DEDEKIND DIFFERENT AND TYPE SEQUENCE

FRANCESCO ODETTI - ANNA ONETO - ELSA ZATINI

Dedicated to Silvio Greco in occasion of his 60-th birthday.
Let R be a one-dimensional, local, Noetherian domain. We assume R analitycally irreducible and residually rational. Let ω be a canonical module of R such that $R \subseteq \omega \subseteq \bar{R}$ and let $\theta_{D}:=R: \omega$ be the Dedekind different of R.

Our purpose is to study how θ_{D} is involved in the type sequence of R and to compare the type sequence of R with the type sequence of θ_{D} (for the notion of type sequence we refer to [11], [1] and [13]). These relations yield some interesting consequences.

1. Introduction.

Let (R, \mathfrak{m}) be a one-dimensional, local, Noetherian domain and let \bar{R} be the integral closure of R in its quotient field K. We assume that \bar{R} is a DVR and a finite R-module, which means that R is analitycally irreducible. Let $t \in \bar{R}$ be a uniformizing parameter for \bar{R}, so that $t \bar{R}$ is the maximal ideal of \bar{R}. We also suppose R to be residually rational, i.e. $R / \mathfrak{m} \simeq \bar{R} / t \bar{R}$.

In our hypotheses there exists a canonical module of R unique up to isomorphism, namely a fractional ideal ω such that $\omega:(\omega: I)=I$ for each fractional ideal I of R. We can assume that $R \subseteq \omega \subset \bar{R}$. The Dedekind different of R is the ideal $\theta_{D}:=R: \omega$.

Let $v: K \longrightarrow \mathbb{Z} \cup \infty$ be the usual valuation associated to \bar{R}. The image $v(R)=\{v(x), x \in R, x \neq 0\} \subseteq \mathbb{N}$ is a numerical semigroup of \mathbb{N}.

The multiplicity of R is the smallest non-zero element e in $v(R)$. The conductor of $v(R)$ is the minimal $c \in v(R)$ such that every $m \geq c$ is in $v(R)$ and $\gamma:=t^{c} \bar{R}$ is the conductor ideal of R. We denote by δ the classical singularity degree, that is the number of gaps of the semigroup $v(R)$ in \mathbb{N}.

We briefly recall the notion of type sequence given for rings in [11], recently revisited in [1] and extended to modules in [13].

Let $n=c-\delta$, and call $s_{0}=0, s_{1}, \ldots, s_{n}=c$ the first $n+1$ elements of $\nu(R)$. Form the chain of ideals $R_{0} \supset R_{1} \supset R_{2} \supset \ldots \supset R_{n}$, where, for each i, $R_{i}:=\left\{x \in R: v(x) \geq s_{i}\right\}$.
Note that $R=R_{0}, R_{1}=\mathfrak{m}, R_{n}=\gamma$.
Now construct the two chains:

$$
\begin{array}{r}
R=R: R_{0} \subset R: \mathfrak{m} \subset R: R_{2} \subset \ldots \subset R: R_{n}=\bar{R} \\
\theta_{D}=\theta_{D}: R_{0} \subset \theta_{D}: \mathfrak{m} \subset \theta_{D}: R_{2} \subset \ldots \subset \theta_{D}: R_{n}=\bar{R}
\end{array}
$$

For every $i=1 \ldots n$, define

$$
\begin{gathered}
r_{i}=l_{R}\left(R: R_{i} / R: R_{i-1}\right)=l_{R}\left(\omega R_{i-1} / \omega R_{i}\right) \\
t_{i}=l_{R}\left(\theta_{D}: R_{i} / \theta_{D}: R_{i-1}\right)=l_{R}\left(\omega^{2} R_{i-1} / \omega^{2} R_{i}\right)
\end{gathered}
$$

The type sequence of R, denoted by $t . s .(R)$, is the sequence $\left[r_{1}, \ldots, r_{n}\right]$. The type sequence of θ_{D}, denoted by $t . s .\left(\theta_{D}\right)$, is the sequence $\left[t_{1}, \ldots, t_{n}\right]$. Observe that r_{1} is the Cohen Macaulay type of R which is also the minimal number of generators of ω and that t_{1} is the C.M. type of the R-module θ_{D}, or the minimal number of generators of ω^{2}. Moreover, for every i, we have $1 \leq r_{i} \leq r_{1}$ and $1 \leq t_{i} \leq t_{1}$ (see e.g. [13], Prop. 1.6, for all details).

We show in Prop. 3.4 that, if $s_{i} \in v\left(\theta_{D}\right)$, then the correspondent $r_{i}+1$ is 1. Hence, denoting by p the number of 1 's in the type sequence of R, we get (see Theorem 3.7) the inequalities

$$
\delta \leq(c-\delta) r_{1}-p\left(r_{1}-1\right) \leq(c-\delta) r_{1}-l_{R}\left(\theta_{D} / \gamma\right)\left(r_{1}-1\right)
$$

which improve the well known formula $\delta \leq(c-\delta) r_{1}$ (see Remark 3.12).
A ring R is called almost Gorenstein ring if its type sequence is of the kind $\left[r_{1}, 1, \ldots, 1\right]$; in the general case we focus our attention to the last i such that $r_{i}>1$, and we show its special meaning related to the blowing up of the canonical module and to the Dedekind different (Theorem 4.3). An easy corollary is the inequality $l_{R}\left(R / \theta_{D}\right) \leq i$.

We compare the two type sequences in several cases. For instance, in a ring R of CM type 2 they can be completely determined by using the Dedekind different (Prop. 4.10). Under suitable hypotheses we have that $r_{i} \leq t_{i}$, although this is not always true. We conjecture however that $r_{1} \leq t_{1}$ always holds and we can prove this inequality in the following cases:

- R is almost Gorenstein (see Prop. 5.1);
- R has C.M. type 2, 3, $e-1$ (see Prop. 4.10, Corollary 3.9, Prop. 4.9);
- $\theta_{D}=\gamma$ (see Prop. 4.8);
- R satisfies the inequality $l_{R}\left(R / \theta_{D}\right)\left(r_{1}-2\right) \leq 2 \delta-c$ (see Prop. 4.11).

In section 5 some results are achieved for minimal and maximal type sequences. In particular in Prop. 5.1, we prove that R is a almost Gorenstein ring, (that is $t . s .(R)$ is minimal), if and only if $t . s .\left(\theta_{D}\right)$ is also minimal. On the other side we prove in Prop. 5.4, that the t.s. (R) is maximal, i.e. of the kind $[e-1, \ldots ., e-1, e-1-a]$ for some $a<e-2$ or of the kind [$e-1, \ldots ., e-1,1]$, if and only if $t . s .\left(\theta_{D}\right)$ is maximal, i.e. of the kinds $[e, e, \ldots ., e, e-a],[e, e, \ldots, e, 1]$ respectively.

2. Preliminaries and remarks on the canonical module.

A fractional ideal of the value semigroup $v(R)$ is a subset $H \subseteq \mathbb{Z}$ such that $H+v(R) \subseteq H$. We denote by $c(H)$ the conductor of H, which is the smallest integer $j \in H$ such that $j+\mathbb{N} \subseteq H$. The number $\delta(H):=\#\left[\mathbb{N}_{\geq h_{0}} \backslash H\right]$ where $h_{0}=\min \{h \in H\}$ is the number of gaps of H. For any fractional ideal I of R, $v(I)$ is a fractional ideal of $v(R)$. Further we set:

$$
c(I):=c(v(I)), \quad \delta(I):=\delta(v(I)), \quad c:=c(R), \quad \delta:=\delta(R)
$$

We point out the useful fact that, given two fractional ideals $I_{1}, I_{2}, I_{2} \subseteq I_{1}$, the length of the R-module I_{1} / I_{2} can be computed by means of valuations: $l_{R}\left(I_{1} / I_{2}\right)=\#\left[v\left(I_{1}\right) \backslash v\left(I_{2}\right)\right]$, (see [11], Proposition 1).

Now we collect some of the properties of the canonical module which are important in this context.

First we recall the following well-known:
Proposition 2.1. (see [8], [10], [12]) Let ω be a canonical module of R such that $R \subseteq \omega \subseteq \bar{R}$ and let $\omega^{* *}$ be its bidual, i.e. $\omega^{* *}=R:(R: \omega)$. Then:

1) $\omega: \omega=R$.
2) $l_{R}(I / J)=l_{R}(\omega: J / \omega: I)$.
3) $c(\omega)=c$ and $v(\omega)=\{j \in \mathbb{Z} \mid c-1-j \notin v(R)\}$.
4) $\omega: \bar{R}=\gamma$.
5) $\omega \subseteq \omega^{* *}=\omega: \omega \theta_{D}$.
6) R is Gorenstein $\Longleftrightarrow \omega=R \Longleftrightarrow \theta_{D}=R \Longleftrightarrow \omega=\omega^{* *}$. Hence: R not Gorenstein $\Longrightarrow \gamma \subseteq \theta_{D} \subseteq \mathfrak{m}$.
7) If $S \supseteq R$ is an overring birational to R, then $\omega: S$ is a canonical module for S.

Lemma 2.2. Let I be a fractional ideal of R.
i) If $I \supseteq \gamma$ and $v(I) \subseteq v(\omega)$, then there exists a unit $u \in \bar{R}$ such that $u I \subseteq \omega$. If $v(I)=v(\omega)$, then $u I=\omega$.
ii) There exists a unit $u \in \bar{R}$ such that $u t^{c-c(I)} I \subseteq \omega$.

Proof.
i) We note that $I \supseteq \gamma \Longrightarrow \omega: I \subseteq \bar{R} \Longrightarrow(\omega: I) \bar{R} \subseteq \bar{R}$. The hypotheses $I \supseteq \gamma$ and $\nu(I) \subseteq \nu(\omega)$ imply that $c(I)=c$, hence $I: \bar{R}=\gamma$ and $l_{R}(\bar{R} /(\omega: I) \bar{R})=\bar{l}_{R}(I: \bar{R} / \omega: \bar{R})=0$. From the equality $\bar{R}=(\omega: I) \bar{R}$ we deduce that $\omega: I$ contains a unit u of \bar{R} and $u I \subseteq \omega$. The second assertion is now immediate, since $l_{R}(\omega / u I)=\#[v(\omega) \backslash v(I)]=0$.
ii) We can apply item i) to the fractional ideal $t^{c-c(I)} I$, because the conditions $t^{c-c(I)} I \supseteq \gamma$ and $v\left(t^{c-c(I)} I\right) \subseteq v(\omega)$ are satisfied.
A strict connection between the value sets of θ_{D} and ω^{2} is remarked by D'Anna in [5], Lemma 3.2. Part iii) of next lemma is a slight generalization of it.

Lemma 2.3. Let I be a fractional ideal of R. Let $h, s \in \mathbb{Z}, h \geq 1$. Then:
i) $v(\omega: I)=v(\omega)-v(I)$.
ii) $v(\omega: I)=\{y \in \mathbb{Z} \mid c-1-y \notin v(I)\}$.
iii) $s \in v\left(R: \omega^{h-1} I\right) \Longleftrightarrow c-1-s \notin v\left(\omega^{h} I\right)$.

$$
\text { In particular: } s \in v\left(\theta_{D}\right) \Longleftrightarrow c-1-s \notin v\left(\omega^{2}\right)
$$

Proof.
i) The proof given in [13], Prop. 2.4, works also under our assumptions.
ii) \subseteq Using i), we see that $y \in v(\omega: I) \Longrightarrow c-1-y \notin \nu(I)$, since $c-1 \notin v(\omega)$.
\supseteq Let $y \in \mathbb{Z}$ be such that $c-1-y \notin v(I)$, and let $z \in v(I)$. Again by i) we can prove that $y+z \in \nu(\omega)$. Now $c-1-(y+z)=(c-1-y)-z \notin \nu(R) \Longrightarrow$ $y+z \in v(\omega)$.
iii) Observe that $R: \omega^{h-1} I=\omega: \omega^{h} I$, then apply ii).

Lemma 2.4. Let I be a fractional ideal of R and let $J:=I: \omega$. Then
i) J is a reflexive R-module, i.e. $J=R:(R: J)$.
ii) If J is not invertible, then $\mathfrak{m}: \mathfrak{m} \subseteq J: J$.

In particular, θ_{D} is reflexive and $\mathfrak{m}: \mathfrak{m} \subseteq \theta_{D}: \theta_{D}$.

Proof.

i) The inclusion $J \subseteq R:(R: J)$ always holds. To prove \supseteq, observe that

$$
\begin{gathered}
x(R: J) \subseteq R \Longrightarrow x(R: J) \omega \subseteq \omega \Longrightarrow \\
x \omega \subseteq \omega:(R: J)=\omega:(\omega: J \omega)=J \omega \subseteq I \Longrightarrow x \in J .
\end{gathered}
$$

ii) It suffices to note that

$$
\begin{gathered}
J \text { not invertible } \Longrightarrow J(R: J) \neq R \Longrightarrow \\
J(R: J) \subseteq \mathfrak{m} \Longrightarrow J: J=R: J(R: J) \supseteq R: \mathfrak{m}=\mathfrak{m}: \mathfrak{m}
\end{gathered}
$$

In the last part of this section we point out how θ_{D} brings some relations with the bidual $\omega^{* *}$ and the blowing up of the canonical module.

Denote by $B:=\cup_{n=0, \ldots, \infty} \omega^{n}: \omega^{n}$ the blowing up of the canonical module of R (independent on the choice of ω). This overring has been studied recently in relation to almost Gorenstein rings (see [2], ch.3, [5], ch.3).

Remark 2.5. The ring B satisfies the following properties:
i) For $m \gg 0, B=\omega^{m}: \omega^{m}=\omega^{m}$. (See [5], 3).
ii) B is a reflexive R-module. In fact $B=\left(\omega^{m}: \omega^{m-1}\right): \omega$ and we can apply Lemma 2.4.
iii) $\gamma \subseteq R: B \subseteq \theta_{D}$.
iv) $\omega(R: B)=\omega: B=R: B$. In fact $\omega(R: B)=\omega:(\omega:(\omega(R: B)))=$ $\omega: B \omega: \omega^{m+1}=R: \omega^{m}=R: B$.
v) $\theta_{D}: \theta_{D} \subseteq B$. In fact $B=R:(R: B)=R: \omega(R: B)=\theta_{D}:(R: B) \supseteq$ $\theta_{D}: \theta_{D}$.

Proposition 2.6. The following facts hold:
i) $\omega \subseteq \omega^{* *} \subseteq \omega^{2} \subseteq B \subseteq \bar{R}$.
ii) $l_{R}\left(\theta_{D} / \gamma\right)=l_{R}\left(\bar{R} / \omega^{2}\right)$.
iii) $l_{R}\left(\omega^{2} / \omega^{* *}\right)=l_{R}\left(\omega \theta_{D} / \theta_{D}\right)$.
iv) If R is not Gorenstein, then:
$c\left(\omega^{2}\right) \leq c\left(\omega^{* *}\right) \leq c-e$.
$c\left(\omega^{2}\right)=c-e \Longleftrightarrow e \in \nu\left(\theta_{D}\right)$.

Proof.

i) $\omega^{* *}=R:(R: \underline{\omega})=\omega: \omega\left(\omega: \omega^{2}\right) \subseteq \omega:\left(\omega: \omega^{2}\right)=\omega^{2}$.
ii) Since $\omega: \gamma=\bar{R}$ and $\omega: \theta_{D}=\omega:\left(\omega: \omega^{2}\right)=\omega^{2}$, using the second property in Prop. 2.1, we get the thesis.
iii) is immediate by Prop. 2.1.
iv) $j \geq c-e \Longrightarrow c-1-j \leq e-1 \Longrightarrow$ either $c-1-j=0$ or $c-1-j \notin v(R)$.

Hence $j \in v(\omega) \cup\{c-1\} \subseteq v\left(\omega^{* *}\right)$.
Finally observe that $e \in v\left(\bar{\theta}_{D}\right) \Longleftrightarrow c-1-e \notin \nu\left(\omega^{2}\right)$ by Lemma 2.3.
Since a ring is Gorenstein if and only if $B=\omega$, it is now natural to set a characterization for the condition $B=\omega^{2}$. The condition is always verified by almost Gorenstein rings (see [2], Prop. 28). We point out that there exist not almost Gorenstein rings with $B=\omega^{2}$, for instance the semigroup ring $R=\mathbb{C}\left[\left[t^{h}\right]\right], h \in v(R)=\{0,7,8,9,11,13, \rightarrow\}$.

Theorem 2.7. The following conditions are equivalent:
i) $\omega^{* *}$ is a ring.
ii) $\omega^{* *}=\omega^{2}$.
iii) $\omega \theta_{D}=\theta_{D}$.
iv) $\theta_{D}: \theta_{D}=B$.
v) $R: B=\theta_{D}$.
vi) $B=\omega^{2}$.

Proof.

i) $\Longrightarrow i i)$. In this hypothesis: $\omega \subseteq \omega^{* *} \subseteq \omega^{2} \subseteq \omega \omega^{* *}=\omega^{* *}$.
ii) $\Longrightarrow i i i)$ is immediate by Prop. 2.6.
iii) $\Longrightarrow i v) \omega \theta_{D}=\theta_{D} \Longrightarrow \omega^{m} \theta_{D}=\theta_{D} \Longrightarrow B \subseteq \theta_{D}: \theta_{D}$ and the other inclusion always holds (see Remark 2.5).
iv) $\Longrightarrow v) \theta_{D}: \theta_{D}=B \Longrightarrow B \theta_{D} \subseteq R \Longrightarrow \theta_{D} \subseteq R: B$ and the other inclusion always holds (see Remark 2.5).
v) $\Longrightarrow v i) \theta_{D}=\omega: \omega^{2}=R: B=\omega: B \omega=\omega: B \Longrightarrow \omega:\left(\omega: \omega^{2}\right)=$ $\omega:(\omega: B)$.
vi) \Longrightarrow i) $\omega^{3} \theta_{D}=\omega^{2} \theta_{2} \subseteq \omega \Longrightarrow \omega^{2} \subseteq \omega: \omega \theta_{D}=\omega^{* *} \Longrightarrow \omega^{* *}=B$.

3. Type-sequences and length.

The number p of 1 's in $t . s .(R)$, is related to the length of the R / \mathfrak{m}-algebra R / θ_{D} and is involved in other interesting inequalities. First we show (Prop. 3.4) how elements of $v\left(\theta_{D}\right)$ give rise to 1 's in $t . s .(R)$, and in $t . s .\left(\theta_{D}\right)$. From this we get $\delta \leq(c-\delta) r_{1}-p\left(r_{1}-1\right) \leq(c-\delta) r_{1}-l_{R}\left(\theta_{D} / \gamma\left(r_{1}-1\right)\right.$ (Theorem 3.7) and we state other bounds.

Proposition 3.1. (see [5]) Let $v(R)=\left\{s_{0}=0, s_{1}, \ldots . s_{n}=c, \rightarrow\right\}, n=c-\delta$, and let t.s. $(R)=\left[r_{1}, \ldots ., r_{n}\right]$ and t.s. $\left(\theta_{D}\right)=\left[t_{1}, \ldots ., t_{n}\right]$ be the type sequences of R and θ_{D} respectively. Then:
i) $c\left(\theta_{D}: R_{i}\right)=c\left(R: R_{i}\right)=c-s_{i}$, for each $i=0, \ldots, n$.
ii) $v\left(\theta_{D}: R_{i}\right)_{<c-s_{i}}=\left\{c-1-b, b \in \mathbb{Z}_{\geq s_{i}} \backslash v\left(\omega^{2} R_{i}\right)\right\}$, for each $i=0, \ldots ., n$.
iii) Let $n_{i}:=c\left(R: R_{i}\right)-\delta\left(R: R_{i}\right), m_{i}:=c\left(\theta_{D}: R_{i}\right)-l_{R}\left(\bar{R} / \theta_{D}: R_{i}\right)$. Then:

1. $r_{i+1}=s_{i+1}-s_{i}+n_{i+1}-n_{i}, \quad i=0, \ldots ., n-1$.
2. $t_{i+1}=s_{i+1}-s_{i}+m_{i+1}-m_{i}, \quad i=0, \ldots ., n-1$.
3. $\sum_{i=1}^{n} r_{i}=\delta$.
4. $\sum_{i=1}^{n} t_{i}=\delta+l_{R}\left(R / \theta_{D}\right)$.
iv) Denoting by ω_{i} the canonical module $\omega:\left(R: R_{i}\right)$ of the overring $R: R_{i}$ obtained by duality, we have: $r_{i}=l_{R}\left(\omega_{i-1} / \omega_{i}\right)$.
Proof. By Lemma 2.3 we have that: $x \in \nu\left(\theta_{D}: R_{i}\right) \Longleftrightarrow c-1-x \notin \nu\left(\omega^{2} R_{i}\right)$.
i) If $j \geq c-s_{i} \Longrightarrow c-1-j<s_{i} \Longrightarrow c-1-j \notin \nu\left(\omega^{2} R_{i}\right) \Longrightarrow j \in \nu\left(\theta_{D}\right.$: $\left.R_{i}\right) \subseteq \nu\left(R: R_{i}\right)$. Moreover $s_{i} \in \nu\left(\omega R_{i}\right) \Longrightarrow c-s_{i}-1 \notin \nu\left(R: R_{i}\right)$ by Lemma 2.3.
ii) follows from the above considerations.
iii) For the first equality see [5]. The second one is analogous: by definition and item i), $m_{i+1}=c-s_{i+1}+l_{R}\left(\bar{R} / \theta_{D}: R_{i+1}\right)$ and $m_{i}=c-s_{i}+l_{R}\left(\bar{R} / \theta_{D}\right.$: $\left.R_{i}\right)$. Since $l_{R}\left(\bar{R} / \theta_{D}: R_{i}\right)-l_{R}\left(\bar{R} / \theta_{D}: R_{i+1}\right)=l_{R}\left(\theta_{D}: R_{i+1} / \theta_{D}: R_{i}\right)=$ t_{i+1}, we get the thesis by subtraction. The other equalities are immediate by definition.
iv) Apply Prop. 2.1, 7): $\omega_{i}=\omega:\left(R: R_{i}\right)=\omega:\left(\omega: \omega R_{i}\right)=\omega R_{i}$.

Proposition 3.2. Let t.s. $(R)=\left[r_{1}, \ldots ., r_{n}\right]$ and t.s. $\left(\theta_{D}\right)=\left[t_{1}, \ldots ., t_{n}\right]$. Let $x_{i-1} \in \mathfrak{m}$ be such that $v\left(x_{i-1}\right)=s_{i-1}<c$. Then:
i) $r_{i}=1 \Longleftrightarrow x_{i-1} \in \operatorname{Ann}_{R}\left(\omega /\left(x_{i-1} R+\omega R_{i}\right)\right)$.
ii) $r_{i}=1 \Longrightarrow t_{i}=1$.

Proof.
i) Since $R_{i-1}=x_{i-1} R+R_{i}$, we have $\omega R_{i-1}=x_{i-1} \omega+\omega R_{i}$. Then $r_{i}=l_{R}\left(\omega R_{i-1} / \omega R_{i}\right)=1 \Longleftrightarrow \omega R_{i-1}=x_{i-1} R+\omega R_{i} \Longleftrightarrow x_{i-1} \in$ $A n n_{R}\left(\omega /\left(x_{i-1} R+\omega R_{i}\right)\right)$.
ii) By hypothesis $\omega R_{i-1}=x_{i-1} R+\omega R_{i} \Longrightarrow \omega^{2} R_{i-1}=x_{i-1} \omega+\omega^{2} R_{i}$, hence by i), $\omega^{2} R_{i-1}=x_{i-1} R+\omega^{2} R_{i} \Longrightarrow t_{i}=l_{R}\left(\omega^{2} R_{i-1} / \omega^{2} R_{i}\right)=1$.
Lemma 3.3. ([5], Lemma 4.1) Let $z_{1}, \ldots ., z_{r}$ be any minimal set of generators of ω. Then, if $x_{i} \in R$ and $v\left(x_{i}\right)=s_{i}$, the R-module $\omega R_{i} / \omega R_{i+1}$ is generated by $x_{i} z_{1}+\omega R_{i+1}, \ldots ., x_{i} z_{r}+\omega R_{i+1}$.

Proposition 3.4. Let t.s. $(R)=\left[r_{1}, \ldots ., r_{n}\right]$ and t.s. $\left(\theta_{D}\right)=\left[t_{1}, \ldots ., t_{n}\right]$ be the type sequences of R and θ_{D} respectively. Then :

$$
s_{i} \in v\left(\theta_{D}\right) \Longrightarrow r_{i+1}=t_{i+1}=1
$$

Proof. $\quad r_{i+1}=l_{R}\left(\omega R_{i} / \omega R_{i+1}\right)$. Let $\omega=\left(1, z_{2}, \ldots, z_{r}\right)$ and let $x_{i} \in \theta_{D}$ be such that $v\left(x_{i}\right)=s_{i}<c$. Then $\omega R_{i}=<x_{i}, \ldots, x_{i} z_{r}>\bmod \omega R_{i+1}$, by Lemma 3.3. Thus $x_{i} \in R: \omega \Longrightarrow x_{i} z_{j} \in R_{i+1} \subseteq \omega R_{i+1}$ for all $j>1$ (since $\left.v\left(x_{i} z_{j}\right)>i\right) \Longrightarrow r_{i+1}=1$ and by Prop. 3.2, $t_{i+1}=1$.
Notation 3.5. We put:

$$
\begin{aligned}
p & :=\#\left[i \in\{1, \ldots, c-\delta\} \mid r_{i}=1\right] \\
\sigma & :=l_{R}(\omega / R)-l_{R}\left(R / \theta_{D}\right)=2 \delta-c-l_{R}\left(R / \theta_{D}\right)
\end{aligned}
$$

The invariant σ has been introduced in [9]. It is known that $\sigma(R) \geq 0$, when $r_{1} \leq 3$ or R is smoothable, but there are examples with $\sigma<0$ (see 4.12).
Lemma 3.6. The following facts hold:
i) $l_{R}\left(\theta_{D} / \gamma\right) \leq p$.
ii) $c-\delta-p \leq l_{R}\left(R / \theta_{D}\right) \leq c-\delta$.
iii) $3 \delta-2 c \leq \sigma \leq 3 \delta-2 c+p$.
iv) $c-p \leq \sum_{i=1}^{n} t_{i} \leq c$.

Proof.

i) follows from Prop. 3.4.
ii) First inequality comes from i), since $l_{R}\left(R / \theta_{D}\right)=l_{R}(R / \gamma)-l_{R}\left(\theta_{D} / \gamma\right)$; the second one holds since $\gamma \subseteq \theta_{D}$.
iii) is obvious by ii).
iv) $l_{R}\left(R / \theta_{D}\right)+\delta=\sum_{i=1}^{n} t_{i}$, so the inequalities are immediate from ii).

Theorem 3.7. Let p be the number defined in 3.5. Then:
$2(c-\delta)-p \leq \delta \leq(c-\delta) r_{1}-p\left(r_{1}-1\right) \leq(c-\delta) r_{1}-l_{R}\left(\theta_{D} / \gamma\right)\left(r_{1}-1\right)$.

Proof. Since $r_{i_{1}}=\ldots=r_{i_{p}}=1$, and $r_{i} \leq r_{1} \forall i$, using Prop. 3.1, iii) we get:
$c-\delta+(c-\delta-p) \leq \delta=\sum_{1}^{c-\delta} r_{i}=c-\delta+\sum_{1}^{c-\delta}\left(r_{i}-1\right) \leq c-\delta+(c-\delta-p)\left(r_{1}-1\right)$.
To get the last inequality use Lemma 3.6, i).

Corollary 3.8. Let, as above, $n=c-\delta$. Then:
i) $2 \delta-c=\sum_{i=1}^{n}\left(r_{i}-1\right) \leq(c-\delta-p)\left(r_{1}-1\right) \leq l_{R}\left(R / \theta_{D}\right)\left(r_{1}-1\right)$.
ii) $2 \delta-c \leq l_{R}\left(R / \theta_{D}\right)\left(t_{1}-2\right)$.

Proof.

i) See the proof of Theorem 3.7, then use Lemma 3.6, ii).
ii) As in the proof of Theorem 3.7, using Prop. 3.1 and Prop. 3.2, we obtain:
$2 \delta-c+l_{R}\left(R / \theta_{D}\right)=\sum_{i=1}^{n}\left(t_{i}-1\right) \leq(c-\delta-p)\left(t_{1}-1\right) \leq l_{R}\left(R / \theta_{D}\right)\left(t_{1}-1\right)$.

Corollary 3.9. Either $t_{1}=1$ (i.e. R is Gorenstein) or $t_{1} \geq 3$.
From the first inequality of Theorem 3.7 we deduce the following
Corollary 3.10. $p \geq 2 c-3 \delta$.
Of course, the above lower bound for p is significant in the case $2 c-3 \delta>0$. Using iii) of Lemma 3.6 we see that if $\sigma<0$, then $2 c-3 \delta>0$. Example 5 in 4.12 shows that the converse is false. The following bound for $l_{R}\left(R / \theta_{D}\right)$ is non trivial when $\sigma<0$ (see Example 4 in 4.12).

Proposition 3.11. $l_{R}\left(R / \theta_{D}\right) \leq(2 \delta-c)\left(r_{1}-1\right)$.
Proof. Let $\omega=\left(1, z_{2}, \ldots, z_{r_{1}}\right) R$ and consider, as in [10], Satz 3), for every $i=1, \ldots, r_{1}$ the R-module $\omega_{i}:=\left(1, \ldots, z_{i}\right) R$. In particular ω_{2} is twogenerated, so by [3], Satz $2, l_{R}\left(R / R: \omega_{2}\right)=l_{R}\left(\omega_{2} / R\right)$. It is clear that $\omega_{i+1} / \omega_{i} \simeq R / \mathfrak{b}_{i+1}$, where $\mathfrak{b}_{i+1}=A n n_{R}\left(\omega_{i+1} / \omega_{i}\right)$. By [10], Hilfssatz 4 and Satz 1 we obtain: $l_{R}\left(R: \omega_{i} / R: \omega_{i+1}\right) \leq l_{R}\left(R: \mathfrak{b}_{i+1} / R\right) \leq l_{R}\left(R / \mathfrak{b}_{i+1}\right)+2 \delta-$ $c=l_{R}\left(\omega_{i+1} / \omega_{i}\right)+2 \delta-c$. Since $R=R: \omega_{1} \supset R: \omega_{2} \supset \ldots \supset \supset: \omega_{r_{1}}=\theta_{D}$, we have $l_{R}\left(R / \theta_{D}\right)=l_{R}\left(R / R: \omega_{2}\right)+\sum_{i=2}^{r_{1}-1} l_{R}\left(R: \omega_{i} / R: \omega_{i+1}\right) \leq$ $l_{R}\left(\omega_{2} / R\right)+\sum_{i=2}^{r_{1}-1} l_{R}\left(\omega_{i+1} / \omega_{i}\right)+(2 \delta-c)\left(r_{1}-2\right)=l_{R}(\omega / R)+(2 \delta-c)\left(r_{1}-2\right)$. The thesis follows.

Remark 3.12. The difference $a:=(c-\delta) r_{1}-\delta$ has been taken into account by several authors. In [10] it is proved that $a \geq 0$, when R is a one-dimensional local analytically unramified Cohen Macaulay ring. In [11] it had already been shown that $a \geq 0$, under more particular hypotheses. In [4] some general stucture theorems are presented for rings with $a=0$ (the so called rings of maximal length) or $a=1$ (the so called rings of almost maximal length).

Theorem 3.7 implies that $a \geq l_{R}\left(\theta_{D} / \gamma\right)\left(r_{1}-1\right)$. Hence:

$$
\begin{aligned}
& a<r_{1}-1 \Longrightarrow \theta_{D}=\gamma \\
& a=r_{1}-1 \Longrightarrow l_{R}\left(\theta_{D} / \gamma\right) \leq 1
\end{aligned}
$$

The cases $a \leq r_{1}-1$ are studied in [6] and [7]. See also the following 5.2.

4. Relations between r_{i} 's and t_{i} 's.

Starting from the almost Gorenstein case, we are led to consider in a $t . s$. $\left[r_{1}, \ldots, r_{i}, 1,1, \ldots, 1\right]$ the index i of the last element r_{i} which is not 1 . This number has a central role in Theorem 4.3 which involves R_{i}, θ_{D} and B. When $i=1$, this theorem gives again the known characterizations of almost Gorenstein rings.
Lemma 4.1. Let J be any proper ideal of R. If $v\left(R_{i}\right) \subseteq v(J)$, then $R_{i} \subseteq J$.
Proof. In fact

$$
v\left(R_{i}\right) \subseteq v(J) \Longrightarrow v\left(R_{i} \cap J\right)=v\left(R_{i}\right) \Longrightarrow R_{i} \cap J=R_{i} \Longrightarrow R_{i} \subseteq J
$$

Lemma 4.2. The following facts hold:
i) $r_{i+1}>1 \Longrightarrow c-1 \in v\left(\omega^{2} R_{i}\right)$.
ii) $c-1 \in v\left(\omega^{2} R_{i}\right) \Longleftrightarrow R_{i} \nsubseteq \theta_{D}$.
iii) If $r_{n}>1$, then $t_{n} \geq r_{n}+1$.

Proof.

i) By Prop. 3.4, $r_{i+1}>1 \Longrightarrow s_{i} \notin v\left(\theta_{D}\right) \Longrightarrow c-1-s_{i} \in v\left(\omega^{2}\right) \backslash v(\omega) \Longrightarrow$ $c-1=s_{i}+\left(c-1-s_{i}\right) \in v\left(\omega^{2} R_{i}\right)$.
ii) By Lemma 2.3c-1 $\in \nu\left(\omega^{2} R_{i}\right) \Longleftrightarrow 0 \notin \nu\left(R: \omega R_{i}\right)$. Suppose $c-1 \in v\left(\omega^{2} R_{i}\right)$. If $R_{i} \subseteq \theta_{D}$, then $1 \in \theta_{D}: R_{i}=R: \omega R_{i}$, contradiction. Vice versa, if $R_{i} \nsubseteq \theta_{D}$, by Lemma 4.1 there exists an element $x \in R_{i} \backslash \theta_{D}$ such that $v(x) \notin v\left(\theta_{D}\right)$; then $u x \omega \nsubseteq R$ for all units $u \in \bar{R}$. It follows that $0 \notin \nu\left(R: \omega R_{i}\right)$.
iii) We have: $r_{n}=l_{R}\left(\omega R_{n-1} / \omega R_{n}\right)=l_{R}\left(\omega R_{n-1} / \gamma\right) \leq l_{R}\left(\omega^{2} R_{n-1} / \gamma\right)=$ $l_{R}\left(\omega^{2} R_{n-1} / \omega^{2} R_{n}\right)=t_{n}$. Looking at valuations we see that the above inequality is strict since $c-1 \in \nu\left(\omega^{2} R_{n-1}\right) \backslash \nu\left(\omega R_{n-1}\right)$, by i).
In [2] it is proved that
R is almost Gorenstein $\Longleftrightarrow \mathfrak{m}=\omega \mathfrak{m} \Longleftrightarrow r_{1}-1=2 \delta-c$.
Hence: R almost Gorenstein, not Gorenstein $\Longleftrightarrow \theta_{D}=\mathfrak{m}$. In other words: $t . s .(R)=\left[r_{1}, \ldots, 1\right]$ with $r_{1}>1 \Longleftrightarrow R_{1} \subseteq \theta_{D}$ and $R_{0} \nsubseteq \theta_{D}$.
Next proposition is a generalization of this fact.

Theorem 4.3. Let $1 \leq i \leq n$ and let $B=\omega^{m}$ be the blowing up of the canonical module of R. The following are equivalent:
i) $R_{i} \subseteq \theta_{D}$ and $R_{i-1} \nsubseteq \theta_{D}$.
ii) $B \subseteq R: R_{i}$ and $B \nsubseteq R: R_{i-1}$.
iii) t.s. $(R)=\left[r_{1}, \ldots, r_{i}, 1,1, \ldots, 1\right]$ with $r_{i}>1$.
iv) t.s. $\left(\theta_{D}\right)=\left[t_{1}, \ldots, t_{i}, 1,1, \ldots, 1\right]$ with $t_{i}>1$.

Proof.

i) \Longleftrightarrow ii) $R_{i} \subseteq \theta_{D} \Longleftrightarrow \omega R_{i}=R_{i} \Longleftrightarrow \omega^{m} R_{i}=R_{i} \Longleftrightarrow B \subseteq R: R_{i}$.
i) \Longrightarrow iii) By hypothesis $s_{j} \in v\left(\theta_{D}\right) \forall j \geq i \Longrightarrow r_{j}=1 \forall j>i$. We have to prove that $r_{i}>1$. If $r_{i}=1$, then by Prop. 3.2, i, $\omega R_{i-1}=x_{i-1} R+\omega R_{i} \subseteq R \Longrightarrow R_{i-1} \subseteq \theta_{D}$, absurd.
iii) \Longrightarrow iv) $r_{i}=l_{R}\left(\bar{R} / R: R_{i-1}\right)-l_{R}\left(\bar{R} / R: R_{i}\right)=l_{R}\left(\bar{R} / R: R_{i-1}\right)-(n-i)$ and analogously, by Prop. 3.2, ii), $t_{i}=l_{R}\left(\bar{R} / \theta_{D}: R_{i-1}\right)-(n-i) \Longrightarrow$ $t_{i} \geq r_{i}>1$.
$\mathrm{iv}) \Longrightarrow$ iii) If $i=n$, the implication is true by Prop. 3.2, $i i$). Let $i \leq n-1$. Surely, by Prop. 3.2, $r_{i}>1$ and by Lemma 4.2, iii), $r_{n}=1$. If $r_{j}>1$ with $i<j<n$ and all the subsequents equal to 1 , as above we would get $t_{j} \geq r_{j}>1$, contradiction.
iii) \Longrightarrow i) $r_{n}=1 \Longrightarrow \omega R_{n-1}=x_{n-1} R+\gamma \subseteq R \Longrightarrow R_{n-1} \subseteq \theta_{D}$. If also $r_{n-1}=1$, then $\omega R_{n-2}=x_{n-2} R+\omega R_{n-1} \subseteq R$, then $R_{n-2} \subseteq \theta_{D}$ and so on. If $R_{i-1} \subseteq \theta_{D}$, then $r_{i}=1$, and this concludes the proof.
Proposition 4.4. If $i \leq n$ is such that $r_{i}>1$ and $r_{j}=1$ for all $j \geq i+1$,

$$
\text { then } \quad t_{i}=r_{i}+1
$$

In particular: $r_{n}>1 \Longrightarrow t_{n}=r_{n}+1$.
Proof. By Theorem 4.3 we have $R_{i} \subseteq \theta_{D}$, hence $r_{i}=l_{R}\left(\omega R_{i-1} / R_{i}\right)$ and $t_{i}=l_{R}\left(\omega^{2} R_{i-1} / R_{i}\right)$. Since, by Lemma 4.2, $\left.i\right), c-1 \in v\left(\omega^{2} R_{i-1}\right)$, our thesis will follow by proving that $v\left(\omega^{2} R_{i-1}\right)=v\left(\omega R_{i-1}\right) \cup\{c-1\}$. Hence, let $m \in \nu\left(\omega^{2} R_{i-1}\right) \backslash \nu\left(\omega R_{i-1}\right)$: we claim that $m=c-1$. By Lemma $2.3 c-1-m \in \nu\left(R: R_{i-1}\right)$. Let $m=\nu(x), x \in \omega^{2} R_{i-1}$ and $c-1-m=v(y), y \in R: R_{i-1}$. If $v(y)>0$, then $y R_{i-1} \subseteq R_{i}$, hence $c-1=\nu(x y) \in v\left(\omega^{2} R_{i}\right)=v\left(R_{i}\right)$, absurd. Hence $v(y)=0$ and the thesis is achieved.

Proposition 4.5. The following are equivalent:
i) $s_{n-1} \in v\left(\theta_{D}\right)$.
ii) $s_{n-1}=c-2$.
iii) $r_{n}=1$.

Proof. Recall that $\omega R_{n}=\gamma$.
i) \Longrightarrow ii). If $c-2 \notin v(R)$, then $1 \in v(\omega)$. But this would imply that s_{n-1} and $s_{n-1}+1 \in \nu\left(\omega R_{n-1}\right) \backslash \nu(\gamma) \Longrightarrow r_{n}>1 \Longrightarrow s_{n-1} \notin \nu\left(\theta_{D}\right)$, absurd.
ii) \Longrightarrow iii) Obviously $\nu\left(\omega R_{n-1}\right) \backslash \nu(\gamma)=\left\{s_{n-1}\right\}$.

Corollary 4.6. $\quad B=\bar{R} \Longleftrightarrow r_{n}>1$.
Proof. $B=\bar{R} \Longleftrightarrow 1 \in v(\omega) \Longleftrightarrow c-2 \notin v(R)$.
Corollary 4.7. If $\theta_{D}=R_{i}$ for some i, then the equivalent conditions of Theorem 2.7 hold.
Proof. $B \subseteq R: R_{i}$ by Theorem $4.3 \Longrightarrow R: B \supseteq R_{i}=\theta_{D} \Longrightarrow R: B=\theta_{D}$, since the other inclusion is always true.

In the particular case $\theta_{D}=R_{n}$ we obtain:
Proposition 4.8. Set, as above, $n_{i}:=c\left(R: R_{i}\right)-\delta\left(R: R_{i}\right)$ and $m_{i}:=c\left(\theta_{D}:\right.$ $\left.R_{i}\right)-l_{R}\left(\bar{R} / \theta_{D}: R_{i}\right)$. The following facts are equivalent:
i) $\theta_{D}=\gamma$.
ii) $\omega^{2}=\bar{R}$.
iii) $t_{i}=s_{i}-s_{i-1}$ for each $i=1, \ldots, n$.
iv) $m_{i}=0$ for each $i=0, \ldots, n$.
v) $\theta_{D}: R_{i}=t^{c-s_{i}} \bar{R}$ for each $i=0, \ldots, n$.
vi) $\omega^{* *}=\bar{R}$.

If the above conditions hold, then
a) $t_{1}=e$.
b) $\forall i>1, \quad r_{i}>t_{i} \Longleftrightarrow n_{i}>n_{i-1}$.

Proof.
i) \Longleftrightarrow ii) See Prop. 2.6, ii).
ii) \Longrightarrow iii) In fact $t_{i}=l_{R}\left(\omega^{2} R_{i} / \omega^{2} R_{i-1}\right)=l_{R}\left(R_{i} \bar{R} / R_{i-1} \bar{R}\right)=s_{i}-s_{i-1}$.
iii) \Longrightarrow iv) We have seen in Prop. 3.1 that $t_{i}=s_{i}-s_{\underline{i-1}}+m_{i}-m_{i-1}$. Hypothesis $i i i$) implies that $m_{1}=m_{2}=\ldots=m_{n}=c(\bar{R})-\delta(\bar{R})=0$.
iv) $\Longrightarrow \mathrm{v}) m_{i}=0 \Longrightarrow v\left(\theta_{D}: R_{i}\right)=\left[c-s_{i},+\infty\right)$. Since the inclusion $t^{c-s_{i}} \bar{R} \subseteq \theta_{D}: R_{i}$ holds for every $i=0, \ldots ., n$, the equality of the value sets implies the other inclusion.
v) \Longrightarrow i) Take in v) $i=0$.
vi) $\Longrightarrow \mathrm{ii}$) and $i) \Longrightarrow v i$) are immediate by Prop. 2.6.
a) $t_{1}=s_{1}-s_{0}=e$.
b) Using Prop. 3.1 iii), it is immediate.

Our conjecture $t_{1} \geq r_{1}$ is true for rings having maximal C.M. type, namely $r_{1}=e-1$. In this case we get a more precise result.

Proposition 4.9. Let $e \geq 3$. If for some $1 \leq i \leq n r_{i}=e-1$, then $t_{i}=e$. Moreover, for the same i we have: $s_{i-1}=(i-1) e, \quad s_{i}=i e$.

Proof. Since $t^{e} R_{i-1} \subseteq R_{i} \subset R_{i-1}$, we have the chain $t^{e} \omega R_{i-1} \subseteq \omega R_{i} \subseteq$ ωR_{i-1}. Hypothesis $r_{i}=e-1$ implies that $l_{R}\left(\omega R_{i} / t^{e} \omega R_{i-1}\right)=1$ and since $c-1+e \in v\left(\omega R_{i}\right) \backslash v\left(t^{e} \omega R_{i-1}\right)$, it follows that

$$
\begin{equation*}
\omega R_{i}=t^{e} \omega R_{i-1}+z R \text { with } \quad v(z)=c-1+e . \tag{*}
\end{equation*}
$$

Analogously, considering the chain $t^{e} \omega^{2} R_{i-1} \subseteq \omega^{2} R_{i} \subseteq \omega^{2} R_{i-1}$, we see that the thesis $t_{i}=e$ is equivalent to $t^{e} \omega^{2} R_{i-1}=\omega^{2} R_{i}$. It will be sufficient to prove this last equality. From (*) we have $\omega^{2} R_{i}=t^{e} \omega^{2} R_{i-1}+z \omega$. Now, $z \in \gamma \subseteq R_{i}$ for every $i \Longrightarrow z \omega \subseteq \omega R_{i} \Longrightarrow \omega^{2} R_{i}=t^{e} \omega^{2} R_{i-1}+z R$. By Lemma $4.2 r_{i}>1 \Longrightarrow c-1 \in \nu\left(\omega^{2} R_{i-1}\right)$, then $\nu(z) \in \nu\left(t^{e} \omega^{2} R_{i-1}\right)$: we obtain that $t^{e} \omega^{2} R_{i-1}=\omega^{2} R_{i}$, as claimed.

To prove the other equalities, note that by definition $s_{i} \leq s_{i-1}+e$. As already remarked $r_{i}=e-1$ implies that $\nu\left(\omega R_{i}\right)=v\left(t^{e} \omega R_{i-1}\right) \cup\{c-1+e\}$. Hence $s_{i} \in v\left(t^{e} \omega R_{i-1}\right)$, but $s_{i} \geq s_{i-1}+e \Longrightarrow s_{i}=s_{i-1}+e=i e$.

For rings of C.M. type 2, we have a complete description of the type sequences of R and θ_{D}. In this case the arrow \Longrightarrow of Prop. 3.4 becomes \Longleftrightarrow.

Proposition 4.10. Suppose $r_{1}=2$. Then:

$$
\begin{aligned}
& s_{i} \in v\left(\theta_{D}\right) \Longrightarrow r_{i+1}=t_{i+1}=1 \\
& s_{i} \notin v\left(\theta_{D}\right) \Longrightarrow r_{i+1}=2, t_{i+1}=3 .
\end{aligned}
$$

Proof. We have from Corollary 3.8, i) and Prop. 3.11 that $l_{R}\left(R / \theta_{D}\right)=2 \delta-c$ hence $l_{R}\left(\theta_{D} / \gamma\right)=2 c-3 \delta$. The elements of the type sequence $\left[r_{1}, \ldots, r_{n}\right], n=$ $c-\delta$, of R are 1 or 2 , suppose p times 1 and $n-p$ times 2 . Then $\delta=\sum_{i=1}^{n} r_{i}=$ $p+2(n-p) \Longrightarrow p=2 c-3 \delta$. Hence $p=l_{R}\left(\theta_{D} / \gamma\right)$ and $r_{i+1}=1 \Longleftrightarrow s_{i} \in \theta_{D}$ (see Prop. 3.4). By hypothesis ω is two-generated, say $\omega=(1, z)$, then $1, z, z^{2}$ constitute a system of generators for ω^{2}; hence $t_{1} \leq 3$, and Corollary 3.9 implies that $t_{1}=3$. Consider now the type sequence of θ_{D}, by Prop. 3.2, $r_{i}=1 \Longrightarrow t_{i}=1$. Suppose that for some i either $t_{i}=2$ or $r_{i}=2$ and $t_{i}=1$. Then $\delta+l_{R}\left(R / \theta_{D}\right)=\sum_{i=1}^{n} t_{i}<l_{R}\left(\theta_{D} / \gamma\right)+3 l_{R}\left(R / \theta_{D}\right) \Longrightarrow \delta<c-\delta+2 \delta-c$, absurd. The thesis follows.

Another case in which our conjecture $t_{1} \geq r_{1}$ is true comes directly from Corollary 3.8:

Proposition 4.11. If $l_{R}\left(R / \theta_{D}\right)\left(r_{1}-2\right) \leq 2 \delta-c$, then $r_{1} \leq t_{1}$.

Proof. If $r_{1}>t_{1}$, from Corollary 3.8, ii), we get $2 \delta-c \leq l_{R}\left(R / \theta_{D}\right)\left(t_{1}-2\right)<$ $l_{R}\left(R / \theta_{D}\right)\left(r_{1}-2\right)$.

Example 4.12. Suppose $R=\mathbb{C}\left[\left[t^{h}\right]\right], h \in v(R)$, is a semigroup ring. The first three examples show that the converses of Prop. 3.2, ii), Prop. 3.4 and Prop. 4.9 are false.

1. Let $v(R)=\{0,10,11,17,20 \rightarrow\}$, then $\theta_{D}=\gamma, \delta=16, c-\delta=4<$ $12=2 \delta-c$, t.s. $(R)=[7,2,5,2], t . s .\left(\theta_{D}\right)=[10,1,6,3]$. In this case $t_{2}=1$ and $r_{2}>1$.
2. Let $v(R)=\{0,5,6,10 \rightarrow\}$, then $\theta_{D}=\gamma, \delta=7, c-\delta=3<4=2 \delta-c$, t.s. $(R)=[3,1,3]$, t.s. $\left(\theta_{D}\right)=[5,1,4]$. In this case $t_{2}=r_{2}=1$. But $s_{1}=5 \notin v\left(\theta_{D}\right)$.
3. Let $v(R)=\{0,10,11,12,14,17,20 \rightarrow\}$. Then: $c=20, \delta=14, r_{1}=5$, $\omega=\langle 0,1,3,4,6\rangle, \omega^{2}=\bar{R}$, hence $\theta_{D}=\gamma . t . s(R)=[5,1,1,3,2,2]$, $t . s .\left(\theta_{D}\right)=[10,1,1,2,3,3]$. In this case $t_{1}=10$, but $r_{1}=5<e-1$, moreover $r_{4}>t_{4}=2$.
4. Let $v(r)=\langle 13,121,133,163,164,166,168,170,171\rangle$. We have $\delta=$ $181, c=322, r_{1}=4, \theta_{D}=\langle 121,166,168,198,216,223,234,241,248$, $266\rangle$. Hence $l_{R}\left(R / \theta_{D}\right)=43$ and $\sigma=-3$. Here bound in Prop. 3.11 is better than bound in Lemma 3.6, ii). In fact: $2 \delta-c=40<l_{R}\left(R / \theta_{D}\right)=$ $43<(2 \delta-c)\left(r_{1}-1\right)=120<c-\delta=141$. The type sequences $t . s .(R)$ and $t . s .\left(\theta_{D}\right)$ are respectively:
$[44444322221221211111211112211211112211211$

$$
1122112111122112111121112111121 \ldots 1]
$$

[101010108633331321311111211113211211113211211
$1132112111132112111131112111131 \ldots 1]$

5 Let $v(R)=\{7,8,9,10,12 \rightarrow\}$. We have $\delta=7, r_{1}=3, c=12$. and R is almost Gorenstein, so $\theta_{D}=\mathfrak{m}$, hence $\sigma=1$, but $3 \delta-2 c<0$.

5. Minimality and maximality.

In the comparison between the type sequences of the ring and of the Dedekind different, properties like minimality and maximality are completely equivalent.

- Minimal type sequences. In [2] one can find the properties of almost Gorenstein rings. Analogous properties for fractional ideals are considered in [13]: a fractional ideal I is called of minimal type sequence (m.t.s. for short) if and only if $t . s .(I)=[r(I), 1, \ldots, 1]$, where $r(I)$ is the Cohen Macaulay type
of I as an R-module. Since it is well known that $r(I)=1 \Longleftrightarrow I \simeq \omega$, it follows in particular that $t_{1}=1 \Longrightarrow R$ is Gorenstein.

Next proposition deals with the m.t.s. property in the not Gorenstein case.

Proposition 5.1. Let R be not Gorenstein. The following are equivalent:

i) R is almost Gorenstein.
ii) θ_{D} is m.t.s.
iii) $\omega^{* *}=R: \mathfrak{m}$,
iv) $B=R: \mathfrak{m}$.

In this case $t_{1}=r_{1}+1$.

Proof.

i) \Longleftrightarrow ii) is equivalence iii$) \Longleftrightarrow$ iv) of Theorem 4.3 for $i=1$.
i) \Longrightarrow iii) is immediate, since when R is almost Gorenstein, we have $\theta_{D}=\mathfrak{m}=\mathfrak{m} \omega$ and by Prop. $2.6 \omega^{* *}=\omega^{2}=R: \mathfrak{m}$. Last equality is proved in [2], Prop. 28.
iii) \Longrightarrow iv) $\omega^{* *}$ is a ring $\Longrightarrow \omega^{* *}=\omega^{2}=B$ by Theorem 2.7.
i) \Longrightarrow iv) has been proved by D'Anna in [5], Prop. 3.4.

- Maximal type sequences. Recalling that in general t.s. $(R)=$ [r_{1}, \ldots, r_{n}], with $r_{1} \leq e-1$ and $r_{i} \leq r_{1}$, of course "maximal" type sequence means $t . s .(R)=[e-1, \ldots ., e-1]$. In [7] and [6] the authors characterize all the rings whose type sequence is closer to the maximal one in the following sense: $t . s .(R)=[e-1, \ldots ., e-1, e-1-a]$. For simplicity, we call a-maximal a type sequence of this form.

Proposition 5.2. (See [6] and [7]). Let $a \in \mathbb{N}$ be such that $a \leq r_{1}-1$. The following facts are equivalent:
i) $(c-\delta) r_{1}(R)-\delta=a$ and $r_{1}=e-1$.
ii) $v(R)=\{0, e, 2 e, \ldots .,(n-1) e, n e-a, \rightarrow\}$.
iii) t.s. $(R)=[e-1, \ldots ., e-1, e-1-a]$.

Moreover, if $a \leq r_{1}-2$, then condition $r_{1}=e-1$ in i) is superflous.
We want to show now that the a-maximality of $t . s .(R)$ is equivalent to the a-maximality of t.s. $\left(\theta_{D}\right)$, i.e. t.s. $\left(\theta_{D}\right)=[e, \ldots ., e, e-a]$, (see Prop. 5.4). To do this we need some more or less well known results, that we list below for our convenience. In the following $\left\langle l_{1}, \ldots ., l_{i}\right\rangle$ denotes the $v(R)$-set generated by $l_{1}, \ldots ., l_{i}$ and, for any numerical set $H \subset \mathbb{Z}, H+l:=\{h+l, h \in H\}$.

Lemma 5.3. Let $0 \leq a \leq e-2$ and let $v(R)=\{0, e, 2 e, \ldots,(n-1) e, n e-$ $a, \rightarrow\}$. In this case $c=n e-a, n=c-\delta$.
i) Canonical ideals:

For $a=0$ then $v(\omega)=\langle 0,1,2, \ldots ., e-2\rangle$. Call it $v\left(\omega_{0}\right)$.
For any $a \geq 1$, change the last a generators by addying 1 to each one, i.e.
$\nu\left(\omega_{a}\right)=\langle 0,1, \ldots, e-a-2, e-a, \ldots, e-1\rangle$.
In particular, $v\left(\omega_{e-2}\right)=\langle 0,2,3, \ldots ., e-1\rangle$.
ii) Type sequence of R :

$$
t . s .(R)=[e-1, \ldots ., e-1, e-1-a] .
$$

iii) Omega square:
for $a=0, \ldots ., e-3 \quad \omega^{2}=\bar{R}$,
for $a=e-2 \quad \nu\left(\omega^{2}\right)=\{0,2, \rightarrow\}$.
iv) Type sequence of θ_{D} :
for $a=0, \ldots ., e-3 \quad$ t.s. $\left(\theta_{D}\right)=[e, e, \ldots ., e, e-a]$,
for $a=e-2 \quad t . s .\left(\theta_{D}\right)=[e, e, \ldots . e, 1]$.
v) Dedekind different:
for $a=0, \ldots, e-3 \quad \theta_{D}=\gamma$,
for $a=e-2 \quad \theta_{D}=z R+\gamma$ with $v(z)=(n-1) e$.
Proof.
i) Just remember that $v(\omega)=\{j \in \mathbb{Z} \mid c-1-j \notin v(R)\}$.
ii) For every $a=0, \ldots, e-2$ and for every $i=0, \ldots, n-1$, we have $v\left(\omega R_{i}\right)=v(\omega)+i e$. Then for every $i=0, \ldots, n-2, v\left(\omega R_{i}\right) \backslash$ $v\left(\omega R_{i+1}\right)=\{0,1, \ldots ., e-a-2, e-a, \ldots ., e-1\}+i e$. So we obtain that $r_{i+1}=l_{R}\left(\omega R_{i} / \omega R_{i+1}\right)=e-1$. Let now $i=n-1$. By definition $r_{n}=\#\left[\nu\left(\omega R_{n-1}\right) \backslash v(\gamma)\right]$. Since $v\left(\omega R_{n-1}\right)=v(\omega)+(n-1) e=$ $\langle(n-1) e,(n-1) e+1, \ldots, n e-a-2, n e-a, \ldots, n e-1\rangle$, we see that only the first $e-a-1$ elements are smaller than $c=n e-a$ and we conclude that $r_{n}=e-a-1$.
iii) For $a=0, \ldots, e-3$ we see that $1 \in v(\omega)$, then $\omega^{2}=\bar{R}$. For $a=e-2$, by item $i) \omega=\langle 0,2,3, \ldots, e-1\rangle$, then $\omega^{2}=\{0,2, \rightarrow\}$.
iv) For $a=0, \ldots, e-3$ and for $i=0, \ldots, n-2$, using iii) we get $t_{i+1}=$ $l_{R}\left(R_{i} \bar{R} / R_{i+1} \bar{R}\right)=e$. For $a=e-2$ and for $i=0, \ldots, n-2$, we have $\nu\left(\omega^{2} R_{i}\right) \backslash \nu\left(\omega^{2} R_{i+1}\right)=\{0,2, \ldots, e-1, e+1\}+i e$ and we get again $t_{i+1}=$ e. It remains to compute the last component $t_{n}=\#\left[\nu\left(\omega^{2} R_{n-1}\right) \backslash \nu(\gamma)\right]$. For $a=0, \ldots, e-3, v\left(\omega^{2} R_{n-1}\right)=v\left(R_{n-1} \bar{R}\right)=\{(n-1) e, \rightarrow\}$; in this set the elements $<c$ are $e-a$, so $t_{n}=e-a$. For $a=e-2$, we have by i) $r_{n}=1$, then by Prop. 3.2 also $t_{n}=1$.
v) The thesis follows from iii), by applying Lemma 2.3.

Proposition 5.4. Let $e \geq 3$.

i) For $0 \leq a<e-2$,
$t . s .(R)=[e-1, \ldots ., e-1, e-1-a] \Longleftrightarrow t . s .\left(\theta_{D}\right)=[e, e, \ldots ., e, e-a]$.
ii) t.s. $(R)=[e-1, \ldots ., e-1,1] \Longleftrightarrow t . s .\left(\theta_{D}\right)=[e, e, \ldots, e, 1]$.

Proof. Both implications \Longrightarrow follow from Prop. 5.2 and Lemma 5.3.
i) \Longleftarrow Suppose $0 \leq a<e-2$ and t.s. $\left(\theta_{D}\right)=[e, e, \ldots, e, e-a]$. By Prop. $4.4 r_{n}=\delta-\sum_{i=1}^{n-1} r_{i}=e-a-1$ and by hypothesis $\delta+l_{R}\left(R / \theta_{D}\right)=n e-a$. Then $n e-a-l_{R}\left(R / \theta_{D}\right)-\sum_{i=1}^{n-1} r_{i}<e-a \Longrightarrow$ $\sum_{i=1}^{n-1} r_{i}>(n-1) e-l_{R}\left(R / \theta_{D}\right)=(n-1)(e-1)+\left(n-l_{R}\left(R / \theta_{D}\right)\right)-1$, i.e. $\sum_{i=1}^{n-1} r_{i} \geq(n-1)(e-1)+\left(n-l_{R}\left(R / \theta_{D}\right)\right)$. On the other hand $\sum_{i=1}^{n-1} r_{i} \leq$ $(n-1) r_{1} \leq(n-1)(e-1)$. The only possibility is $\sum_{i=1}^{n-1} r_{i}=(n-1)(e-1)$ and $l_{R}\left(R / \theta_{D}\right)=n$, i.e. $\theta_{D}=t^{c} \bar{R}$. Hence $r_{i}=e-1$ for $i=1, \ldots, n-1$ and $r_{n}=e-a-1$.
ii) \Longleftarrow Suppose $t . s .\left(\theta_{D}\right)=[e, e, \ldots ., e, 1]$. By Lemma $4.2 r_{n}=1$. As in the above item we find $\sum_{i=1}^{n-1} r_{i}=(n-1)(e-1)+n-l_{R}\left(R / \theta_{D}\right)-1$. Hence $n-l_{R}\left(R / \theta_{D}\right)-1 \leq 0$, i.e. either $n-l_{R}\left(R / \theta_{D}\right)=0$ or $n-l_{R}\left(R / \theta_{D}\right)=1$. In the first case $\theta_{D}=\gamma$, moreover $\delta=\sum_{i=1}^{n-1} r_{i}+1=(n-1)(e-1) \Longrightarrow$ $\delta=n e-n-e+1=n e-c+\delta-e+1 \Longrightarrow c-1=n e-e$, which is a contradiction. The other possibility leads to $l_{R}\left(\theta_{D} / \gamma\right)=1$ and $\sum_{i=1}^{n-1} r_{i}=(n-1)(e-1)$, hence $r_{i}=e-1$ for every $i=0, \ldots, n-1$.

REFERENCES

[1] V. Barucci - D.E. Dobbs - M. Fontana, Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Mem. A. M. S., 125, n. 598 (1997).
[2] V. Barucci - R. Fröberg, One-Dimensional Almost Gorenstein Rings, Journal of Algebra, 188 (1997), pp. 418-442.
[3] R. Berger, Differentialmoduln eindimensionaler lokaler Ringe, Math. Zeitsch r., 81 (1963), pp. 326-354.
[4] W.C. Brown -J. Herzog, One Dimensional Local rings of Maximal and Almost Maximal Length, Journal of Algebra, 151 (1992), pp. 332-347.
[5] M. D'Anna, Canonical Module and One-Dimensional Analytically Irreducible Arf Domains, Lecture Notes in Pure and Applied Math., Dekker, vol 185 (1997).
[6] M. D'Anna - D. Delfino, Integrally closed ideals and type sequences in onedimensional local rings, Rocky Mountain J. Math., 27-4 (1997), pp. 1065-1073.
[7] D. Delfino, On the inequality $\lambda(\bar{R} / R) \leq t(R) \lambda(R / C)$ for one-dimensional local rings, J. Algebra, 169 (1994), pp. 332-342.
[8] J. Herzog - E. Kunz, Der kanonische Modul eines Cohen-Macaulay Rings, Lecture Notes in Math. vol. 238, Springer, Berlin, 1971.
[9] J. Herzog - R. Waldi, Differentials of linked curve singularities, Arch. Math., 42 (1984), pp. 335-343.
[10] J. Jäger, Längenberechnung und kanonische Ideale in eindimensionalen Ringen, Arch. Math., 29 (1977), pp. 504-512.
[11] T. Matsuoka, On the degree of singularity of one-dimensional analytically irreducible noetherian rings, J. Math. Kyoto Univ., 11-3 (1971), pp. 485-491.
[12] E. Kunz - R. Waldi, Regular Differential Forms, Contemporary Mathematics, Vol. 79, Am. Math. Soc. (1986).
[13] A. Oneto - E. Zatini, Type-sequences of modules, Jour. of Pure Appl. Algebra, 160 (2001), pp. 105-122.

Francesco Odetti and Anna Oneto
Dipartimento di Metodi e Modelli Matematici
Università di Genova
P.le Kennedy, Pad. D
16129 Genova (ITALY)
e-mail: odetti@dimet.unige.it
oneto@dima.unige.it
Elsa Zatini
Dipartimento di Matematica
Università di Genova
Via Dodecaneso, 35
16146 Genova (ITALY)
e-mail:zatini@dima.unige.it

