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AN UNRAMIFIED REAL PLANE CURVE IS A CONIC

JOHAN HUISMAN

Dedicated to Silvio Greco in occasion of his 60-th birthday.

1. Introduction.

Let n be a natural integer satisfying n ≥ 2. Let C be a smooth geomet-
rically integral real algebraic curve in real projective space P

n [2]. For readers
less familiar with the theory of schemes: C is the zero set in Pn of a �nite num-
ber of homogeneous polynomials F1, . . . , Fk belonging to R[X0, . . . , Xn]. The
set of complex points C(C) of C is the zero set of F1, . . . , Fk in Pn(C), and is
a Riemann surface. It has the property that it is stable for complex conjugation
on Pn(C). The set of closed points of the scheme C is nothing but the quotient
of C(C) by the action of complex conjugation. The set of real points C(R) of C
is the zero set of F1, . . . , Fk in Pn(R). The set C(R) is exactly the set of �xed
points of C(C) with respect to complex conjugation. Since C is smooth, each
of the connected components of C(R) is homeomorphic to the unit circle. Since
Pn(R) is compact and since C(R) is a closed smooth submanifold of Pn(R), the
number of connected components of C(R) is �nite.

The curve C is nondegenerate if C is not contained in a real hyperplane
of P

n . Equivalently, C is nondegenerate if and only if the Riemann surface
C(C) is not contained in a complex hyperplane of Pn(C). Suppose that C is
nondegenerate. Let H be a real hyperplane of P

n . Since C is nondegenerate,
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the intersection product H ·C is a well de�ned divisor on C . Recall that a divisor
on C is simply a �nite formal sum of closed points of C . If P is a real point
of C , then the multiplicity of P in H · C is equal to the order of tangency of
H (R) to C(R) at P , increased by 1. If P is a nonreal closed point of C , then P
de�nes a pair of complex conjugate points Q and Q of C(C). The multiplicity
of P in H ·C is then equal to the order of tangency of H (C) to C(C) at Q , say,
increased by 1.

Let D be any effective divisor on C . Write

D =

��

i=1

mi Pi,

where Pi �= Pj if i �= j . The degree of D is equal to

��

i=1

mi deg (Pi ),

where deg (Pi ) = 1 if Pi is a real point, and deg (Pi) = 2 if Pi is a nonreal
closed point of C . With this de�nition, the intersection product H · C is a
divisor of degree d on C , where d is the degree of C . The reduced divisor Dred
associated to D is the divisor

Dred =

��

i=1

Pi .

We say that C is unrami�ed [3] if, for all real hyperplanes H of P
n , one has

deg(H · C) − deg(H · C)red ≤ n − 1,

In particular, taking H the osculating hyperplane at a real point of C , an
unrami�ed real curve does not have real in�ection points. The converse,
however, does not hold.

The corresponding notion of an unrami�ed complex algebraic curve in
complex projective space is well understood. Indeed, any unrami�ed complex
algebraic curve is a rational normal curve and conversely [1]. For real algebraic
curves, the situation seems to be much more interesting. In [3], it is shown that
there are unrami�ed real curves of any genus in any odd dimensional projective
space. It is, however, conjectured that, in even dimensional projective spaces,
all unrami�ed real curves are rational normal curves. The object of this paper is
to prove that conjecture for the projective plane:
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Theorem 1. Let C be an unrami�ed real plane curve. Then, C is a conic.

The method of the proof that we propose, is essentially topological. Some
of the ideas of the proof may be useful for other problems in real algebraic
geometry as well.

Jean-Philippe Monnier has informed me that Theorem 1 is also a conse-
quence of Klein�s Equation [5]. In fact, the idea of proof of Theorem 1 that we
present here, can be used to give yet another proof of Klein�s Equation. Details
are postponed to a forthcoming paper.

2. A proof of Theorem 1.

Throughout this section, let C be an unrami�ed real plane curve. In
particular, C is a proper smooth geometrically integral real algebraic curve. The
set of real points C(R) of C is a�possibly empty and not necessarily connected�
manifold of dimension 1 without boundary. Hence, each connected component
of C(R) is, topologically, a circle.

Let B be a connected component of C(R). Since the fundamental group of
P2(R) is isomorphic to Z/2Z, the submanifold B of P2(R) may be contractable
or not. In the former case, B is an oval of C . In the latter case, B is a pseudo-
line of C . Another way to characterize ovals and pseudo-lines is the following.
Let L be a real projective line in P

2. If B is an oval, then the divisor L · C has
even degree on B . If B is a pseudo-line, then L · C has odd degree on B .

For our proof of Theorem 1, we need to derive some preliminary lemmas.
First, we show that all connected components of C(R) are ovals:

Lemma 1. C does not have any pseudo-lines.

Proof. Suppose that C has a pseudo-line. We show that C has a real in�ection
point. Since any two pseudo-lines in P2(R) intersect and since C is smooth, C
has only one pseudo-line. It follows that C is of odd degree. Let d be the degree
of C . The Hessian curve H of C is of degree 3(d − 2). In particular, the curve
H is of odd degree as well. By Bezout�s Theorem, H and C intersect in a real
point. Therefore, C has a real in�ection point. It follows that C is rami�ed.
Contradiction. �

Let P ∈C(R). Denote by TPC the real projective line in P2 that is tangent
to C at P .

Let B be a connected component of C and let P ∈ B . For our proof of
Theorem 1, we need to show that any tangent line TPC of C intersects B only
in P . This is the statement of Lemma 5. Before we can prove that lemma, we
need some preparation.
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Lemma 2. Let B be a connected component of C(R) and let P and Q be two
distinct points of B . Suppose that Q belongs to TPC. Then, the multiplicity of
P in the intersection product TPC · C is equal to 2 and the multiplicity of Q in
TPC · C is equal to 1.

Proof. Let m and n be the multiplicities of P and Q , respectively, in TPC · C .
Since TPC is tangent to C at P , one has m ≥ 2. Since Q belongs to TPC , one
has n ≥ 1. On the other hand, since C is unrami�ed,

(m − 1) + (n − 1) ≤ deg(TPC · C) − deg(TPC · C)red ≤ 1.

Hence, m + n ≤ 3. Therefore, m = 2 and n = 1. �

Lemma 3. Let B be a connected component of C(R). Let A be the subset of
B2 de�ned by

A = {(P, Q) ∈ B2|Q ∈ TPC}.

Then, A is a�not necessarily connected�closed 1-dimensional submanifold of
B2 . Moreover, p1|A and p2|A are topological coverings of B , where p1 and p2
are the projections from B2 onto B.

Proof. Let T be the closed submanifold of B × P2(R) de�ned by

T = {(P, Q) ∈ B× P
2(R)|Q ∈ TPC}.

The manifold T is a locally trivial P
1(R)-bundle over B . This �ber bundle

admits a section δ : B → T de�ned by δ(P) = (P, P). Let q be the restriction
to T of the projection from B × P

2(R) onto the second factor P
2(R). Since C

is unrami�ed, C does not have any real in�ection points. Then, a local study
reveals that q is a local homeomorphism away from δ(B), and that q is a simple
topological fold along δ(B). Since q(δ(B)) = B , the inverse image q−1(B) is
a closed 1-dimensional topological submanifold of T . Since q−1(B) = A, the
subset A is a closed 1-dimensional topological submanifold of T . It follows
that A is a closed 1-dimensional topological submanifold of B × P2(R), and
then also of B2.

Next, we show that the maps p1|A and p2|A are topological coverings
of B . Since q is a local homeomorphism away from δ(B), its restriction to
q−1(B) \ δ(B) is a topological covering map of B . Obviously, the restriction
of q to δ(B) is also a topological covering map of B . Hence, the restriction
of q to q−1(B) is a topological covering map of B . Since p2|A is equal to the
restriction of q to q−1(B), the map p2|A is a topological covering map of B .

Let p be the restriction to T of the projection from B×P2(R) onto the �rst
factor B . By Lemma 2, the restriction of p to q−1(B) \ δ(B) is a topological
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covering map of B . Obviously, the restriction of p to δ(B) is also a topological
covering map of B . Hence, the restriction of p to q−1(B) is a topological
covering map of B . Since p1|A is equal to the restriction of p to q

−1(B), the
map p1|A is a topological covering map of B . �

Lemma 4. Let B and A be as in Lemma 3. Suppose that (P, Q) ∈ A. Then,
there is a unique continuous map ϕ : B −→ B such that ϕ(P) = Q and such
that the graph graph(ϕ) of ϕ is contained in A. Moreover, ϕ is an orientation
preserving homeomorphism.

Proof. Let us �rst show the uniqueness of ϕ . By Lemma 3, p1|A is a
topological covering of B . Therefore, the uniqueness of ϕ follows.

Next, we show the existence of ϕ . If P = Q then ϕ = idB satis�es clearly
the conditions. Therefore, we may assume that P �= Q .

Let K be the connected component of A containing (P, Q). By Lemma
3, K is a closed 1-dimensional submanifold of B2. Also by Lemma 3, p1|K
and p2|K are topological covering maps. In particular, the 1-dimensional
submanifold K of B2 realizes a nonzero homology class κ in H1(B

2, Z)/{±1}.
Denote by � the diagonal in B2. Clearly, � is also a connected component of
A. Since (P, Q) ∈ K \ �, one has K ∩ � = ∅. It follows that the homology
class κ is a nonzero multiple of the homology class of � in H1(B

2, Z)/{±1}.
Since K is a closed connected submanifold of B2, the homology class κ is not
divisible [4]. Hence, κ is equal to the homology class of � in H1(B

2, Z)/{±1}.
It follows that p1|K and p2|K are homeomorphisms. Therefore, the subset K
of B2 is the graph of a homeomorphism ϕ : B → B . Clearly, ϕ(P) = Q .
Moreover, ϕ is orientation preserving since κ is equal to the homology class of
� in H1(B

2, Z)/{±1}. �

Lemma 5. The subset A of B2 is equal to the diagonal � of B2 , i.e., TPC
intersects B only in P , for all P ∈ B.

Proof. Let P ∈ B be such that TPC intersects B in at least one other point. By
Lemma 1, B is an oval. Hence, the real projective line TPC intersects B in an
even number of points when counted with multiplicities. By Lemma 2, there are
two distinct points Q0 and Q1 of B , both different from P , that belong to TPC .

Choose an orientation of B . It then makes sense to speak about the closed
interval [Q0, Q1]. Indeed, [Q0, Q1] is the closure of the unique connected com-
ponent of B \ {Q0, Q1} having the following property. There is an orientation-
preserving homeomorphism from [0, 1] onto [Q0, Q1] that maps 0 to Q0 and 1
to Q1.

Since TPC intersects B in a �nite number of points, we may assume that
the points Q0 and Q1 are chosen in such a way that P belongs to the interval
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Figure 1: The germs of B at the points Q0, P and Q1

[Q0, Q1] and that the points Q0, P and Q1 are the only intersection points of
TPC with [Q0, Q1].

According to Lemma 4, there are unique continuous maps

ϕ0, ϕ1 : B −→ B

such that ϕ0(P) = Q0 and φ1(P) = Q1 and such that ϕ0(R) and ϕ1(R) belong
to TRC for all R ∈ B .

Choose a line at in�nity such that, in the corresponding af�ne plane R
2,

TPC is the x -axis, P is the origin, the germ of B at P lies in the upper half
plane, its orientation induces the standard orientation on the x -axis, and the
points Q0 and Q1 are on either side of the origin on the x -axis. By Lemma 4,
ϕ0 and ϕ1 are orientation-preserving homeomorphisms. Hence, the orientations
of the germs of B at Q0 and Q1 are as indicated in Figure 1.

Now, we derive the contradiction we are looking for. There are two cases
to consider: Q0 is either situated to the left of P , or to the right of P . If Q0
is situated to the left of P , then the interval [Q0, P] of B has to pass through
the line at in�nity. This is because [Q0, P] intersects TPC only in Q0 and P .
The same holds for the interval [P, Q1] of B . It follows that they intersect each
other in an interior point. This contradicts the fact that B is a submanifold of
P2(R). If Q0 is situated to the right of P , then, again, the two intervals [Q0, P]
and [P, Q1] of B have to intersect in an interior point. We arrive again at a
contradiction. �

Before we give a proof of Theorem 1, we need yet some more preparation.
Let C(2) denote the symmetric square of C . It is well known that C(2) is

a proper smooth geometrically integral real algebraic surface. The set of real
points C(2)(R) of C(2) can be identi�ed with the set of effective divisors of
degree 2 on C . Let X be the connected component of C(2)(R) containing all
effective divisors of degree 2 on C that have even degree on each real branch of
C . Topologically, X can be described as follows.
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Let Ctop be the Euclidean topology on the set of closed points of C . In fact,
Ctop is nothing else but the topological quotientC(C)/ Gal (C/R). In particular,
Ctop is a compact connected topological surface with�possiblyempty�boundary.
Its boundary is just the set of real points C(R) of C .

Let B1, . . . , Bs be the connected components of C(R). Then, the symmet-
ric square B(2)

i of Bi is topologically a closed Möbius strip. Its boundary is
nothing else but Bi . Therefore, the disjoint union

B =

s�

i=1

B(2)
i

also has boundary C(R).
Now, it is easy to see that X is homeomorphic to the topological space

obtained by gluing Ctop and B along their common boundary C(R). Indeed, let

h : Ctop
�

C(R)

B −→ X

be the map de�ned as follows. For P ∈ Ctop , let h(P) = 2/ deg (P) · P . For

(P, Q) ∈ B(2)
i , let h(P, Q) = P + Q . Then, h is continuous and bijective.

Since Ctop
�
B is compact and since X is Hausdorff, h is a homeomorphism.

Therefore, X is homeomorphic to the topological space obtained by gluing Ctop
and B along C(R).

Proof of Theorem 1. De�ne a map

f : X −→ P
2(R)�

as follows. Let D ∈ X . We distinguish two cases: either D = P + Q , where
P and Q are closed points of C of degree 1, or D = P , where P is a closed
point of C of degree 2. In the latter case, let f (D) be the unique real line in
P2 passing through P . In the �rst case, let f (D) be the unique real line in P2

passing through P and Q . If P = Q then f (D) is to be the tangent line to C
at P = Q .

Now, the object is to show that f is a topological covering map, using the
fact that C is unrami�ed. It is clear that f is continuous. Since X is compact
and since P

2(R)� is Hausdorff, it suf�ces to show that f is locally injective.
Let D ∈ X and put L = f (D). There are three cases to consider: D = P ,
where P is a closed point of C of degree 2, D = 2P , where P is a closed point
of C of degree 1, and D = P + Q , where P and Q are distinct closed points
of C of degree 1.
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Suppose that D = P , where P is a closed point of C of degree 2. Then,
the multiplicity of P in the intersection product L · C is equal to 1. Indeed, let
m be this multiplicity. Since P ∈ L , one has m ≥ 1. Since C is unrami�ed,

2(m − 1) = (m − 1) · deg(P) ≤ deg(L · C) − deg(L · C)red ≤ 1.

Hence, m ≤ 3
2
. Therefore, m = 1. It follows that there is an open neighborhood

U of D in X such that the restriction of f to U is injective.
Suppose that D = 2P , where P is a closed point of C of degree 1. Then,

the multiplicity of P in the intersection product L · C is equal to 2. Indeed, let
m be this multiplicity. Since L is the tangent line to C at P , one has m ≥ 2.
Since C is unrami�ed,

m − 1 ≤ deg(L · C) − deg(L · C)red ≤ 1.

Hence, m ≤ 2. Therefore, m = 2. It follows that there is an open neighborhood
U of D in X such that the restriction of f to U is injective.

Suppose that D = P + Q , where P and Q are distinct closed points of C
of degree 1. It is here where we use the preceding lemmas. Indeed, by Lemma
5, L is not tangent to P or Q . Therefore, the multiplicities of P and Q in L ·C
are equal to 1. It follows that there is an open neighborhood U of D in X such
that the restriction of f to U is injective.

We have proven that f is a topological covering map. The surface P2(R)

admits only two connected coverings, the trivial one, and the covering by
the 2-sphere S2. Since P

2(R)� is homeomorphic to P
2(R) and since X is

connected, X is either homeomorphic to P2(R) or to S2. In particular, the Euler
characteristic χ(X ) of X is positive.

Now, we show that C is a conic. Let g be the genus of C . Then,
χ(Ctop) = 1

2
(2 − 2g) = 1 − g. Since the Euler characteristic of a Möbius

strip vanishes, χ(X ) = χ(Ctop) = 1− g. Since χ(X ) is positive, g = 0. Let d
be the degree of C . Since C is smooth, g = 1

2
(d − 1)(d − 2). Hence, d = 1 or

2. Since C is unrami�ed, C is not contained in a real projective line, i.e., d �= 1.
Therefore, d = 2 and C is a conic. �
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