DEDEKIND DIFFERENT AND TYPE SEQUENCE

FRANCESCO ODETTI - ANNA ONETO - ELSA ZATINI

Dedicated to Silvio Greco in occasion of his 60-th birthday.

Let R be a one-dimensional, local, Noetherian domain. We assume R analitycally irreducible and residually rational. Let ω be a *canonical module* of R such that $R \subseteq \omega \subseteq \overline{R}$ and let $\theta_D := R : \omega$ be the *Dedekind different* of R.

Our purpose is to study how θ_D is involved in the type sequence of R and to compare the type sequence of R with the type sequence of θ_D (for the notion of type sequence we refer to [11], [1] and [13]). These relations yield some interesting consequences.

1. Introduction.

Let (R, \mathfrak{m}) be a one-dimensional, local, Noetherian domain and let \overline{R} be the integral closure of R in its quotient field K. We assume that \overline{R} is a DVR and a finite R-module, which means that R is analitycally irreducible. Let $t \in \overline{R}$ be a uniformizing parameter for \overline{R} , so that $t\overline{R}$ is the maximal ideal of \overline{R} . We also suppose R to be residually rational, i.e. $R/\mathfrak{m} \simeq \overline{R}/t\overline{R}$.

In our hypotheses there exists a *canonical module* of R unique up to isomorphism, namely a fractional ideal ω such that $\omega:(\omega:I)=I$ for each fractional ideal I of R. We can assume that $R\subseteq\omega\subset\overline{R}$. The *Dedekind different of* R is the ideal $\theta_D:=R:\omega$.

Let $\nu: K \longrightarrow \mathbb{Z} \cup \infty$ be the usual valuation associated to \overline{R} . The image $\nu(R) = \{\nu(x), x \in R, x \neq 0\} \subseteq \mathbb{N}$ is a numerical semigroup of \mathbb{N} .

The *multiplicity* of R is the smallest non-zero element e in v(R). The *conductor* of v(R) is the minimal $c \in v(R)$ such that every $m \ge c$ is in v(R) and $\gamma := t^c \overline{R}$ is the *conductor ideal* of R. We denote by δ the classical *singularity degree*, that is the number of gaps of the semigroup v(R) in \mathbb{N} .

We briefly recall the notion of *type sequence* given for rings in [11], recently revisited in [1] and extended to modules in [13].

Let $n = c - \delta$, and call $s_0 = 0, s_1, \ldots, s_n = c$ the first n + 1 elements of $\nu(R)$. Form the chain of ideals $R_0 \supset R_1 \supset R_2 \supset \ldots \supset R_n$, where, for each i, $R_i := \{x \in R : \nu(x) \ge s_i\}$.

Note that $R = R_0$, $R_1 = \mathfrak{m}$, $R_n = \gamma$.

Now construct the two chains:

$$R = R : R_0 \subset R : \mathfrak{m} \subset R : R_2 \subset \ldots \subset R : R_n = \overline{R}$$

$$\theta_D = \theta_D : R_0 \subset \theta_D : \mathfrak{m} \subset \theta_D : R_2 \subset \ldots \subset \theta_D : R_n = \overline{R}$$

For every $i = 1 \dots n$, define

$$r_i = l_R(R : R_i/R : R_{i-1}) = l_R(\omega R_{i-1}/\omega R_i),$$

 $t_i = l_R(\theta_D : R_i/\theta_D : R_{i-1}) = l_R(\omega^2 R_{i-1}/\omega^2 R_i).$

The *type sequence* of R, denoted by t.s.(R), is the sequence $[r_1, \ldots, r_n]$. The *type sequence* of θ_D , denoted by $t.s.(\theta_D)$, is the sequence $[t_1, \ldots, t_n]$. Observe that r_1 is the *Cohen Macaulay type* of R which is also the minimal number of generators of ω and that t_1 is the *C.M. type* of the R-module θ_D , or the minimal number of generators of ω^2 . Moreover, for every i, we have $1 \le r_i \le r_1$ and $1 \le t_i \le t_1$ (see e.g. [13], Prop. 1.6, for all details).

We show in Prop. 3.4 that, if $s_i \in \nu(\theta_D)$, then the correspondent $r_i + 1$ is 1. Hence, denoting by p the number of 1's in the type sequence of R, we get (see Theorem 3.7) the inequalities

$$\delta < (c - \delta)r_1 - p(r_1 - 1) < (c - \delta)r_1 - l_R(\theta_D/\gamma)(r_1 - 1)$$

which improve the well known formula $\delta \leq (c - \delta)r_1$ (see Remark 3.12).

A ring R is called *almost Gorenstein ring* if its type sequence is of the kind $[r_1, 1, \ldots, 1]$; in the general case we focus our attention to the last i such that $r_i > 1$, and we show its special meaning related to the blowing up of the canonical module and to the Dedekind different (Theorem 4.3). An easy corollary is the inequality $l_R(R/\theta_D) \leq i$.

We compare the two type sequences in several cases. For instance, in a ring R of CM type 2 they can be completely determined by using the Dedekind different (Prop. 4.10). Under suitable hypotheses we have that $r_i \leq t_i$, although this is not always true. We conjecture however that $r_1 \leq t_1$ always holds and we can prove this inequality in the following cases:

• *R* is almost Gorenstein (see Prop. 5.1);

- R has C.M. type 2, 3, e 1 (see Prop. 4.10, Corollary 3.9, Prop. 4.9);
- $\theta_D = \gamma$ (see Prop. 4.8);
- R satisfies the inequality $l_R(R/\theta_D)(r_1-2) \le 2\delta c$ (see Prop. 4.11).

In section 5 some results are achieved for minimal and maximal type sequences. In particular in Prop. 5.1, we prove that R is a *almost Gorenstein ring*, (that is t.s.(R) is minimal), if and only if $t.s.(\theta_D)$ is also minimal. On the other side we prove in Prop. 5.4, that the t.s.(R) is maximal, i.e. of the kind [e-1,....,e-1,e-1-a] for some a < e-2 or of the kind [e-1,....,e-1,1], if and only if $t.s.(\theta_D)$ is maximal, i.e. of the kinds [e,e,....,e,e-a], [e,e,....,e,1] respectively.

2. Preliminaries and remarks on the canonical module.

A fractional ideal of the value semigroup v(R) is a subset $H \subseteq \mathbb{Z}$ such that $H + v(R) \subseteq H$. We denote by c(H) the *conductor* of H, which is the smallest integer $j \in H$ such that $j + \mathbb{N} \subseteq H$. The number $\delta(H) := \#[\mathbb{N}_{\geq h_0} \setminus H]$ where $h_0 = \min\{h \in H\}$ is the number of gaps of H. For any fractional ideal I of R, v(I) is a fractional ideal of v(R). Further we set:

$$c(I) := c(v(I)), \qquad \delta(I) := \delta(v(I)), \qquad c := c(R), \qquad \delta := \delta(R).$$

We point out the useful fact that, given two fractional ideals I_1 , I_2 , $I_2 \subseteq I_1$, the length of the R-module I_1/I_2 can be computed by means of valuations: $l_R(I_1/I_2) = \#[\nu(I_1) \setminus \nu(I_2)]$, (see [11], Proposition 1).

Now we collect some of the properties of the canonical module which are important in this context.

First we recall the following well-known:

Proposition 2.1. (see [8], [10], [12]) Let ω be a canonical module of R such that $R \subseteq \omega \subseteq \overline{R}$ and let ω^{**} be its bidual, i.e. $\omega^{**} = R : (R : \omega)$. Then:

- 1) $\omega : \omega = R$.
- 2) $l_R(I/J) = l_R(\omega : J/\omega : I)$.
- 3) $c(\omega) = c$ and $v(\omega) = \{j \in \mathbb{Z} | c 1 j \notin v(R) \}.$
- 4) $\omega : \overline{R} = \gamma$.
- 5) $\omega \subseteq \omega^{**} = \omega : \omega \theta_D$.
- 6) R is Gorenstein $\iff \omega = R \iff \theta_D = R \iff \omega = \omega^{**}$. Hence: R not Gorenstein $\implies \gamma \subseteq \theta_D \subseteq \mathfrak{m}$.
- 7) If $S \supseteq R$ is an overring birational to R, then $\omega : S$ is a canonical module for S.

Lemma 2.2. *Let I be a fractional ideal of R.*

- i) If $I \supseteq \gamma$ and $v(I) \subseteq v(\omega)$, then there exists a unit $u \in \overline{R}$ such that $uI \subseteq \omega$. If $v(I) = v(\omega)$, then $uI = \omega$.
- *ii)* There exists a unit $u \in \overline{R}$ such that $ut^{c-c(I)}I \subseteq \omega$.

Proof.

- i) We note that $I \supseteq \gamma \Longrightarrow \omega : I \subseteq \overline{R} \Longrightarrow (\omega : I)\overline{R} \subseteq \overline{R}$. The hypotheses $I \supseteq \gamma$ and $\nu(I) \subseteq \nu(\omega)$ imply that c(I) = c, hence $I : \overline{R} = \gamma$ and $l_R(\overline{R}/(\omega : I)\overline{R}) = l_R(I : \overline{R}/\omega : \overline{R}) = 0$. From the equality $\overline{R} = (\omega : I)\overline{R}$ we deduce that $\omega : I$ contains a unit u of \overline{R} and $uI \subseteq \omega$. The second assertion is now immediate, since $l_R(\omega/uI) = \#[\nu(\omega) \setminus \nu(I)] = 0$.
- *ii*) We can apply item *i*) to the fractional ideal $t^{c-c(I)}I$, because the conditions $t^{c-c(I)}I \supseteq \gamma$ and $\nu(t^{c-c(I)}I) \subseteq \nu(\omega)$ are satisfied.

A strict connection between the value sets of θ_D and ω^2 is remarked by D'Anna in [5], Lemma 3.2. Part iii) of next lemma is a slight generalization of it.

Lemma 2.3. *Let* I *be a fractional ideal of* R. *Let* h, $s \in \mathbb{Z}$, $h \ge 1$. *Then:*

- *i*) $v(\omega : I) = v(\omega) v(I)$.
- *ii*) $\nu(\omega:I) = \{y \in \mathbb{Z} | c 1 y \notin \nu(I) \}.$
- *iii*) $s \in v(R : \omega^{h-1}I) \iff c 1 s \notin v(\omega^hI)$.

In particular: $s \in v(\theta_D) \iff c - 1 - s \notin v(\omega^2)$.

Proof.

- i) The proof given in [13], Prop. 2.4, works also under our assumptions.
- ii) \subseteq Using i), we see that $y \in \nu(\omega : I) \implies c 1 y \notin \nu(I)$, since $c 1 \notin \nu(\omega)$.
- \supseteq Let $y \in \mathbb{Z}$ be such that $c-1-y \notin \nu(I)$, and let $z \in \nu(I)$. Again by i) we can prove that $y+z \in \nu(\omega)$. Now $c-1-(y+z)=(c-1-y)-z \notin \nu(R) \Longrightarrow y+z \in \nu(\omega)$.
- iii) Observe that $R: \omega^{h-1}I = \omega: \omega^hI$, then apply ii).

Lemma 2.4. Let I be a fractional ideal of R and let $J := I : \omega$. Then

- i) J is a reflexive R-module, i.e. J = R : (R : J).
- *ii)* If J is not invertible, then $\mathfrak{m} : \mathfrak{m} \subseteq J : J$.

In particular, θ_D is reflexive and $\mathfrak{m} : \mathfrak{m} \subseteq \theta_D : \theta_D$.

Proof.

i) The inclusion $J \subseteq R : (R : J)$ always holds. To prove \supseteq , observe that

$$x(R:J) \subseteq R \Longrightarrow x(R:J)\omega \subseteq \omega \Longrightarrow$$

$$x\omega \subseteq \omega : (R:J) = \omega : (\omega : J\omega) = J\omega \subseteq I \Longrightarrow x \in J.$$

ii) It suffices to note that

$$J$$
 not invertible $\Longrightarrow J(R:J) \neq R \Longrightarrow$

$$J(R:J) \subseteq \mathfrak{m} \Longrightarrow J:J=R:J(R:J)\supseteq R:\mathfrak{m}=\mathfrak{m}:\mathfrak{m}.$$

In the last part of this section we point out how θ_D brings some relations with the bidual ω^{**} and the blowing up of the canonical module.

Denote by $B := \bigcup_{n=0,...,\infty} \omega^n$: ω^n the blowing up of the canonical module of R (independent on the choice of ω). This overring has been studied recently in relation to almost Gorenstein rings (see [2], ch.3, [5], ch.3).

Remark 2.5. The ring B satisfies the following properties:

- i) For m >> 0, $B = \omega^m : \omega^m = \omega^m$. (See [5], 3).
- *ii)* B is a reflexive R-module. In fact $B = (\omega^m : \omega^{m-1}) : \omega$ and we can apply Lemma 2.4.
- *iii*) $\gamma \subseteq R : B \subseteq \theta_D$.
- iv) $\omega(R:B) = \omega: B = R:B$. In fact $\omega(R:B) = \omega: (\omega:(\omega(R:B))) = \omega: B\omega: \omega^{m+1} = R:\omega^m = R:B$.
- v) $\theta_D:\theta_D\subseteq B$. In fact $B=R:(R:B)=R:\omega(R:B)=\theta_D:(R:B)\supseteq\theta_D:\theta_D$.

Proposition 2.6. *The following facts hold:*

- *i*) $\omega \subset \omega^{**} \subset \omega^2 \subset B \subset \overline{R}$.
- *ii*) $l_R(\theta_D/\gamma) = l_R(\overline{R}/\omega^2)$.
- *iii*) $l_R(\omega^2/\omega^{**}) = l_R(\omega\theta_D/\theta_D)$.
- iv) If R is not Gorenstein, then: $c(\omega^2) \le c(\omega^{**}) \le c - e$. $c(\omega^2) = c - e \iff e \in v(\theta_D)$.

Proof.

- i) $\omega^{**} = R : (R : \omega) = \omega : \omega(\omega : \omega^2) \subseteq \omega : (\omega : \omega^2) = \omega^2$.
- ii) Since $\omega : \gamma = \overline{R}$ and $\omega : \theta_D = \omega : (\omega : \omega^2) = \omega^2$, using the second property in Prop. 2.1, we get the thesis.
- iii) is immediate by Prop. 2.1.
- iv) $j \ge c e \Longrightarrow c 1 j \le e 1 \Longrightarrow$ either c 1 j = 0 or $c 1 j \notin \nu(R)$. Hence $j \in \nu(\omega) \cup \{c - 1\} \subseteq \nu(\omega^{**})$.

Finally observe that $e \in \nu(\theta_D) \iff c - 1 - e \notin \nu(\omega^2)$ by Lemma 2.3. \square

Since a ring is Gorenstein if and only if $B = \omega$, it is now natural to set a characterization for the condition $B = \omega^2$. The condition is always verified by almost Gorenstein rings (see [2], Prop. 28). We point out that there exist not almost Gorenstein rings with $B = \omega^2$, for instance the semigroup ring $R = \mathbb{C}[[t^h]], h \in v(R) = \{0, 7, 8, 9, 11, 13, \rightarrow\}$.

Theorem 2.7. The following conditions are equivalent:

- i) ω^{**} is a ring.
- $ii) \omega^{**} = \omega^2.$
- *iii*) $\omega \theta_D = \theta_D$.
- *iv*) $\theta_D:\theta_D=B$.
- V) $R: B = \theta_D$.
- vi) $B = \omega^2$.

Proof.

- i) $\Longrightarrow ii$). In this hypothesis: $\omega \subseteq \omega^{**} \subseteq \omega^2 \subseteq \omega\omega^{**} = \omega^{**}$.
- ii) \implies *iii*) is immediate by Prop. 2.6.
- iii) $\Longrightarrow iv$) $\omega\theta_D = \theta_D \Longrightarrow \omega^m\theta_D = \theta_D \Longrightarrow B \subseteq \theta_D : \theta_D$ and the other inclusion always holds (see Remark 2.5).
- iv) $\Longrightarrow v$) $\theta_D: \theta_D = B \Longrightarrow B\theta_D \subseteq R \Longrightarrow \theta_D \subseteq R: B$ and the other inclusion always holds (see Remark 2.5).
- v) \Longrightarrow vi) $\theta_D = \omega : \omega^2 = R : B = \omega : B\omega = \omega : B \Longrightarrow \omega : (\omega : \omega^2) = \omega : (\omega : B).$
- vi) \Longrightarrow i) $\omega^3 \theta_D = \omega^2 \theta_2 \subseteq \omega \Longrightarrow \omega^2 \subseteq \omega : \omega \theta_D = \omega^{**} \Longrightarrow \omega^{**} = B$.

3. Type-sequences and length.

The number p of 1's in t.s.(R), is related to the length of the R/m-algebra R/θ_D and is involved in other interesting inequalities. First we show (Prop. 3.4) how elements of $v(\theta_D)$ give rise to 1's in t.s.(R), and in $t.s.(\theta_D)$. From this we get $\delta \leq (c-\delta)r_1 - p(r_1-1) \leq (c-\delta)r_1 - l_R(\theta_D/\gamma(r_1-1))$ (Theorem 3.7) and we state other bounds.

Proposition 3.1. (see [5]) Let $v(R) = \{s_0 = 0, s_1,s_n = c, \to\}, n = c - \delta$, and let $t.s.(R) = [r_1, ..., r_n]$ and $t.s.(\theta_D) = [t_1, ..., t_n]$ be the type sequences of R and θ_D respectively. Then:

- i) $c(\theta_D : R_i) = c(R : R_i) = c s_i$, for each i = 0, ..., n.
- ii) $\nu(\theta_D: R_i)_{< c-s_i} = \{c-1-b, b \in \mathbb{Z}_{>s_i} \setminus \nu(\omega^2 R_i)\}, \text{ for each } i=0,....,n.$
- iii) Let $n_i := c(R : R_i) \delta(R : R_i), m_i := c(\theta_D : R_i) l_R(\overline{R}/\theta_D : R_i).$ Then:
 - 1. $r_{i+1} = s_{i+1} s_i + n_{i+1} n_i$, i = 0, ..., n 1.
 - 2. $t_{i+1} = s_{i+1} s_i + m_{i+1} m_i$, i = 0, ..., n-1.

 - 3. $\sum_{i=1}^{n} r_i = \delta$. 4. $\sum_{i=1}^{n} t_i = \delta + l_R(R/\theta_D)$.
- iv) Denoting by ω_i the canonical module $\omega:(R:R_i)$ of the overring $R:R_i$ obtained by duality, we have: $r_i = l_R(\omega_{i-1}/\omega_i)$.

Proof. By Lemma 2.3 we have that: $x \in v(\theta_D : R_i) \iff c - 1 - x \notin v(\omega^2 R_i)$.

- i) If $j \ge c s_i \Longrightarrow c 1 j < s_i \Longrightarrow c 1 j \notin \nu(\omega^2 R_i) \Longrightarrow j \in \nu(\theta_D)$: $R_i \subseteq \nu(R:R_i)$. Moreover $s_i \in \nu(\omega R_i) \Longrightarrow c - s_i - 1 \notin \nu(R:R_i)$ by Lemma 2.3.
- ii) follows from the above considerations.
- iii) For the first equality see [5]. The second one is analogous: by definition and item i), $m_{i+1} = c - s_{i+1} + l_R(\overline{R}/\theta_D : R_{i+1})$ and $m_i = c - s_i + l_R(\overline{R}/\theta_D : R_{i+1})$ R_i). Since $l_R(R/\theta_D: R_i) - l_R(R/\theta_D: R_{i+1}) = l_R(\theta_D: R_{i+1}/\theta_D: R_i) = l_R(\theta_D: R_i)$ t_{i+1} , we get the thesis by subtraction. The other equalities are immediate by definition.
- iv) Apply Prop. 2.1, 7): $\omega_i = \omega : (R : R_i) = \omega : (\omega : \omega R_i) = \omega R_i$.

Proposition 3.2. Let $t.s.(R) = [r_1, ..., r_n]$ and $t.s.(\theta_D) = [t_1, ..., t_n]$. Let $x_{i-1} \in \mathfrak{m}$ be such that $v(x_{i-1}) = s_{i-1} < c$. Then:

- i) $r_i = 1 \iff x_{i-1} \in Ann_R(\omega/(x_{i-1}R + \omega R_i)).$
- ii) $r_i = 1 \Longrightarrow t_i = 1.$

Proof.

- i) Since $R_{i-1} = x_{i-1}R + R_i$, we have $\omega R_{i-1} = x_{i-1}\omega + \omega R_i$. Then $r_i = l_R(\omega R_{i-1}/\omega R_i) = 1 \iff \omega R_{i-1} = x_{i-1}R + \omega R_i \iff x_{i-1} \in$ $Ann_R(\omega/(x_{i-1}R+\omega R_i)).$
- ii) By hypothesis $\omega R_{i-1} = x_{i-1}R + \omega R_i \Longrightarrow \omega^2 R_{i-1} = x_{i-1}\omega + \omega^2 R_i$, hence by i), $\omega^2 R_{i-1} = x_{i-1} R + \omega^2 R_i \Longrightarrow t_i = l_R(\omega^2 R_{i-1}/\omega^2 R_i) = 1$.

Lemma 3.3. ([5], Lemma 4.1) Let $z_1, ..., z_r$ be any minimal set of generators of ω . Then, if $x_i \in R$ and $v(x_i) = s_i$, the R-module $\omega R_i / \omega R_{i+1}$ is generated by $x_i z_1 + \omega R_{i+1}, ..., x_i z_r + \omega R_{i+1}.$

Proposition 3.4. Let $t.s.(R) = [r_1, ..., r_n]$ and $t.s.(\theta_D) = [t_1, ..., t_n]$ be the type sequences of R and θ_D respectively. Then:

$$s_i \in v(\theta_D) \Longrightarrow r_{i+1} = t_{i+1} = 1.$$

Proof. $r_{i+1} = l_R(\omega R_i/\omega R_{i+1})$. Let $\omega = (1, z_2, ..., z_r)$ and let $x_i \in \theta_D$ be such that $v(x_i) = s_i < c$. Then $\omega R_i = \langle x_i, ..., x_i z_r \rangle \mod \omega R_{i+1}$, by Lemma 3.3. Thus $x_i \in R : \omega \Longrightarrow x_i z_j \in R_{i+1} \subseteq \omega R_{i+1}$ for all j > 1 (since $v(x_i z_j) > i$) $\Longrightarrow r_{i+1} = 1$ and by Prop. 3.2, $t_{i+1} = 1$.

Notation 3.5. We put:

$$p := \# [i \in \{1, ..., c - \delta\} \mid r_i = 1]$$

$$\sigma := l_R(\omega/R) - l_R(R/\theta_D) = 2\delta - c - l_R(R/\theta_D)$$

The invariant σ has been introduced in [9]. It is known that $\sigma(R) \ge 0$, when $r_1 \le 3$ or R is smoothable, but there are examples with $\sigma < 0$ (see 4.12).

Lemma 3.6. The following facts hold:

- *i*) $l_R(\theta_D/\gamma) \leq p$.
- $ii) \ c-\delta-p \leq l_R(R/\theta_D) \leq c-\delta.$
- *iii*) $3\delta 2c \le \sigma \le 3\delta 2c + p$.
- *iv*) $c p \le \sum_{i=1}^{n} t_i \le c$.

Proof.

- i) follows from Prop. 3.4.
- ii) First inequality comes from i), since $l_R(R/\theta_D) = l_R(R/\gamma) l_R(\theta_D/\gamma)$; the second one holds since $\gamma \subseteq \theta_D$.
- iii) is obvious by ii).
- iv) $l_R(R/\theta_D) + \delta = \sum_{i=1}^n t_i$, so the inequalities are immediate from ii). \square

Theorem 3.7. *Let p be the number defined in 3.5. Then:*

$$2(c-\delta)-p \le \delta \le (c-\delta)r_1-p(r_1-1) \le (c-\delta)r_1-l_R(\theta_D/\gamma)(r_1-1).$$

Proof. Since $r_{i_1} = \ldots = r_{i_n} = 1$, and $r_i \le r_1 \forall i$, using Prop. 3.1, iii) we get:

$$c - \delta + (c - \delta - p) \le \delta = \sum_{i=1}^{c - \delta} r_i = c - \delta + \sum_{i=1}^{c - \delta} (r_i - 1) \le c - \delta + (c - \delta - p)(r_1 - 1).$$

To get the last inequality use Lemma 3.6, i). \Box

Corollary 3.8. *Let, as above,* $n = c - \delta$ *. Then:*

i)
$$2\delta - c = \sum_{i=1}^{n} (r_i - 1) \le (c - \delta - p)(r_1 - 1) \le l_R(R/\theta_D)(r_1 - 1)$$
.

ii)
$$2\delta - c \leq l_R(R/\theta_D)(t_1 - 2)$$
.

Proof.

- i) See the proof of Theorem 3.7, then use Lemma 3.6, ii).
- ii) As in the proof of Theorem 3.7, using Prop. 3.1 and Prop. 3.2, we obtain:

$$2\delta - c + l_R(R/\theta_D) = \sum_{i=1}^n (t_i - 1) \le (c - \delta - p)(t_1 - 1) \le l_R(R/\theta_D)(t_1 - 1).$$

Corollary 3.9. Either $t_1 = 1$ (i.e. R is Gorenstein) or $t_1 \ge 3$.

From the first inequality of Theorem 3.7 we deduce the following

Corollary 3.10. $p \ge 2c - 3\delta$.

Of course, the above lower bound for p is significant in the case $2c - 3\delta > 0$. Using iii) of Lemma 3.6 we see that if $\sigma < 0$, then $2c - 3\delta > 0$. Example 5 in 4.12 shows that the converse is false. The following bound for $l_R(R/\theta_D)$ is non trivial when $\sigma < 0$ (see Example 4 in 4.12).

Proposition 3.11. $l_R(R/\theta_D) \le (2\delta - c)(r_1 - 1)$.

Proof. Let $\omega=(1,z_2,\ldots,z_{r_1})R$ and consider, as in [10], Satz 3), for every $i=1,\ldots,r_1$ the R-module $\omega_i:=(1,\ldots,z_i)R$. In particular ω_2 is two-generated, so by [3], Satz 2, $l_R(R/R:\omega_2)=l_R(\omega_2/R)$. It is clear that $\omega_{i+1}/\omega_i\simeq R/\mathfrak{b}_{i+1}$, where $\mathfrak{b}_{i+1}=Ann_R(\omega_{i+1}/\omega_i)$. By [10], Hilfssatz 4 and Satz 1 we obtain: $l_R(R:\omega_i/R:\omega_{i+1})\leq l_R(R:\mathfrak{b}_{i+1}/R)\leq l_R(R/\mathfrak{b}_{i+1})+2\delta-c=l_R(\omega_{i+1}/\omega_i)+2\delta-c$. Since $R=R:\omega_1\supset R:\omega_2\supset\ldots\supset R:\omega_{r_1}=\theta_D$, we have $l_R(R/\theta_D)=l_R(R/R:\omega_2)+\sum_{i=2}^{r_1-1}l_R(R:\omega_i/R:\omega_{i+1})\leq l_R(\omega_2/R)+\sum_{i=2}^{r_1-1}l_R(\omega_{i+1}/\omega_i)+(2\delta-c)(r_1-2)=l_R(\omega/R)+(2\delta-c)(r_1-2)$. The thesis follows. \square

Remark 3.12. The difference $a := (c - \delta)r_1 - \delta$ has been taken into account by several authors. In [10] it is proved that $a \ge 0$, when R is a one-dimensional local analytically unramified Cohen Macaulay ring. In [11] it had already been shown that $a \ge 0$, under more particular hypotheses. In [4] some general stucture theorems are presented for rings with a = 0 (the so called rings of maximal length) or a = 1 (the so called rings of almost maximal length).

Theorem 3.7 implies that $a \ge l_R(\theta_D/\gamma)(r_1 - 1)$. Hence:

$$a < r_1 - 1 \Longrightarrow \theta_D = \gamma$$
.
 $a = r_1 - 1 \Longrightarrow l_R(\theta_D/\gamma) \le 1$.

The cases $a \le r_1 - 1$ are studied in [6] and [7]. See also the following 5.2.

4. Relations between r_i 's and t_i 's.

Starting from the almost Gorenstein case, we are led to consider in a t.s. $[r_1, \ldots, r_i, 1, 1, \ldots, 1]$ the index i of the last element r_i which is not 1. This number has a central role in Theorem 4.3 which involves R_i , θ_D and B. When i = 1, this theorem gives again the known characterizations of almost Gorenstein rings.

Lemma 4.1. Let J be any proper ideal of R. If $v(R_i) \subseteq v(J)$, then $R_i \subseteq J$. *Proof.* In fact

$$\nu(R_i) \subset \nu(J) \Longrightarrow \nu(R_i \cap J) = \nu(R_i) \Longrightarrow R_i \cap J = R_i \Longrightarrow R_i \subset J.$$

Lemma 4.2. The following facts hold:

- $i) r_{i+1} > 1 \Longrightarrow c 1 \in \nu(\omega^2 R_i).$
- ii) $c-1 \in \nu(\omega^2 R_i) \iff R_i \not\subseteq \theta_D$.
- iii) If $r_n > 1$, then $t_n \ge r_n + 1$.

Proof.

- i) By Prop. 3.4, $r_{i+1} > 1 \Longrightarrow s_i \notin \nu(\theta_D) \Longrightarrow c 1 s_i \in \nu(\omega^2) \setminus \nu(\omega) \Longrightarrow c 1 = s_i + (c 1 s_i) \in \nu(\omega^2 R_i)$.
- ii) By Lemma 2.3 $c-1 \in \nu(\omega^2 R_i) \iff 0 \notin \nu(R : \omega R_i)$. Suppose $c-1 \in \nu(\omega^2 R_i)$. If $R_i \subseteq \theta_D$, then $1 \in \theta_D : R_i = R : \omega R_i$, contradiction. Vice versa, if $R_i \not\subseteq \theta_D$, by Lemma 4.1 there exists an element $x \in R_i \setminus \theta_D$ such that $\nu(x) \notin \nu(\theta_D)$; then $u \ x\omega \not\subseteq R$ for all units $u \in \overline{R}$. It follows that $0 \notin \nu(R : \omega R_i)$.
- iii) We have: $r_n = l_R(\omega R_{n-1}/\omega R_n) = l_R(\omega R_{n-1}/\gamma) \le l_R(\omega^2 R_{n-1}/\gamma) = l_R(\omega^2 R_{n-1}/\omega^2 R_n) = t_n$. Looking at valuations we see that the above inequality is strict since $c 1 \in \nu(\omega^2 R_{n-1}) \setminus \nu(\omega R_{n-1})$, by i).

In [2] it is proved that

R is almost Gorenstein \iff $\mathfrak{m} = \omega \mathfrak{m} \iff r_1 - 1 = 2\delta - c$.

Hence: R almost Gorenstein, not Gorenstein $\iff \theta_D = \mathfrak{m}$. In other words: $t.s.(R) = [r_1, \ldots, 1]$ with $r_1 > 1 \iff R_1 \subseteq \theta_D$ and $R_0 \not\subseteq \theta_D$. Next proposition is a generalization of this fact.

Theorem 4.3. Let $1 \le i \le n$ and let $B = \omega^m$ be the blowing up of the canonical module of R. The following are equivalent:

- *i)* $R_i \subseteq \theta_D$ and $R_{i-1} \not\subseteq \theta_D$.
- ii) $B \subseteq R : R_i \text{ and } B \not\subseteq R : R_{i-1}$.
- *iii)* $t.s.(R) = [r_1, ..., r_i, 1, 1, ..., 1]$ with $r_i > 1$.
- iv) $t.s.(\theta_D) = [t_1, \ldots, t_i, 1, 1, \ldots, 1]$ with $t_i > 1$.

Proof.

- i) \iff ii) $R_i \subseteq \theta_D \iff \omega R_i = R_i \iff \omega^m R_i = R_i \iff B \subseteq R : R_i$.
- i) \Longrightarrow iii) By hypothesis $s_j \in v(\theta_D) \ \forall j \geq i \Longrightarrow r_j = 1 \ \forall j > i$. We have to prove that $r_i > 1$. If $r_i = 1$, then by Prop. 3.2, i), $\omega R_{i-1} = x_{i-1}R + \omega R_i \subseteq R \Longrightarrow R_{i-1} \subseteq \theta_D$, absurd.
- iii) \Longrightarrow iv) $r_i = l_R(\overline{R}/R : R_{i-1}) l_R(\overline{R}/R : R_i) = l_R(\overline{R}/R : R_{i-1}) (n-i)$ and analogously, by Prop. 3.2, ii), $t_i = l_R(\overline{R}/\theta_D : R_{i-1}) (n-i) \Longrightarrow t_i \ge r_i > 1$.
- iv) \implies iii) If i = n, the implication is true by Prop. 3.2, ii). Let $i \le n 1$. Surely, by Prop. 3.2, $r_i > 1$ and by Lemma 4.2, iii), $r_n = 1$. If $r_j > 1$ with i < j < n and all the subsequents equal to 1, as above we would get $t_j \ge r_j > 1$, contradiction.
- iii) \Longrightarrow i) $r_n = 1 \Longrightarrow \omega R_{n-1} = x_{n-1}R + \gamma \subseteq R \Longrightarrow R_{n-1} \subseteq \theta_D$. If also $r_{n-1} = 1$, then $\omega R_{n-2} = x_{n-2}R + \omega R_{n-1} \subseteq R$, then $R_{n-2} \subseteq \theta_D$ and so on. If $R_{i-1} \subseteq \theta_D$, then $r_i = 1$, and this concludes the proof.

Proposition 4.4. If $i \le n$ is such that $r_i > 1$ and $r_j = 1$ for all $j \ge i + 1$,

then
$$t_i = r_i + 1$$
.

In particular: $r_n > 1 \Longrightarrow t_n = r_n + 1$.

Proof. By Theorem 4.3 we have $R_i \subseteq \theta_D$, hence $r_i = l_R(\omega R_{i-1}/R_i)$ and $t_i = l_R(\omega^2 R_{i-1}/R_i)$. Since, by Lemma 4.2, i), $c-1 \in \nu(\omega^2 R_{i-1})$, our thesis will follow by proving that $\nu(\omega^2 R_{i-1}) = \nu(\omega R_{i-1}) \cup \{c-1\}$. Hence, let $m \in \nu(\omega^2 R_{i-1}) \setminus \nu(\omega R_{i-1})$: we claim that m = c-1. By Lemma 2.3 $c-1-m \in \nu(R:R_{i-1})$. Let $m = \nu(x)$, $x \in \omega^2 R_{i-1}$ and $c-1-m = \nu(y)$, $y \in R:R_{i-1}$. If $\nu(y) > 0$, then $\nu(x) = 0$ and the thesis is achieved. \square

Proposition 4.5. *The following are equivalent:*

- i) $s_{n-1} \in v(\theta_D)$.
- *ii*) $s_{n-1} = c 2$.
- iii) $r_n = 1$.

Proof. Recall that $\omega R_n = \gamma$.

- i) \Longrightarrow ii). If $c-2 \notin \nu(R)$, then $1 \in \nu(\omega)$. But this would imply that s_{n-1} and $s_{n-1}+1 \in \nu(\omega R_{n-1}) \setminus \nu(\gamma) \Longrightarrow r_n > 1 \Longrightarrow s_{n-1} \notin \nu(\theta_D)$, absurd.
- ii) \Longrightarrow iii) Obviously $\nu(\omega R_{n-1}) \setminus \nu(\gamma) = \{s_{n-1}\}.$

Corollary 4.6. $B = \overline{R} \iff r_n > 1$.

Proof. $B = \overline{R} \iff 1 \in \nu(\omega) \iff c - 2 \notin \nu(R)$.

Corollary 4.7. If $\theta_D = R_i$ for some i, then the equivalent conditions of Theorem 2.7 hold.

Proof. $B \subseteq R : R_i$ by Theorem 4.3 $\Longrightarrow R : B \supseteq R_i = \theta_D \Longrightarrow R : B = \theta_D$, since the other inclusion is always true.

In the particular case $\theta_D = R_n$ we obtain:

Proposition 4.8. Set, as above, $n_i := c(R : R_i) - \delta(R : R_i)$ and $m_i := c(\theta_D : R_i) - l_R(\overline{R}/\theta_D : R_i)$. The following facts are equivalent:

- i) $\theta_D = \gamma$.
- $ii) \omega^2 = \overline{R}$
- *iii*) $t_i = s_i s_{i-1}$ for each i = 1, ..., n.
- *iv)* $m_i = 0$ *for each* i = 0, ..., n.
- v) $\theta_D: R_i = t^{c-s_i} \overline{R}$ for each i = 0,, n.
- $vi) \ \omega^{**} = \overline{R}.$

If the above conditions hold, then

- *a*) $t_1 = e$.
- $b) \ \forall \ i>1, \quad r_i>t_i \Longleftrightarrow n_i>n_{i-1}.$

Proof.

- i) \iff ii) See Prop. 2.6, ii).
- ii) \Longrightarrow iii) In fact $t_i = l_R(\omega^2 R_i / \omega^2 R_{i-1}) = l_R(R_i \overline{R} / R_{i-1} \overline{R}) = s_i s_{i-1}$.
- iii) \Longrightarrow iv) We have seen in Prop. 3.1 that $t_i = s_i s_{i-1} + m_i m_{i-1}$. Hypothesis *iii*) implies that $m_1 = m_2 = \dots = m_n = c(\overline{R}) \delta(\overline{R}) = 0$.
- iv) $\Longrightarrow v$) $m_i = 0 \Longrightarrow v(\theta_D : R_i) = [c s_i, +\infty)$. Since the inclusion $t^{c-s_i}\overline{R} \subseteq \theta_D : R_i$ holds for every i = 0, ..., n, the equality of the value sets implies the other inclusion.
- v) \Longrightarrow i) Take in v) i = 0.
- vi) \Longrightarrow ii) and i) \Longrightarrow vi) are immediate by Prop. 2.6.
- a) $t_1 = s_1 s_0 = e$.
- b) Using Prop. 3.1 iii), it is immediate. \Box

Our conjecture $t_1 \ge r_1$ is true for rings having maximal C.M. type, namely $r_1 = e - 1$. In this case we get a more precise result.

Proposition 4.9. Let $e \ge 3$. If for some $1 \le i \le n$ $r_i = e - 1$, then $t_i = e$. Moreover, for the same i we have: $s_{i-1} = (i-1)e$, $s_i = ie$.

Proof. Since $t^e R_{i-1} \subseteq R_i \subset R_{i-1}$, we have the chain $t^e \omega R_{i-1} \subseteq \omega R_i \subseteq \omega R_{i-1}$. Hypothesis $r_i = e - 1$ implies that $l_R(\omega R_i/t^e \omega R_{i-1}) = 1$ and since $c - 1 + e \in \nu(\omega R_i) \setminus \nu(t^e \omega R_{i-1})$, it follows that

(*)
$$\omega R_i = t^e \omega R_{i-1} + zR \text{ with } \nu(z) = c - 1 + e.$$

Analogously, considering the chain $t^e\omega^2R_{i-1}\subseteq\omega^2R_i\subseteq\omega^2R_{i-1}$, we see that the thesis $t_i=e$ is equivalent to $t^e\omega^2R_{i-1}=\omega^2R_i$. It will be sufficient to prove this last equality. From (*) we have $\omega^2R_i=t^e\omega^2R_{i-1}+z\omega$. Now, $z\in\gamma\subseteq R_i$ for every $i\Longrightarrow z\omega\subseteq\omega R_i\Longrightarrow\omega^2R_i=t^e\omega^2R_{i-1}+zR$. By Lemma 4.2 $r_i>1\Longrightarrow c-1\in\nu(\omega^2R_{i-1})$, then $\nu(z)\in\nu(t^e\omega^2R_{i-1})$: we obtain that $t^e\omega^2R_{i-1}=\omega^2R_i$, as claimed.

To prove the other equalities, note that by definition $s_i \leq s_{i-1} + e$. As already remarked $r_i = e - 1$ implies that $v(\omega R_i) = v(t^e \omega R_{i-1}) \cup \{c - 1 + e\}$. Hence $s_i \in v(t^e \omega R_{i-1})$, but $s_i \geq s_{i-1} + e \Longrightarrow s_i = s_{i-1} + e = ie$.

For rings of C.M. type 2, we have a complete description of the type sequences of R and θ_D . In this case the arrow \Longrightarrow of Prop. 3.4 becomes \Longleftrightarrow .

Proposition 4.10. *Suppose* $r_1 = 2$. *Then:*

$$s_i \in v(\theta_D) \Longrightarrow r_{i+1} = t_{i+1} = 1$$

 $s_i \notin v(\theta_D) \Longrightarrow r_{i+1} = 2, \ t_{i+1} = 3.$

Proof. We have from Corollary 3.8, i) and Prop. 3.11 that $l_R(R/\theta_D) = 2\delta - c$ hence $l_R(\theta_D/\gamma) = 2c - 3\delta$. The elements of the type sequence $[r_1,, r_n]$, $n = c - \delta$, of R are 1 or 2, suppose p times 1 and n - p times 2. Then $\delta = \sum_{i=1}^n r_i = p + 2(n - p) \Longrightarrow p = 2c - 3\delta$. Hence $p = l_R(\theta_D/\gamma)$ and $r_{i+1} = 1 \Longleftrightarrow s_i \in \theta_D$ (see Prop. 3.4). By hypothesis ω is two-generated, say $\omega = (1, z)$, then $1, z, z^2$ constitute a system of generators for ω^2 ; hence $t_1 \leq 3$, and Corollary 3.9 implies that $t_1 = 3$. Consider now the type sequence of θ_D , by Prop. 3.2, $r_i = 1 \Longrightarrow t_i = 1$. Suppose that for some i either $t_i = 2$ or $r_i = 2$ and $t_i = 1$. Then $\delta + l_R(R/\theta_D) = \sum_{i=1}^n t_i < l_R(\theta_D/\gamma) + 3l_R(R/\theta_D) \Longrightarrow \delta < c - \delta + 2\delta - c$, absurd. The thesis follows. \square

Another case in which our conjecture $t_1 \ge r_1$ is true comes directly from Corollary 3.8:

Proposition 4.11. *If* $l_R(R/\theta_D)(r_1 - 2) \le 2\delta - c$, then $r_1 \le t_1$.

Proof. If $r_1 > t_1$, from Corollary 3.8, ii), we get $2\delta - c \le l_R(R/\theta_D)(t_1 - 2) < l_R(R/\theta_D)(r_1 - 2)$.

Example 4.12. Suppose $R = \mathbb{C}[[t^h]]$, $h \in v(R)$, is a semigroup ring. The first three examples show that the converses of Prop. 3.2, ii), Prop. 3.4 and Prop. 4.9 are false.

- 1. Let $\nu(R) = \{0, 10, 11, 17, 20 \rightarrow \}$, then $\theta_D = \gamma$, $\delta = 16$, $c \delta = 4 < 12 = 2\delta c$, t.s.(R) = [7, 2, 5, 2], $t.s.(\theta_D) = [10, 1, 6, 3]$. In this case $t_2 = 1$ and $t_2 > 1$.
- 2. Let $v(R) = \{0, 5, 6, 10 \rightarrow \}$, then $\theta_D = \gamma$, $\delta = 7$, $c \delta = 3 < 4 = 2\delta c$, t.s.(R) = [3, 1, 3], $t.s.(\theta_D) = [5, 1, 4]$. In this case $t_2 = r_2 = 1$. But $s_1 = 5 \notin v(\theta_D)$.
- 3. Let $v(R) = \{0, 10, 11, 12, 14, 17, 20 \rightarrow \}$. Then: $c = 20, \delta = 14, r_1 = 5, \omega = \langle 0, 1, 3, 4, 6 \rangle, \omega^2 = \overline{R}$, hence $\theta_D = \gamma$. $t.s(R) = [5, 1, 1, 3, 2, 2], t.s.(\theta_D) = [10, 1, 1, 2, 3, 3]$. In this case $t_1 = 10$, but $r_1 = 5 < e 1$, moreover $r_4 > t_4 = 2$.
- 4. Let $v(r) = \langle 13, 121, 133, 163, 164, 166, 168, 170, 171 \rangle$. We have $\delta = 181$, c = 322, $r_1 = 4$, $\theta_D = \langle 121, 166, 168, 198, 216, 223, 234, 241, 248, 266 \rangle$. Hence $l_R(R/\theta_D) = 43$ and $\sigma = -3$. Here bound in Prop. 3.11 is better than bound in Lemma 3.6, ii). In fact: $2\delta c = 40 < l_R(R/\theta_D) = 43 < (2\delta c)(r_1 1) = 120 < c \delta = 141$. The type sequences t.s.(R) and $t.s.(\theta_D)$ are respectively:
- 5 Let $\nu(R) = \{7, 8, 9, 10, 12 \rightarrow \}$. We have $\delta = 7$, $r_1 = 3$, c = 12. and R is almost Gorenstein, so $\theta_D = \mathfrak{m}$, hence $\sigma = 1$, but $3\delta 2c < 0$.

5. Minimality and maximality.

In the comparison between the type sequences of the ring and of the Dedekind different, properties like minimality and maximality are completely equivalent.

• Minimal type sequences. In [2] one can find the properties of *almost Gorenstein* rings. Analogous properties for fractional ideals are considered in [13]: a fractional ideal I is called of *minimal type sequence* (m.t.s. for short) if and only if t.s.(I) = [r(I), 1, ..., 1], where r(I) is the Cohen Macaulay type

of I as an R-module. Since it is well known that $r(I) = 1 \iff I \simeq \omega$, it follows in particular that $t_1 = 1 \implies R$ is Gorenstein.

Next proposition deals with the m.t.s. property in the not Gorenstein case.

Proposition 5.1. *Let* R *be not Gorenstein. The following are equivalent:*

- i) R is almost Gorenstein.
- ii) θ_D is m.t.s.
- iii) $\omega^{**} = R : \mathfrak{m},$
- iv) $B = R : \mathfrak{m}$.

In this case $t_1 = r_1 + 1$.

Proof.

- i) \iff ii) is equivalence iii) \iff iv) of Theorem 4.3 for i = 1.
- i) \Longrightarrow iii) is immediate, since when R is almost Gorenstein, we have $\theta_D = \mathfrak{m} = \mathfrak{m}\omega$ and by Prop. 2.6 $\omega^{**} = \omega^2 = R$: \mathfrak{m} . Last equality is proved in [2], Prop. 28.
- iii) \Longrightarrow iv) ω^{**} is a ring $\Longrightarrow \omega^{**} = \omega^2 = B$ by Theorem 2.7.
- i) \implies iv) has been proved by D'Anna in [5], Prop. 3.4.
- Maximal type sequences. Recalling that in general $t.s.(R) = [r_1,, r_n]$, with $r_1 \le e 1$ and $r_i \le r_1$, of course "maximal" type sequence means t.s.(R) = [e-1,, e-1]. In [7] and [6] the authors characterize all the rings whose type sequence is closer to the maximal one in the following sense: t.s.(R) = [e-1,, e-1, e-1-a]. For simplicity, we call a-maximal a type sequence of this form.

Proposition 5.2. (See [6] and [7]). Let $a \in \mathbb{N}$ be such that $a \leq r_1 - 1$. The following facts are equivalent:

- *i*) $(c \delta)r_1(R) \delta = a \text{ and } r_1 = e 1.$
- *ii*) $v(R) = \{0, e, 2e, ..., (n-1)e, ne a, \rightarrow\}.$
- *iii*) t.s.(R) = [e-1, ..., e-1, e-1-a].

Moreover, if $a \le r_1 - 2$, then condition $r_1 = e - 1$ in i) is superflows.

We want to show now that the a-maximality of t.s.(R) is equivalent to the a-maximality of $t.s.(\theta_D)$, i.e. $t.s.(\theta_D) = [e,, e, e - a]$, (see Prop. 5.4). To do this we need some more or less well known results, that we list below for our convenience. In the following $\langle l_1,, l_i \rangle$ denotes the v(R)-set generated by $l_1,, l_i$ and, for any numerical set $H \subset \mathbb{Z}$, $H + l := \{h + l, h \in H\}$.

Lemma 5.3. Let $0 \le a \le e - 2$ and let $v(R) = \{0, e, 2e, ..., (n-1)e, ne - a, \rightarrow\}$. In this case c = ne - a, $n = c - \delta$.

i) Canonical ideals:

For
$$a = 0$$
 then $v(\omega) = \langle 0, 1, 2, ..., e - 2 \rangle$. Call it $v(\omega_0)$.
For any $a \geq 1$, change the last a generators by addying 1 to each one, i.e. $v(\omega_a) = \langle 0, 1, ..., e - a - 2, e - a, ..., e - 1 \rangle$.
In particular, $v(\omega_{e-2}) = \langle 0, 2, 3, ..., e - 1 \rangle$.

ii) Type sequence of R:

$$t.s.(R) = [e-1,, e-1, e-1-a].$$

iii) Omega square:

for
$$a = 0, ..., e - 3$$
 $\omega^2 = \overline{R}$,
for $a = e - 2$ $v(\omega^2) = \{0, 2, \rightarrow\}$.

iv) Type sequence of θ_D :

for
$$a = 0, ..., e - 3$$
 $t.s.(\theta_D) = [e, e, ..., e, e - a],$
for $a = e - 2$ $t.s.(\theta_D) = [e, e, ..., e, 1].$

v) Dedekind different:

for
$$a = 0, ..., e - 3$$
 $\theta_D = \gamma$,
for $a = e - 2$ $\theta_D = zR + \gamma$ with $v(z) = (n - 1)e$.

Proof.

- i) Just remember that $\nu(\omega) = \{j \in \mathbb{Z} \mid c 1 j \notin \nu(R)\}.$
- ii) For every a = 0,, e 2 and for every i = 0,, n 1, we have $v(\omega R_i) = v(\omega) + ie$. Then for every i = 0,, n 2, $v(\omega R_i) \setminus v(\omega R_{i+1}) = \{0, 1,, e a 2, e a,, e 1\} + ie$. So we obtain that $r_{i+1} = l_R(\omega R_i/\omega R_{i+1}) = e 1$. Let now i = n 1. By definition $r_n = \#[v(\omega R_{n-1}) \setminus v(\gamma)]$. Since $v(\omega R_{n-1}) = v(\omega) + (n 1)e = \langle (n 1)e, (n 1)e + 1,, ne a 2, ne a,, ne 1 \rangle$, we see that only the first e a 1 elements are smaller than c = ne a and we conclude that $r_n = e a 1$.
- iii) For a=0,...,e-3 we see that $1 \in \nu(\omega)$, then $\omega^2 = \overline{R}$. For a=e-2, by item $i)\omega = (0,2,3,...,e-1)$, then $\omega^2 = \{0,2,\rightarrow\}$.
- iv) For a=0,....,e-3 and for i=0,....,n-2, using iii) we get $t_{i+1}=l_R(R_i\overline{R}/R_{i+1}\overline{R})=e$. For a=e-2 and for i=0,....,n-2, we have $v(\omega^2R_i)\setminus v(\omega^2R_{i+1})=\{0,2,....,e-1,e+1\}+ie$ and we get again $t_{i+1}=e$. It remains to compute the last component $t_n=\#[v(\omega^2R_{n-1})\setminus v(\gamma)]$. For $a=0,....,e-3,v(\omega^2R_{n-1})=v(R_{n-1}\overline{R})=\{(n-1)e,\rightarrow\};$ in this set the elements < c are e-a, so $t_n=e-a$. For a=e-2, we have by $i)r_n=1$, then by Prop. 3.2 also $t_n=1$.
- v) The thesis follows from iii), by applying Lemma 2.3.

Proposition 5.4. *Let* $e \ge 3$.

i) For $0 \le a < e - 2$, $t.s.(R) = [e - 1,, e - 1, e - 1 - a] \iff t.s.(\theta_D) = [e, e,, e, e - a].$ *ii)* $t.s.(R) = [e - 1,, e - 1, 1] \iff t.s.(\theta_D) = [e, e,, e, 1].$

Proof. Both implications \Longrightarrow follow from Prop. 5.2 and Lemma 5.3.

- i) \Leftarrow Suppose $0 \le a < e-2$ and $t.s.(\theta_D) = [e, e,, e, e-a]$. By Prop. 4.4 $r_n = \delta \sum_{i=1}^{n-1} r_i = e-a-1$ and by hypothesis $\delta + l_R(R/\theta_D) = ne-a$. Then $ne-a-l_R(R/\theta_D) \sum_{i=1}^{n-1} r_i < e-a \Longrightarrow \sum_{i=1}^{n-1} r_i > (n-1)e-l_R(R/\theta_D) = (n-1)(e-1)+(n-l_R(R/\theta_D))-1$, i.e. $\sum_{i=1}^{n-1} r_i \ge (n-1)(e-1)+(n-l_R(R/\theta_D))$. On the other hand $\sum_{i=1}^{n-1} r_i \le (n-1)r_1 \le (n-1)(e-1)$. The only possibility is $\sum_{i=1}^{n-1} r_i = (n-1)(e-1)$ and $l_R(R/\theta_D) = n$, i.e. $\theta_D = t^c \overline{R}$. Hence $r_i = e-1$ for $i = 1, \ldots, n-1$ and $r_n = e-a-1$.
- ii) \Leftarrow Suppose $t.s.(\theta_D) = [e, e,, e, 1]$. By Lemma $4.2 \, r_n = 1$. As in the above item we find $\sum_{i=1}^{n-1} r_i = (n-1)(e-1) + n l_R(R/\theta_D) 1$. Hence $n l_R(R/\theta_D) 1 \le 0$, i.e. either $n l_R(R/\theta_D) = 0$ or $n l_R(R/\theta_D) = 1$. In the first case $\theta_D = \gamma$, moreover $\delta = \sum_{i=1}^{n-1} r_i + 1 = (n-1)(e-1) \Longrightarrow \delta = ne n e + 1 = ne c + \delta e + 1 \Longrightarrow c 1 = ne e$, which is a contradiction. The other possibility leads to $l_R(\theta_D/\gamma) = 1$ and $\sum_{i=1}^{n-1} r_i = (n-1)(e-1)$, hence $r_i = e-1$ for every i = 0, ..., n-1. \square

REFERENCES

- [1] V. Barucci D.E. Dobbs M. Fontana, *Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains*, Mem. A. M. S., 125, n. 598 (1997).
- [2] V. Barucci R. Fröberg, *One-Dimensional Almost Gorenstein Rings*, Journal of Algebra, 188 (1997), pp. 418–442.
- [3] R. Berger, *Differentialmoduln eindimensionaler lokaler Ringe*, Math. Zeitsch r., 81 (1963), pp. 326–354.
- [4] W.C. Brown -J. Herzog, *One Dimensional Local rings of Maximal and Almost Maximal Length*, Journal of Algebra, 151 (1992), pp. 332–347.
- [5] M. D'Anna, Canonical Module and One-Dimensional Analytically Irreducible Arf Domains, Lecture Notes in Pure and Applied Math., Dekker, vol 185 (1997).
- [6] M. D'Anna D. Delfino, Integrally closed ideals and type sequences in onedimensional local rings, Rocky Mountain J. Math., 27 - 4 (1997), pp. 1065–1073.

- [7] D. Delfino, On the inequality $\lambda(\overline{R}/R) \le t(R)\lambda(R/C)$ for one-dimensional local rings, J. Algebra, 169 (1994), pp. 332–342.
- [8] J. Herzog E. Kunz, *Der kanonische Modul eines Cohen-Macaulay Rings*, Lecture Notes in Math. vol. 238, Springer, Berlin, 1971.
- [9] J. Herzog R. Waldi, *Differentials of linked curve singularities*, Arch. Math., 42 (1984), pp. 335–343.
- [10] J. Jäger, Längenberechnung und kanonische Ideale in eindimensionalen Ringen, Arch. Math., 29 (1977), pp. 504–512.
- [11] T. Matsuoka, *On the degree of singularity of one-dimensional analytically irreducible noetherian rings*, J. Math. Kyoto Univ., 11 3 (1971), pp. 485–491.
- [12] E. Kunz R. Waldi, *Regular Differential Forms*, Contemporary Mathematics, Vol. 79, Am. Math. Soc. (1986).
- [13] A. Oneto E. Zatini, *Type-sequences of modules*, Jour. of Pure Appl. Algebra, 160 (2001), pp. 105–122.

Francesco Odetti and Anna Oneto
Dipartimento di Metodi e Modelli Matematici
Università di Genova
P.le Kennedy, Pad. D
16129 Genova (ITALY)
e-mail: odetti@dimet.unige.it
oneto@dima.unige.it
Elsa Zatini
Dipartimento di Matematica
Università di Genova
Via Dodecaneso, 35
16146 Genova (ITALY)
e-mail:zatini@dima.unige.it