ J1(V (− f ))

�
,

the union being taken over all �bres of S.

Recall that J1(W ) = ∅ if the morphism de�ned by the linear system |W |

is an immersion [7], Remark 2.3.2. We thus get.

Corollary 2.3. If (S, V ) is a scroll and the morphism de�ned by |V − f | is an
immersion for every �bre f of S, then

dim(Osc2x(S)) = 4 for everyx ∈ S.

Note that the case of linearly normal elliptic scrolls of invariant −1 with
N ≥ 6 discussed in Theorem A �ts into the Corollary above. Actually for the
line bundle L de�ned in the proof of Theorem A it turns out that L − f is very
ample for every �bre f , by [3], Ex, 2.12 (b), p. 385. However, in principle
there could be other scrolls, not linearly normal and of higher genus, satisfying
the assumption in Corollary 2.3. They would provide further counterexamples
in P6 to the even dimensional part of the conjecture of Piene-Tai.

An interpretation in terms of jumping sets can be extended also to Theorem
B. Let (S, V ) be a scroll and suppose that L − f is ample for a (hence every)
�bre f of S . By Lemma 1.4 V (− f ) spans L − f for a given �bre f and then
we can also consider the second jumping set J2(V (− f )) of (S, V (− f )) [7],
Section 1. By de�nition the set f ∩ J2(V (− f )) consists of the points x ∈ f
such that |V − f − x | = |V − f −2x |. But Theorem B says that there there are
no such points. We thus get the following
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Corollary 2.4. Let (S, V ) be a scroll and assume that L − f is ample, where
f is a �bre of S. Then

f ∩ J2(V (− f )) = ∅,

for every �bre f of S.

3. Further pathology of osculation.

From Remark 1.1 we know that

(3.0.1) dim(Osc2x(S)) = 2 + codim(|V − 3x |, |V − 2x |).

Thus dim(Osc2x (S)) = 2 if and only if |V − 3x | = |V − 2x | and Theorem B
says that this cannot happen for scrolls. In fact there are surfaces for which
dim(Osc2x(S)) = 2 for some point x ∈ S . This means that every tangent
hyperplane at such a point x is osculating. An interesting example of this
situation is the so-called Togliatti�s Del Pezzo surface.

3.1. Example. Let (S, L = −KS) be the Del Pezzo surface with K 2
S = 6. Call

X the surface S embedded by |L|; then X is a smooth surface of degree 6 in
P6. Recall that S is isomorphic to P2 blown-up at three non-collinear points
p0, p1, p2. Choose homogeneous coordinates (x0, x1, x2) in P

2 in such a way
that p0 = (1 : 0 : 0), p1 = (0 : 1 : 0), p2 = (0 : 0 : 1) and �x the basis of
H 0(L) corresponding to the 7 cubic monomials

x 20 x1, x
2
0x2, x0x

2
1, x0x

2
2, x

2
1 x2, x1x

2
2 , x0x1x2.

Then X is the image of the rational map P2 − − → P6 de�ned by these
monomials. One can see that the secant variety of X is a cubic hypersurface
of P6 not containing the point c = (0 : . . . : 0 : 1). E. g., one can write
down the explicit equation of the secant variety by using MAPLE and then this
property can be checked directly. Thus the projection πc : P6 −− → P5 from c
de�nes an embedding of X in P

5. Let Y = πc(X ). Then Y is the image of the
rational map P2 − − → P5 de�ned by the 6 monomials

(3.1.1) x 20 x1, x
2
0x2, x0x

2
1 , x0x

2
2 , x

2
1x2, x1x

2
2 .

A very interesting property of the surface Y discovered by Togliatti [12] is that
its 2-osculating spaces have dimension ≤ 4 at every point. But, in fact there are
points of Y where the 2-osculating space coincides with the tangent plane ([10],
Example 2.4, [5], Proposition 4.3 ). To recognize them, let σ : S → P2 be the
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blow-up at the three points pi , let ei = σ−1(pi ) and for i < j let li j denote the
proper transform on S of the line �pi pj � joining pi and pj . The six curves ei , li j
(0 ≤ i < j ≤ 2) de�ne a 1-cycle E on S , which is mapped to a skew hexagon
on Y ; let V be the set of the 6 vertices, i. e., the set of points at which two
irreducible components of E meet. Then dim(Osc2x (Y )) = 2 for every x ∈ V.
Call V the subspace of H 0(L) generated by the elements corresponding to the
monomials in (3.1.1). Then the condition above can be rephrased as follows:

|V − 2x | = |V − 3x | for every x ∈ V.

Understanding this equality in terms of the linear system of plane cubics
representing the hyperplane sections of Y is an instructive exercise. Here is
a sketch of the argument. Recall that L = σ ∗OP2(3) − e0 − e1 − e2, �x a point
x ∈ V, e. g., x = e0 ∩ l01, and consider an element H ∈ |V − 2x |. Since
He0 = Hl01 = 1 we see that H must contain both e0 and l01 as components.
Thus H = σ ∗� − e1 − e2 − e3, where the plane cubic � consists of the
line �p0 p1� and a conic γ containing p0 and p2. On the other hand, since
H ∈ |V |, the polynomial de�ning � is a linear combination of the monomials
in (3.1.1). Since �p0 p1� corresponds to the factor x2, this implies that the
quadratic polynomial de�ning γ is a linear combination of x0x2, x

2
1, x1x2 (but

not x0x1, since x0x1x2 corresponds to an element not in V ). Therefore |V −2x |
corresponds to the linear system of plane cubics generated by x0x

2
2 , x

2
1x2, x1x

2
2 .

Let �1, �2, �3 be the cubics de�ned by these 3 generators. It is easy to see
that for i = 1, 2, 3 the element Hi = σ ∗�i − e0 − e1 − e2 has a point of
multiplicity ≥ 3 at x . E. g., H1 = σ ∗(2�p0p1� + �p1 p2�) − e0 − e1 − e2 =

2l01 + e0 + 2e1 + l12. Since H is a linear combination of H1, H2, H3, we thus
conclude that H ∈ |V − 3x |.

There are more surfaces for which dim(Osc2x(S)) = 2 at a �nite set of
points x . In fact this happens also for the two new surfaces with in�ectionary
pathology recently discovered by Perkinson in the setting of toric varieties [9],
Theorem 3.2, cases (4), (5). In these cases, as well as in Example 3.1, the linear
system |V | is not complete. I would like to mention however that this pathology
can occur also when |V | is a complete very ample linear system, as shown in
[6], Lemma 4.1, i).
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