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ON THE OSCULATORY BEHAVIOR OF SURFACE SCROLLS

ANTONIO LANTERI

Dedicated to Silvio Greco in occasion of his 60-th birthday.

A lower bound for the dimensions of the second osculating spaces to any
surface scroll is given, relying on the special feature of osculating hyperplane
sections to such surfaces. Moreover a class of counterexamples to the even
dimensional part of a conjecture of Piene-Tai is provided.

Introduction and statement of the results.

Let S C PV be a non-degenerate smooth complex surface embedded in the
projective space, let L = (Opn~ (1)) be the hyperplane line bundle and let V be
the vector subspace of H(L) giving rise to the embedding. For every integer
k > 0 let Ji L be the k-th jet bundle of L and let j; : V ® Og — J; L be the
sheaf homomorphism sending any section s € V to its k-th jet ji . (s) evaluated
at x, for every x € S. Then the k-th osculating space to S at x is defined as
Osck(S) := PAm(ji.,)). Identifying P with P(V) (the set of codimension 1
vector subspaces of V') we see that Osc’; (S) is a linear subspace of PV . To avoid
that it fills up the whole ambient space we assume that N is large enough; for
instance, for k = 2, areasonable assumption is that N > 6 or even 5, depending
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on the regularity of the surface we are dealing with. Recalling that J; L has rank

(k+2), we have
k+2
dim(Osck (8)) < < er )— 1.

2
For k£ > 2 it may happen that this is a strict inequality for every point x € §.
Note that if this happens for £k = 2, i. e., dim(Osci(S)) < 4 forall x € S,
then the homogeneous coordinates of the points of PV lying on S (and hence
any section s € V) satisfy a second order linear partial differential equation in
terms of local coordinates (a Laplace equation, in the classical terminology of
projective differential geometry) [10]. Differentiating further up to the order «,
this equation gives more relations and one can easily see that

) dim(Osc (S)) <2k foreveryx €S.

Of course, once N is fixed, this is meaningful only for k < m := [21].

Note that this is exactly what happens for scrolls. Actually in this case there
are local coordinates (u, v) around every point x € S such that the homogeneous

coordinates x;, (i =0, ..., N) of the points of S near x, locally, can be written
as x; = a;(u) + vb; (u), where a; and b; are holomorphic functions of u. Since
N

every section s € V is a linear combination s = ) A;x; we thus see that the
i=0

second derivative s,, vanishes at every point. Thus dim(Osci(S)) < 4 for
every x € S, hence (#;) holds for every k. Apart from scrolls, sporadic surfaces
satisfying (#;) for every k are known: they have been found by Togliatti [12],
sec. 3, Dye [2], Theorem 4, and Perkinson [9], Theorem 3.2.

There is a conjecture of Piene and Tai [10], related to the inequalities (#;),
stating the following.

Let S ¢ PY (N > 5) be a non-degenerate complex smooth surface such
that (#;) holds for every k and (#,,) is an equality, where m is defined above.
Then (S, L, V) is either (Fy, [Co +mf], H® if N = 2m + 1 (balanced rational
normal scroll), or (IFy, [Cy + (m + 1) f], H®) if N = 2m + 2 (semibalanced
rational normal scroll). Here F, denotes the Segre-Hirzebruch surface of
invariant e > 0, C, stands for a section of minimal self-intersection and f
for a fibre.

For N odd the conjecture is true, as proved by Ballico, Piene and Tai [1],
by using adjunction theory. In this paper I prove the following results.

Theorem A. For any linearly normal elliptic scroll S C PY (N > 6) of
invariant —1, we have dim(Osc’' (S)) = 2m.
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In particular, for N even the conjecture above is not true, even in the setting
of scrolls (compare with the discussion in [9], end of p. 496 concerning the
setting of toric surfaces).

Theorem B. Let S ¢ PV (N > 5) be any scroll over a smooth curve; then
dim(Osci(S)) > 3 foreveryx €.

The meaning of Theorem B is that the osculatory behavior of scrolls is
not so bad, as we will see. The proof of both results simply relies on the
consideration of the linear system of k-osculating hyperplane sections to a
smooth projective surface and its special feature in case of a surface scroll.
Finally I would like to note that both theorems can be easily rephrased in terms
of Weierstrass schemes associated to the Wronski system coming from the jet
bundles J; L (see [8], Section 4). I am indebted to Dan Laksov for drawing my
attention to [8].

The paper is organized as follows. In Section 1 I discuss linear systems of
k-osculating hyperplane sections and prove Theorem B in two different ways.
Theorem A is proved in Section 2, where the subject is reconsidered with the
help of the jumping sets of suitable ample and spanned line bundles. In Section
3 I describe a further pathology of the osculatory behavior of surfaces, which
makes clear the meaning of Theorem B.

The word surface will always mean smooth complex projective surface.
Let S C PV, L, V be as at the beginning. I denote by |V| the linear system
defined by the vector subspace V. € HY(S, L) (which, in general, is not a
complete linear system, in spite of the notation). Sometimes I refer to S as the
abstract surface and to the pair (S, V) as the embedded surface. Accordingly,
I say that (S, V) ((S,L) if V. = H°(L)) is a scroll to mean that S, L,V
are as above with S a P!-bundle over a smooth curve, |V| very ample, and
Ly = Opi (1) for every fibre f of S. I adopt the additive notation for the tensor
product of line bundles and, with a little abuse, I do not distinguish between a
line bundle and the corresponding invertible sheaf. In particular, if (S, V) is a
scroll and f is a fibre, L — f stands for the line bundle L ® Og(— f); moreover
I denote by |V — f| the linear system {(s)o — f | s € V and (s)9 D f} and
by V(—f) the corresponding vector subspace of H°(S, L — f). Of course,
up to adding f as a fixed component, |V — f| can be identified with a linear
subsystem of |V|.

1. Linear systems of osculating hyperplane sections.

Let S, L and V be as in the Introduction. Recall that a hyperplane H € PNV
is said to be k-osculating to S at x if H D Osc]; (S). Identifying the dual
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projective space PNV with the linear system |V |, H corresponds to the divisor
(s)o of a section s € V and the fact that H is k-osculating to S at x is equivalent
to the condition ji ,(s) = 0, 1. e., (s)o € |V — (k 4+ 1)x|. In other words, the
dual of P(Ker ji ,) can be identified with the linear system |V — (k 4+ 1)x| of
hyperplane sections having a point of multiplicity > (k 4+ 1) at x. From the
equality dim V = dim(Ker(ji ,)) +dim(Im(ji ,)), we thus get for every k > 1,

(1.0p) dim(Osch(S)) +dim(]V —(k+ Dx|) =N — 1.
Remark 1.1. Let S C PV = P(V) be a non-degenerate surface. Then

dim(Osch(S)) =24 codim(|V — (k + D)x[, |V — 2x]).

Proof. Since Osc}C(S) is the projective tangent plane to S at x, the equality
simply follows by subtracting (1.0;) from (1.0;). ([

Now suppose that (S, V) is a scroll and let f, be the fibre of S through
apointx € §. If D € |V — 2x| then D = f, + R, where R is an effective
divisor in the linear system |V — f,|, passing through x,i.e., R€ |V — f; —x]|.
This follows immediately from the fact that Df, = 1 for every D € |V|, since
(S, L,V)isascroll. Actually, if D €|V — 2x| would not contain f,, then we
would get

1 = Df, > mult, (D) mult,(f;) > 2,

a contradiction. Moreover, if D € |V — 3x|, then R must have a double point at
x,i.e., Re|V — f, —2x|. But then, arguing as before we have D = 2f, + T,
where T is an effective divisor in the linear system |V — 2 f, |, passing through
x,i.e, T €|V —2f, —x|. More generally, iterating this argument we have

Remark 1.2. Let (S, V) be a scroll and let f, be the fibre through any point
x € S. Then

[lV—-k+Dx|=fi+|V—-fi —kx|=...=kfy +|V = kf, —x|.
In particular,

(1.2.1) dim(|V—=(k+Dx|) =dim(|V — f, —kx|) = ... = dim(|V —kf, —x]).

Now let (S, V) be a scroll. We give two different proofs of Theorem B
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1.3. First proof of Theorem B. In view of Remark (1.1) it is equivalent to show
that |V — 2x| # |V — 3x| for every x € S. Since (S, V) is a scroll, by Remark
(1.2) we know that |V —3x| =2 f, + |V — 2 f; — x|. Assume, by contradiction,
that

|V =2x|=2f +|V =2f — x|

for some point x € S. Then every hyperplane tangent to S at x is tangent along
the whole fibre f;. As a consequence the tangent plane to S is constant along
fx. But this contradicts the finiteness of the Gauss map y : § — G(2, N)
sending every point y € S to Osc;(S), regarded as a point of the grassmannian
G(2, N) of planes of PV (e. g., see [13], Theorem 2.3, ¢), p. 21 ). O

The second proof of Theorem B relies on two lemmas of some interest in
themselves. The former one will be helpful also in Section 2.

Lemma 1.4. Let (S, V) be a scroll. Then Bs(|V — f.|) = 0 for every x € S.

Proof. (inspired by [11], Lemma 0.10.1) Let y € S and let D be the pull-back
via the embedding given by V of a hyperplane of PV containing f,, but not
containing y if y ¢ f,, and not containing the tangent plane to S at y if y € f;.
In both cases we have that D = f, + R, with R % y. U

Now, for any x € S, let ¢, : S — — — P be the map associated with the
linear system |V — f;|. Then Lemma 1.4 says that ¢, is a morphism. We have
dim|V| > 3, since |V| is very ample, hence dim |V — f,| > 1 forevery x € §.
Since ¢, (S) is non-degenerate in the projective space P(V (— f,)), this says that
dime,(S) > 1.

Lemma 1.5. Let (S, V) be a scroll and let ¢, be the morphism defined above.

1) dimg,(S) = 1 for some (equivalently every) point x € S if and only if
(S, L,V)= P! xP', Opr (1, 1), H(L)).
Let dim ¢, (S) = 2.
i) If (S, L) = (F,, [Co + (e + 1) f]), e > O then every fibre of ¢, is either a
finite set or a finite set plus the fundamental section.
iii) In any other case every fibre of @, is a finite set.

Proof. If dim(p,(S)) = 1 then ¢, contracts a positive dimensional family
of curves. The proof will be done by analyzing which curves on § can be
contracted by ¢,. Note that |V — f;|, hence |L — f,|, has no fixed components
by Lemma 1.4. So, for any irreducible curve C C § there exists a divisor
D € |L — f;| not containing C among its components, hence DC > 0. This
shows that L — f, is nef. Let Cy and f denote a fundamental section and a
fibre of §, respectively. Since (S, V) is a scroll we have that L = [Cy + mf]
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(numerical equivalence) for a suitable integer m. Let ¢ and e denote the
irregularity and the invariant of S. Since L — f, = [Cy + (m — 1) f] is nef, we
get

e, ife>0,
(1.5.1 m_lz{e/2,ife<0.

Now let C C S be an irreducible curve contracted by ¢,. Then (L — f,)C = 0;
moreover C? < 0, since dim ¢, (S) > 1. Since (L — f;)f = 1, C cannot be a
fibre: so there are two possibilities: either j) C = Cy, or jj) C = aCy + bf for
some integers a, b satisfying the conditions:

ae, ife >0,
(1.5.2) a>0 and bz{ae/Z,ife<0,

by [3], p. 382. In case jj) we get
1.53) 0=(L—-fi)C=(Co+(m—1)f)aCy+bf) = —ae+b+(m—1)a.

If e > 0 both summands in the right hand being non negative by (1.5.1), (1.5.2),
this implies b = ae and m = 1, which, in view of (1.5.1) gives e = 0; hence
b = 0 and then C = aC,. But this contradicts the fact that C is irreducible,
unless we are in case j). On the other hand, if e < 0, we can continue (1.5.3) as
follows:

0=(—ae/2+b)+a(m—1—e/2),

where both summands are non negative in view of (1.5.1), (1.5.2). We thus get
b=ae/2,m—1=¢e/2,hence [C] = a(L — f). But this gives a contradiction,
since C? < 0, while (L — f)? = (L?—2) > 0, the equality implying that (S, V)
is the quadric surface, i. e., e = 0, a contradiction. Now suppose we are in case
j). Thus

0= (L— f)C=(Co+(m—1)f)Co=—e+m~—1.

Due to (1.5.1) it cannot be ¢ < 0; so ¢ > 0 and m = e + 1. But then
deglc, = LCy = (Cy 4+ (e +1)f)Co = 1. Since L is a very ample line
bundle, this clearly implies ¢ = 0. Thus S =F, and L = [Cy + (e + 1) f]. If
e =0,then L =[Cy + f], hence |V — fi| = |L — fi| = |Cop|. In this case ¢,
is just the projection of Fy = P! x P! = C x f onto the second factor. On the
other hand, if e > 0 then Cj is the only curve contracted by ¢, . This proves all
the assertions. (]
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1.6. Second proof of Theorem B. As already noted, it is equivalent to show that
|V —2x| # |V — 3x| for every x € S. Since (S, V) is a scroll, by Remark 1.2
the linear system on the left corresponds to |V — f, — x|, while that on the right
corresponds to |V — 2 f, — x|. So we have the equality |V — 2x| = |V — 3x]| if
and only if

(1.6.1) Jr S Bs(IV = fu — x)).

But this cannot happen. To see this, consider the morphism ¢, : § — P,
defined by the linear system |V — f;|. Since N > 5, by Lemma 1.5 ¢, has a
2-dimensional image and all its fibres cut every fibre of the ruling projection at
a finite set. On the other hand

Bs(IV—fr—xD= []  supp(D) = ¢; (s (x)).

De|V—f|, Dax

Therefore the base locus of |V — f, — x| must intersect every fibre of the ruling
of § (in particular f,) at finite set only. This shows that (1.6.1) cannot occur. [

Remark 1.7. Let (S, V) be a scroll over a smooth curve B andletw : S — B
be the projection. Then § = P(8), where & is the very ample vector bundle of
rank 2 given by m, L. Then the very ampleness of & is equivalent to the equality

(1.7.1) W0 (E(=m(x) = 7(y)) = h(E) — 4,

for every x,y € S (e. g., see [4], Lemma 1). On the other hand, since all
elements of | V| have intersection 1 with any fibre, we see that |V —x — x'| =
fx +|V — fi| forany x’ € fy, x" # x. Hence, due to the very ampleness of | V|
we have dim(|V — f;|) = dim(]V]) — 2. Now, let y € S. For the same reason
as before we see that |V — f, —y —y'| = fy +|V — fi — f,|, where y’ is any
point of f, distinct from y. As in (1.6) we have

Bs(IV—fi—yD= ] supp(D) =gy (@:(»).

De|V—f,|, D>y

By Lemma 1.5 this set cuts out a finite (possibly empty) set on f,. Thus there
exists a point y" € f, suchthat y’ ¢ Bs(|V — f, —y|). Hence |V — f, —y—y'| has
codimension 1 in |V — f; — y|. On the other hand |V — f, — y| has codimension
lin |V — f;|, by Lemma 1.4. Putting everything together we get

dim(|V — fc = fy) =dim(|V — fy —y = y']) =
=dim(|V — fe —yD) — 1 =dim(|V — fi]) — 2.
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Thus the very ampleness of |V| implies that
(1.7.2) dim|V — f, — fy| =dim|V — f,| =2 =dim|V]| — 4.

Note that when V = H°(S, L) (1.7.2) is clearly equivalent to (1.7.1) in view
of the isomorphism H°(S, L) = H°(B, &). Thus (1.7.2) can be regarded as a
generalization of (1.7.1) to non complete linear systems.

2. Linearly normal elliptic scrolls of invariant—1.

2.1. Proof of Theorem A. Let C be a smooth curve of genus 1. Recall that
the P! bundle of invariant —1 over C is the surface S = P(&), where & is the
holomorphic vector bundle of rank 2 defined by the non-split extension

2.1.1) 0> 0 — &—> L —0,

where £ € Pic(C) has degree 1. Let ¥ : S — C be the ruling projection, let Cy
be the tautological section on S and let § be a divisor on C of degree m+1 > 3.
Then the line bundle L := O4(Cy + 7 *§) is very ample (e. g., see [3], Ex. 2.12
(b), p. 385) and the map associated with |L| embeds § as a scroll of degree
2m + 3 in P?"*2_ Set V = H%(L) and let x be any point of S. Then

(2.1.2) dim(Osc (S)) =2m + 1 — dim(|L — (m + 1)x]),
by (1.0,,). On the other hand, since (S, L) is a scroll we have
(2.1.3) IL —(m+ Dx|=mfy +|L —mf; — x|,

by Remark 1.2. Note that the line bundle L —mf, = Os(Cy + (5§ — mm(x)))
is spanned, since deg(é — mm(x)) = 1 (see [3], Ex. 2.12 (a), p. 385). Hence

(2.1.4) dim(|L — mf, — x|) =dim(|L — mf,|) — 1.

On the other hand, by twisting (2.1.1) by O¢(§ — mm(x)) we immediately
see that hi°(L — mf,) = h°(&(6 — mm(x))) = 3. Combining this with
(2.1.3) and (2.1.4) gives dim(|L — (m + 1)x|) = 1 and then (2.1.2) shows
that dim(Osc’' (S)) = 2m, for every point x € S. ([

Theorem A, especially case m = 2, can be seen from a slightly more
general point of view, suggested by the discussion in Section 1. Actually, if
(S, V) is a scroll, by combining Remark 1.1 with (1.2.1) we get

dim(Osc?(S)) = 2 + codim(|V — 3x|, |V — 2x])
=2+ codim(|V — fi —2x[, |V — fi —x|),
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for every x € §. So dim(Osci(S)) = 3 if and only if dim(|V — f, — 2x]|) =
dim(]V — f, — x|) — 1. Now suppose that L — f is ample for a fibre f of
S. Since ampleness is a numerical condition, this means that L — f is ample
for every fibre f of S. By Lemma 1.4 we know that the vector subspace
V(—f) € H°(L — f) spans L — f. Under the assumption above, fix a fibre f
of S. Then, from [7], Proposition 3.1 we have the equality

xefldm(|V - f=2x) =dim(|]V — f —x)) =1} = L1(V(=/)N N f,

where 41 (V (—f)) is the first jumping set of (S, V(—f)), i. e., the ramification
locus of the morphism defined by |V — f|. This argument proves the following

Proposition 2.2. Let (S, V) be a scroll and assume that L — f is ample, where
f isafibre of S. Then

fxeS | dim©Osci($) =3t =J(f N (V=)
-

the union being taken over all fibres of S.

Recall that g; (W) = ¢ if the morphism defined by the linear system |W |
is an immersion [7], Remark 2.3.2. We thus get.

Corollary 2.3. If (S, V) is a scroll and the morphism defined by |V — f| is an
immersion for every fibre f of S, then

dim(Osci(S)) =4 foreveryxeS.

Note that the case of linearly normal elliptic scrolls of invariant —1 with
N > 6 discussed in Theorem A fits into the Corollary above. Actually for the
line bundle L defined in the proof of Theorem A it turns out that L — f is very
ample for every fibre f, by [3], Ex, 2.12 (b), p. 385. However, in principle
there could be other scrolls, not linearly normal and of higher genus, satisfying
the assumption in Corollary 2.3. They would provide further counterexamples
in IP® to the even dimensional part of the conjecture of Piene-Tai.

An interpretation in terms of jumping sets can be extended also to Theorem
B. Let (S, V) be a scroll and suppose that L — f is ample for a (hence every)
fibre f of S. By Lemma 1.4 V(—f) spans L — f for a given fibre f and then
we can also consider the second jumping set $>(V (—f)) of (S, V(—f)) [7].
Section 1. By definition the set f N $,(V (—f)) consists of the points x € f
such that |V — f —x| = |V — f —2x|. But Theorem B says that there there are
no such points. We thus get the following



456 ANTONIO LANTERI

Corollary 2.4. Let (S, V) be a scroll and assume that L — f is ample, where
f isa fibre of S. Then
FNgG V=) =9,

for every fibre f of S.

3. Further pathology of osculation.

From Remark 1.1 we know that
(3.0.1) dim(Osci(S)) =2+ codim(|]V — 3x]|, |V — 2x]).

Thus dim(Osci(S)) = 2 if and only if |V — 3x| = |V — 2x| and Theorem B
says that this cannot happen for scrolls. In fact there are surfaces for which
dim(Osci(S)) = 2 for some point x € §. This means that every tangent
hyperplane at such a point x is osculating. An interesting example of this
situation is the so-called Togliatti’s Del Pezzo surface.

3.1. Example. Let (S, L = —Ky) be the Del Pezzo surface with K2 = 6. Call
X the surface S embedded by |L|; then X is a smooth surface of degree 6 in
P, Recall that S is isomorphic to P> blown-up at three non-collinear points
Do, P1, p2. Choose homogeneous coordinates (xo, x;, x2) in P? in such a way
that po = (1:0:0),pr =0 :1:0),p, = (0:0: 1) and fix the basis of
H°(L) corresponding to the 7 cubic monomials

2 2 2 2 .2 2
XoX1, XgX2, X0X 1, X0Xo, X1 X2, X1X7, X0X1X2.

Then X is the image of the rational map P> — — — IP° defined by these
monomials. One can see that the secant variety of X is a cubic hypersurface
of P% not containing the point ¢ = (0 : ... : 0 : 1). E. g., one can write
down the explicit equation of the secant variety by using MAPLE and then this
property can be checked directly. Thus the projection 7. : P — — — P> from ¢
defines an embedding of X in P°. Let Y = 7.(X). Then Y is the image of the
rational map P> — — — P35 defined by the 6 monomials

2 2 2 2 2 2
(3.1.1) XgX1, X5X2, XoX7, X0X5, X1 X2, X1X).

A very interesting property of the surface Y discovered by Togliatti [12] is that
its 2-osculating spaces have dimension < 4 at every point. But, in fact there are
points of Y where the 2-osculating space coincides with the tangent plane ([10],
Example 2.4, [5], Proposition 4.3 ). To recognize them, let o : S — P? be the
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blow-up at the three points p;, let e; = o ~'(p;) and for i < j let l;j denote the
proper transform on § of the line (p; p;) joining p; and p;. The six curves ¢;, [;;
(0 <i < j <2)define a 1-cycle E on S, which is mapped to a skew hexagon
on Y; let 'V be the set of the 6 vertices, i. e., the set of points at which two
irreducible components of £ meet. Then dim(Osci(Y )) = 2 for every x € V.
Call V the subspace of H(L) generated by the elements corresponding to the
monomials in (3.1.1). Then the condition above can be rephrased as follows:

|V —2x|=|V —3x| forevery xeV.

Understanding this equality in terms of the linear system of plane cubics
representing the hyperplane sections of Y is an instructive exercise. Here is
a sketch of the argument. Recall that L = 0*Op2(3) — ¢y — €] — €3, fix a point
xeV,e. g,x = ey Nly, and consider an element H € |V — 2x|. Since
Hey = Hly; = 1 we see that H must contain both ¢y and /y; as components.
Thus H = o*I' — ey — e; — e3, where the plane cubic I consists of the
line {popi) and a conic y containing py and p,. On the other hand, since
H € |V|, the polynomial defining I is a linear combination of the monomials
in (3.1.1). Since (pop;) corresponds to the factor x;, this implies that the
quadratic polynomial defining y is a linear combination of xox,, x7, x;x, (but
not xpX1, since xgxx, corresponds to an element not in V). Therefore |V — 2x|
corresponds to the linear system of plane cubics generated by xox3, X7x;, X1X3.
Let 'y, ['p, I's be the cubics defined by these 3 generators. It is easy to see
that for i = 1,2, 3 the element H; = o*['; — ¢y — e; — e, has a point of
multiplicity > 3 at x. E. g., Hy = o*Q2{(pop1) + (p1p2)) —ex —e1 —ex =
2lp1 + ey + 2e; + 115. Since H is a linear combination of H,, H,, H3, we thus
conclude that H € |V — 3x]|.

There are more surfaces for which dim(Osci(S)) = 2 at a finite set of
points x. In fact this happens also for the two new surfaces with inflectionary
pathology recently discovered by Perkinson in the setting of toric varieties [9],
Theorem 3.2, cases (4), (5). In these cases, as well as in Example 3.1, the linear
system |V is not complete. I would like to mention however that this pathology
can occur also when | V| is a complete very ample linear system, as shown in
[6], Lemma 4.1, 1).
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