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Dedicated to Silvio Greco in occasion of his 60-th birthday.

Let R be a one-dimensional, local, Noetherian domain. We assume R
analitycally irreducible and residually rational. Let w be a canonical module
of R suchthat R € w C R and let 6p := R : w be the Dedekind different of
R.

Our purpose is to study how 6p is involved in the type sequence of R
and to compare the type sequence of R with the type sequence of p (for the
notion of type sequence we refer to [11], [1] and [13]). These relations yield
some interesting consequences.

1. Introduction.

Let (R, m) be a one-dimensional, local, Noetherian domain and let R be
the integral closure of R in its quotient field K. We assume that R is a DVR and
a finite R-module, which means that R is analitycally irreducible. Let 7 € R be
a uniformizing parameter for R, so that ¢ R is the maximal ideal of R. We also
suppose R to be residually rational, i.e. R/m ~ R/tR.

In our hypotheses there exists a canonical module of R unique up to
isomorphism, namely a fractional ideal w such that  : (w : I) = I for each
fractional ideal I of R. We can assume that R € w C R. The Dedekind
different of R is the ideal 6p := R : w.

Let v : K —> Z U oo be the usual valuation associated to R. The image
V(R) = {v(x), x e R, x # 0} C N is a numerical semigroup of N.
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The multiplicity of R is the smallest non-zero element e in v(R). The
conductor of v(R) is the minimal ¢ € v(R) such thatevery m > cisin v(R) and
y := t°R is the conductor ideal of R. We denote by 8 the classical singularity
degree, that is the number of gaps of the semigroup v(R) in N.

We briefly recall the notion of fype sequence given for rings in [11],
recently revisited in [1] and extended to modules in [13].

Letn =c¢—4,and call 5o =0, s, ...,s, = c the first n + 1 elements of
V(R). Form the chain of ideals Ry D Ry D R, D ... D R,, where, for each i,
Ri:={xeR : v(x) = s}

Notethat R =Ry, Ry =m, R, = y.

Now construct the two chains:
R=R:RRCR:mCR:RC...CR:R,=R
bp=0p:RyCOp:mCOp:R,C...CHOp:R, = R

For every i = 1...n, define

ri =Ir(R: R;i/R: Ri_1) =Ilg(wR;_1/wR;),
ti =IrOp : Ri/0p : Ri_1) = Ig(@*Ri_1 /0’ R;).

The type sequence of R, denoted by ¢.s.(R), is the sequence [ry, ..., r,]. The
type sequence of 6p, denoted by ¢.s.(0p), is the sequence [f4, ..., t,]. Observe
that r; is the Cohen Macaulay type of R which is also the minimal number of
generators of w and that #; is the C.M. type of the R-module 6, or the minimal
number of generators of w?. Moreover, for every i, we have 1 < r; < r; and
1 <t <t (seee.g. [13], Prop. 1.6, for all details).

We show in Prop. 3.4 that, if s; € v(6p), then the correspondent r; + 1 is
1. Hence, denoting by p the number of 1°s in the type sequence of R, we get
(see Theorem 3.7) the inequalities

§<(c—=8r—pr—1) < (c—=8r —Ilg@p/y)r —1)

which improve the well known formula § < (c — §)r; (see Remark 3.12).

A ring R is called almost Gorenstein ring if its type sequence is of the
kind [ry, 1, ..., 1]; in the general case we focus our attention to the last i such
that r; > 1, and we show its special meaning related to the blowing up of
the canonical module and to the Dedekind different (Theorem 4.3). An easy
corollary is the inequality /g (R /6p) < i.

We compare the two type sequences in several cases. For instance, in a
ring R of CM type 2 they can be completely determined by using the Dedekind
different (Prop. 4.10). Under suitable hypotheses we have that r; < #;, although
this is not always true. We conjecture however that r; < #; always holds and we
can prove this inequality in the following cases:

e R is almost Gorenstein (see Prop. 5.1);
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e R has C.M. type 2, 3, e — 1 (see Prop. 4.10, Corollary 3.9, Prop. 4.9 );
e Op =y (see Prop. 4.8);
e R satisfies the inequality [z (R/0p)(r; —2) < 2§ — ¢ (see Prop. 4.11).

In section 5 some results are achieved for minimal and maximal type
sequences. In particular in Prop. 5.1, we prove that R is a almost Gorenstein
ring, (that is ¢.s.(R) is minimal), if and only if 7.s.(0p) is also minimal. On
the other side we prove in Prop. 5.4, that the f.s.(R) is maximal, i.e. of

thekind [e — 1,....,e — 1,e — 1 — a] for some a < e — 2 or of the kind
[e —1,...,e — 1, 1], if and only if ¢.5s.(8p) is maximal, i.e. of the kinds
le, e, .....,e,e —al, e, e, ...., e, 1] respectively.

2. Preliminaries and remarks on the canonical module.

A fractional ideal of the value semigroup v(R) is a subset H C Z such that
H 4+ v(R) C H. We denote by c(H) the conductor of H, which is the smallest
integer j € H such that j + N € H. The number §(H) := #[N,, \ H] where
ho = min{h € H} is the number of gaps of H. For any fractional ideal I of R,
v(I) is a fractional ideal of v(R). Further we set:

c(l) :=c(v(l)), s(1) :=48(v()), c:=c(R), 8 :=48(R).

We point out the useful fact that, given two fractional ideals I, L, I, € I,
the length of the R-module /;/I; can be computed by means of valuations:
Ir(l /1) = #[v(I1) \ v(I1)], (see [11], Proposition 1).

Now we collect some of the properties of the canonical module which are
important in this context.

First we recall the following well-known:

Proposition 2.1. (see [8], [10], [12]) Let w be a canonical module of R such
that R C w C R and let w™* be its bidual, i.e. ®* = R : (R : w). Then:

1) w:w=R.

2) Ig()))=Ilg(w: J/w:I).

3) c(w)=c and viw) ={jeZlc—1—j¢v(R)}.

4) w:R=y.

5) w Co**=w:wlp.

6) R is Gorenstein < w = R <= 0p = R <= w = w™*. Hence: R not
Gorenstein — y C 0p C m.

7) If S D R is an overring birational to R, then w : S is a canonical module
for S.
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Lemma 2.2. Let I be a fractional ideal of R.

i) If I © y andv(l) C v(w), then there exists a unit u € R suchthatul C w.
Ifv(l) = v(w), then ul = w.
ii) There exists a unit u € R such that ut‘="J C w.

Proof.

i) Wenotethat ] Oy => w : I € R = (w : I)R C R. The hypotheses
I 2 y and v(I) € v(w) imply that ¢(I) = ¢, hence I : R = y and
Ir(R/(w: )R) =Ix(I : R/w : R) = 0. From the equality R = (w : [)R
we deduce that @ : I contains a unit # of R and u/ C w. The second
assertion is now immediate, since lg(w/ul) = #[v(w) \ v(I)] = 0.

ii) We can apply item i) to the fractional ideal 1), because the conditions
t¢=¢D] Dy and v(t¢~DI) C v(w) are satisfied. O

A strict connection between the value sets of §p and w? is remarked by
D’Anna in [5], Lemma 3.2. Part iii) of next lemma is a slight generalization of
it.

Lemma 2.3. Let I be a fractional ideal of R. Let h,s € Z, h > 1. Then:

i) viw: 1) =v(w) —v).
i) viw:I)={yeZlc—1—y¢v()}.
iii) sev(R: 0" ') < c—1—5 ¢ v(o"I).

In particular: s ev(@p) < c—1—s ¢ v(w?).
Proof.

i) The proof given in [13], Prop. 2.4, works also under our assumptions.
ii) € Usingi), we seethat y ev(w : [) = ¢ —1—y ¢ v(l), since
c—1¢v(w).
D LetyeZbesuchthatc — 1 —y ¢ v(l), and let z € v([). Again by i) we
can prove that y+z e v(w). Nowec—1—(y+z) =(c—1—y)—z ¢ v(R) =
y+zev(ow).
iii) Observe that R : ®"~!'1 = w : w"1, then apply ii). ]

Lemma 2.4. Let I be a fractional ideal of R and let J := 1 : w. Then

i) J is areflexive R-module,i.e. J = R : (R : J).
ii) If J is not invertible, thenm : m C J : J.

In particular, 0p is reflexive and m : m C 6p : 6p.
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Proof.

i) The inclusion J € R : (R : J) always holds. To prove D, observe that
X(R:J)CR=—=x(R:J)w Cw—

xoCw:(R:))=w:(w:Jw)=Jwl I =— xel.

ii) It suffices to note that
J notinvertible — J(R:J) # R —
JR:J)Cm=—=J:J=R:JR:J)DR:m=m:m. O

In the last part of this section we point out how 6 brings some relations
with the bidual w** and the blowing up of the canonical module.

Denote by B := U,—.... .00 ®" : ®" the blowing up of the canonical module
of R (independent on the choice of w). This overring has been studied recently
in relation to almost Gorenstein rings (see [2], ch.3, [5], ch.3).

Remark 2.5. The ring B satisfies the following properties:

i) Form >> 0, B=o" : 0" = ™. ( See [5], 3).

ii) B is a reflexive R-module. In fact B = (0™ : @™~ ") : w and we can apply
Lemma 2.4.

iii) y CR: B C6p.

iv) o(R:B)=w:B=R:B.Infactw(R: B)=w:(v:(w(R:B))) =
w:Bw:o"'"=R:0"=R:B.

v) Op:0p CB.Infact B=R:(R:B)=R:w(R:B)=0p:(R:B)D
QD I@D.

Proposition 2.6. The following facts hold:

i) wC w* Cw<CBCR.
i) Ir(Op/y) = lr(R/a?).
iii) Ig(0*/0**) = Ig(wbp /6p).
iv) If R is not Gorenstein, then:
c(w?) < c(w™) <c—e.
c(@?) =c—e < ecv(@).
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Proof.
Do*=R:(R:w)=0:0@: o) Cw: (v:w) =’
ii) Sinccw : y = Randw : 0p = w : (0 : w?) = w?, using the second

property in Prop. 2.1, we get the thesis.

iii) is immediate by Prop. 2.1.

iv) j>c—e = c—1—j <e—1 = eitherc—1—j =0orc—1—j ¢ v(R).
Hence j e v(w) U {c — 1} C v(w™).
Finally observe that e € v(0p) <= ¢ — 1 — e ¢ V(0w?) by Lemma 2.3. [J

Since a ring is Gorenstein if and only if B = w, it is now natural to set
a characterization for the condition B = w”. The condition is always verified
by almost Gorenstein rings (see [2], Prop. 28). We point out that there exist
not almost Gorenstein rings with B = ?, for instance the semigroup ring
R =C[[t"]],hev(R) =1{0,7,8,9, 11,13, —>}.

Theorem 2.7. The following conditions are equivalent:

i) o™ isaring.

ii) 0™ = w?.
iii) wbp = 6Op.
iV) 0D Z@D = B.

V) R:B = QD.
vi) B = ?.
Proof.

i) = ii). In this hypothesis: ® C 0™ C w? C w™ = ©**.

ii) = iii) is immediate by Prop. 2.6.

1) = iv) wlp = 0p — W™0p = 0p —> B C 6Op : Op and the other
inclusion always holds (see Remark 2.5).

iv) = v) 6p : 0p = B — BOp C R — 6p C R : B and the other
inclusion always holds (see Remark 2.5).

V) = i) p=w:0>=R:B=w:Bo=w:B= o0:(v:?) =
w:(w:B).

vi) = i) 0’0p = 0?6, Cw = w? C w: wlp = W => W** = B. |

3. Type-sequences and length.

The number p of 1°s in f.s.(R), is related to the length of the R /m-algebra
R/6p and is involved in other interesting inequalities. First we show (Prop. 3.4)
how elements of v(6p) give riseto 1’sin ¢.s.(R), and in ¢.5.(6p). From this we
getd < (c—8)r;—pr1—1) < (c—38)r; —Ig(@p/y(r; — 1) (Theorem 3.7)
and we state other bounds.
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Proposition 3.1. (see [5]) Let v(R) = {so =0, s1, ....s, = ¢, —}, n =c — 4,
and let t.s.(R) = [ry, ....,ry] and t.s.(0p) = [t1, ...., t,] be the type sequences
of R and 0p respectively. Then:

i) cOp:R)=c(R:R)=c—s;,foreachi =0, ..., n.
ii) vV(p : Ri)cees, = {c — 1 = b, beZsg, \ v(w?R;)}, for each i=0,..,n
lll) Let n; = C(R . Ri) —8(R . Ri),mi = C(@D . Ri) —ZR(R/QD . Ri).

Then:

1. rix1 = Siy1 — 8 +njy; — ny, i=0,...,n—1.

2. tiy1 =81 —Si+mipg—m;, i=0,..,n—1.
n

3. Zi:l ri =4.

4. Z?:l t; =064+ 1r(R/6p).

iv) Denoting by w; the canonical module w : (R : R;) of the overring R : R;
obtained by duality, we have: r; = lg(w;_1/w;).

Proof. By Lemma 2.3 we have that: x ev(@p : R;)) &= c— 1 —x ¢ v(0’R)).

VIfj>c—si=c—1—j<si=c—1—j¢v(R)= jecv®p:

R;)) € v(R : R;). Moreover s; e v(wR;)) = c—s; — 1 ¢ V(R : R;) by
Lemma 2.3.

ii) follows from the above considerations.

iii) For the first equality see [5]. The second one is analogous: by definition
and item 1), Mmiy] = C—Si+1+lR@/9D Ry and m; = C—Sj+lk(§/91) :
Rl'). Since lR(R/QD . Ri) — lR(R/QD . Ri+1) = ZR(QD . Ri+1/9D : Ri) =
ti+1, we get the thesis by subtraction. The other equalities are immediate
by definition.

iv) Apply Prop. 2.1,7): w; =@ : (R: R)) =w: (v : wR;) = oR;. [l

Proposition 3.2. Let t.s.(R) = [ry,....,1r,] and t.s.(6p) = [t1, ..., 1,]. Let
X;_1 € m be such that v(x;_) = s;_1 < c. Then:

i) ri =1 <<= x;_1 € Anng(w/(x;-1 R + ®R))).

i) ri=1=1t=1.

Proof.
1) Since Ri—l = xi_lR + Rl', we have a)Ri—l = Xj_1w + a)Ri. Then
ri = lg(wRi_1/oR;)) = 1 < wR,_1 = x;_1R + wR;, & x;,_1 €

AnnR(a)/(xi_lR + a)Ri)).
ii) By hypothesiswR;_; = x;_1R+wR, = w’R;_; = x;_ o+’ R;, hence
by i), a)zRi_l =x;i_1R+ a)le' — 1 = lR(a)zRi_l/szi) =1. U
Lemma 3.3. ([5], Lemma 4.1) Let 7y, ...., 2 be any minimal set of generators
of . Then, if x; € R and v(x;) = s;, the R-module ®R;/wR;, is generated by
Xzt + ORiy1, ooy XiZ + OR 1.
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Proposition 3.4. Let t.s.(R) = [ry,.....,] and t.s.(0p) = [t1, ..., t,] be the
type sequences of R and 0p respectively. Then :

si€v(lp) = riy1 =tiy1 = 1.

Proof. riz1 = lg(wR;/wR;y1). Let o = (1,22, ...,2-) and let x; € 6p be
such that v(x;) = s; < ¢. Then wR; =< x;,...,x;jzz > mod wR;,{, by
Lemma 3.3. Thus x; € R : @ = x;z; € Riy1 € wR;4 forall j > 1 (since
v(x;zj) > i) => riy1 = l and by Prop. 3.2, 1, = 1. O

Notation 3.5. We put:
p=#lie{l,..,c—=68}| ri=1]
o :=Ig(w/R) —Ig(R/0p) =28 —c — [r(R/0p)

The invariant o has been introduced in [9]. It is known that o (R) > O,
when r; < 3 or R is smoothable, but there are examples with o < 0 (see 4.12).

Lemma 3.6. The following facts hold:
i) lR(p/Y) < p.
ii) c—8—p<Ig(R/Bp) <c—3.
iii) 38 —2c <0 <38 —2c+p.
w)ce—p<di, t <c
Proof.

i) follows from Prop. 3.4.
ii) First inequality comes from i), since [gx(R/0p) = Ir(R/y) — Ir(Op/Y);
the second one holds since y C 6p.
iii) is obvious by ii).
iv) Ig(R/6p)+8 = >_"_, t;, so the inequalities are immediate from ii). O

Theorem 3.7. Let p be the number defined in 3.5. Then:

20c—8)—p <8§ < (c—=8r1—pr—1) < (c—=8)r —Ir@p/y)i1 —1).

Proof. Sincer; =...=r; =1,and r; <r Vi, using Prop. 3.1, iii) we get:

c—48 c—48

c=d+(c=d=p) < 8= ri=c=8+) (i—1) < c=d+(c=8—p)(r—1).
1 1

To get the last inequality use Lemma 3.6, i). ]
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Corollary 3.8. Let, as above,n = ¢ — §. Then:

i)20—c=3_ (=1 = (c=8=p)ri = 1) <Ig(R/Op)(ri — 1).
ii) 28 — ¢ < Ip(R/Op)(t — 2).

Proof.

i) See the proof of Theorem 3.7, then use Lemma 3.6, ii).
ii) As in the proof of Theorem 3.7, using Prop. 3.1 and Prop. 3.2, we obtain:

26 —c+Ir(R/0p) = Z(ti — 1) =(c—=8—p)tr—1) <Ilgr(R/Op)(t — 1).
i=1

O
Corollary 3.9. Eithert| =1 (i.e. R is Gorenstein) or t; > 3.
From the first inequality of Theorem 3.7 we deduce the following
Corollary 3.10. p > 2¢ — 35.

Of course, the above lower bound for p is significant in the case 2¢ — 36 > 0.
Using iii) of Lemma 3.6 we see that if o < 0, then 2¢ — 3§ > 0. Example 5 in
4.12 shows that the converse is false. The following bound for [z (R/6p) is non
trivial when o < O (see Example 4 in 4.12).

Proposition 3.11. [x(R/0p) < (26§ —c)(r; — 1).

Proof. Let w = (1, z2, ..., z,)R and consider, as in [10], Satz 3), for every
i = 1,...,r; the R-module w; := (1,...,z)R. In particular w, is two-
generated, so by [3], Satz 2, [x(R/R : wp) = Ig(w2/R). It is clear that
wir1/®; =~ R/b;y1, where b;y; = Anng(w;+1/w;). By [10], Hilfssatz 4 and
Satz 1 we obtain: [g(R : w;/R : w;i11) <Ig(R:bjy1/R) <Ir(R/bj11) + 25 —
c=Ig(wiy1/w;) +28 —c.Since R=R:w; DR:w; D ... D R:w, =06p,
we have [g(R/6p) = Igx(R/R : @) + Y05 k(R : w;/R : wip1) <
Ir(02/ R)+ 305 Ir (@1 ) + (28 =) (r1 —2) = [g(@/R)+ (28 —c) (r1 —2).
The thesis follows. U

Remark 3.12. The difference a := (¢ — §)r; — § has been taken into account
by several authors. In [10] it is proved that a > 0, when R is a one-dimensional
local analytically unramified Cohen Macaulay ring. In [11] it had already been
shown that a > 0, under more particular hypotheses. In [4] some general
stucture theorems are presented for rings with a = 0 (the so called rings of
maximal length) or a = 1 (the so called rings of almost maximal length).
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Theorem 3.7 implies that a > [z (6p/y)(r; — 1). Hence:

a<r—1=6p=y.
a=r—1=Ir@p/y) < 1.

The cases a < r; — 1 are studied in [6] and [7]. See also the following 5.2.

4. Relations between r;’s and ¢;’s.

Starting from the almost Gorenstein case, we are led to consider in a
t.s. [r1,...,ri, 1,1, ..., 1] the index i of the last element r; which is not 1.
This number has a central role in Theorem 4.3 which involves R;, 8p and B.
When i = 1, this theorem gives again the known characterizations of almost
Gorenstein rings.

Lemma 4.1. Let J be any proper ideal of R. If v(R;) C v(J), then R; C J.
Proof. In fact

VR)C v(J) = v(iRRNJ)=v(R) = RNJ=R, — R, CJ. U
Lemma 4.2. The following facts hold:

i) rig1 > 1 = c—1€v(w’R)).

ii) c — 1 ev(@’R;) <= R Z bp.

iii) Ifr, > 1, thent, >r, + 1.

Proof.

i) By Prop. 34,711 > 1= s5;¢v(@p) = c— 1 —s; € v(0?) \ v(w) =
c—1l=s;+(c—1-s5)ev(@®R).

ii) By Lemma 23 ¢ — 1 € v(@w?’R;)) <= 0 ¢ v(R : wR;). Suppose
c—1lev(@?R). If R, COp,then 1 €6p : R, = R : wR;, contradiction.
Vice versa, if R; € 6p, by Lemma 4.1 there exists an element x € R; \ 6p
such that v(x) ¢ v(fp); then u xw Z R for all units u € R. Tt follows that
0¢v(R: wR;).

iii) We have: r, = [g(@R,—1/wR,) = Ig(@R,_1/y) < Ig(@*Ru_1/y) =
Ig(@w*R,_/@w*R,) = t,. Looking at valuations we see that the above
inequality is strict since ¢ — 1 € v(w?R,_;) \ v(wR,_1), by i). [l

In [2] it is proved that
R is almost Gorenstein <<= m=wm < r —1 =256 —c.

Hence: R almost Gorenstein, not Gorenstein<—> 6, = m. In other words:
ts.(R)y=1[r,...,1] with ry >1 < R; C60pand Ry € 6p.
Next proposition is a generalization of this fact.
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Theorem 4.3. Let 1 < i < n and let B = o™ be the blowing up of the
canonical module of R. The following are equivalent:

l) Ri QGD andRi_l g@D
ll) BgR:RianngR:Ri_l.

ii) ts.(Ry=1[ry,...,r;,1,1,...,1] with r; > 1.
iv) t.s.(0p) =1[t;,....t;,1,1,...,1] with t; > 1.
Proof.

1) < i) R, COp << wR; = R; < 0" R; =R, < B C R: R,.

i) = iii) By hypothesis s; e v(lp) Vj > i = r; = 1Vj > i.
We have to prove that r; > 1. If r;, = 1, then by Prop. 3.2, i),
wR,_1 = xi_1R+ wR;, C R — R;_; C 6p, absurd.

iti) =>iv) r; =Ix(R/R : Ri_))—Ix(R/R : R})) =Ir(R/R : Ri_)) —(n—1i)
and analogously, by Prop. 3.2, ii), t; = [g(R/0p : Ri_)) — (n — i) =
ti>r; > 1.

iv) = iii) If i = n, the implication is true by Prop. 3.2, ii). Leti <n — 1.
Surely, by Prop. 3.2, r; > 1 and by Lemma 4.2, iii), r, = 1. If r; > 1
with i < j < n and all the subsequents equal to 1, as above we would get
t; > r; > 1, contradiction.

i) = i) r,=1— wR, 1 =x,1R4+y C R— R, | C 0p. Ifalso
rp—1 = 1, then wR,_» = x,_»R + wR,_; € R, then R,_, C 6p and so
on. If R;_; C 0p, then r; = 1, and this concludes the proof. O

Proposition4.4. If i <nissuchthatr; > 1andr; =1 forall j > i +1,
then ti=r; + 1.

In particular: r, > 1= 1t,=r, + 1.

Proof. By Theorem 4.3 we have R; C 6p, hence r; = Igp(wR;_1/R;) and
ti = Ig(w?R;_1/R;). Since, by Lemma 4.2, i),c — 1 € v(w?’R;_;), our
thesis will follow by proving that v(w?R;_;) = v(wR;_;) U {c — 1}.
Hence, let m € v(w?R;_1) \ v(wR;_1) : we claim that m = ¢ — 1. By
Lemma23c¢c—1—mev(R: Ri_). Let m = v(x), x € w*R;_; and
c—1—-m=v(y), yeR: Ri_;. If v(y) > 0, then yR;,_; C R;, hence
c—1=v(xy) e v(w?R;) = v(R;), absurd. Hence v(y) = 0 and the thesis
is achieved. [l

Proposition 4.5. The following are equivalent:

l) Sn—1 EV(@D).
ii) s,_1 =c—2.
ii) r, = 1.
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Proof. Recall that wR, = y.

i) = ii). If ¢ —2 ¢ v(R), then 1 € v(w). But this would imply that s,
and 5,1 + lev(wR,_D\v(y) = r, > 1 = s,_1 ¢ V(fp), absurd.

iil) = iii) Obviously v(wR,_1) \ v(y) = {s,—1}- [l
Corollary4.6. B =R <= r, > I.
Proof. B=R <= lecv(w) < c—2¢v(R). O
Corollary 4.7. If 0p = R; for some i, then the equivalent conditions of

Theorem 2.7 hold.

Proof. B C R:R; byTheorem43— R: B2 R; =0p — R : B =0p,
since the other inclusion is always true. O
In the particular case p = R, we obtain:

Propositign 4.8. Set, as above, n; :=c(R : R;) — (R : R;)) and m; := c(0p :
R;)) —Ir(R/6p : R;). The following facts are equivalent:

i) Op=y.

ii) ®* = R.
iii) t; = s; — s;i—1 foreachi =1, ..., n.
iv) m; =0 foreachi =0, ..., n.

v) Op : Ri_: 1SR foreachi =0, ..., n.
vi) w** = R.

If the above conditions hold, then

a) t; =e.
b)Vi>1, ri>t < n; >n_.
Proof.

i) < ii) See Prop. 2.6, ii).

i) = iii) Infact #; = [g(w*R; /@’ Ri_1) = Igx(R;R/R;_1R) = s; — si_1.
iii) = iv) We have seen in Prop. 3.1 thatt;, = s; — 5,1 + m; — m;_;.
Hypothesis iii) implies that m; = my = .... = m,, = c¢(R) —8(R) = 0.

iv) = v) mj =0 = v(@p : R;)) = [c — s;,+00). Since the inclusion
1R C 6p : R; holds for every i = 0, ..., n, the equality of the value
sets implies the other inclusion.

v) = 1) Takeinv)i =0.

vi) = ii) and i) = vi) are immediate by Prop. 2.6.

a) t; =85 — 5y =e.

b) Using Prop. 3.1 iii), it is immediate. ]

Our conjecture #; > r; is true for rings having maximal C.M. type, namely
r1 = e — 1. In this case we get a more precise result.
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Proposition 4.9. Let ¢ > 3. If forsome 1 <i <nr; =e—1, thent; = e.
Moreover, for the same i we have: s;_1 = (i — 1)e, s; =ie.

Proof. Since t°R;_y € R; C R;_;, we have the chain t*wR;_1 € wR; C
wR;_1. Hypothesis r; = e — 1 implies that [gp(wR;/t*wR;_1) = 1 and since
c—14+eev(wR) \v(t°wR;_1), it follows that

(%) wR; = t°wR;_1 +zR with v(z) =c—1+e.

Analogously, considering the chain t°w’R;,_; € w’R; € w’R;_;, we see that
the thesis #; = e is equivalent to r°w’R,_; = w*R;. It will be sufficient to
prove this last equality. From (x) we have w’R; = t°w’R;_; + zw. Now,
zey C R; forevery i = zw € wR;, = ®’R; = t°w’Ri_; + zR. By
Lemma42r > 1= c—1ev(w?R;_;), then v(z) € v(tw?R;_;): we obtain
that r°w?R;_, = w’R;, as claimed.

To prove the other equalities, note that by definition s; < s;_; + e. As
already remarked r; = e — 1 implies that v(wR;) = v(t°@wR;_1) U {c — 1 + ¢}.
Hence s; e v(t°wR;_1),buts; > s, +e = s5; = 5;_1 + e =ie. O

For rings of C.M. type 2, we have a complete description of the type
sequences of R and fp. In this case the arrow = of Prop. 3.4 becomes
<.

Proposition 4.10. Suppose ry = 2. Then:

si€v(@p) = rir1 =tir1 =1
si ¢ v(p) = riy1 =2, tip1 = 3.

Proof. We have from Corollary 3.8, i) and Prop. 3.11 that [z (R/6p) = 2§ — ¢
hence [gr(6p/y) = 2c¢—36. The elements of the type sequence [ry, ....,7,], n =
c¢—38,0of R are 1 or2, suppose p times 1 and n—p times 2. Thend = Y \_ r; =
p+2(n—p) = p =2c—36. Hence p = lx(Op/y) andri; ) =1 &< 5, €6)p
(see Prop. 3.4). By hypothesis w is two-generated, say w = (1, z), then 1, z, z°
constitute a system of generators for w?; hence #; < 3, and Corollary 3.9
implies that r;, = 3. Consider now the type sequence of 6p, by Prop. 3.2,
ri =1 = t; = 1. Suppose that for some i eithert;, =2 orr; =2 and t; = 1.
Then 8+1R(R/0D) = er'l:l < ZR(QD/V)+3ZR(R/0D) —= < C—6+28—C,
absurd. The thesis follows. U

Another case in which our conjecture #; > r; is true comes directly from
Corollary 3.8:

Proposition 4.11. IfIx(R/0p)(r1 —2) <26 —c, then r; <.
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Proof. If ry > t;, from Corollary 3.8, ii), we get 26 —c < [g(R/Op)(t; —2) <
[rR(R/Op)(r1 —2) . U

Example 4.12. Suppose R = C[[¢"]], h € v(R), is a semigroup ring. The first
three examples show that the converses of Prop. 3.2, ii), Prop. 3.4 and Prop.
4.9 are false.

1. Let v(R) ={0,10,11,17,20 —},thenp =y, § = 16,c —6 =4 <
12 =25 —c, t.s.(R) =1[7,2,5,2], t.s.(6p) = [10, 1, 6, 3]. In this case
th=1andr, > 1.

2. Letv(R) ={0,5,6,10 =}, thenfp =y, =7,c—8 =3 <4 =25—c,
t.s.(R) = 1[3,1,3], t.s.(6p) = [5,1,4]. In thiscase t, = r, = 1. But
81 :5¢U(9D)

3. Letv(R)=1{0,10,11,12,14,17,20 —}. Then: ¢ =20,8 = 14,r; =5,
w = (0,1,3,4,6), w* = R, hence 6 = y. t.s(R) = [5,1,1,3,2,2],
t.s.(0p) = [10,1,1,2,3,3]. Inthiscase t; = 10,butr;y =5 < e — 1,
moreover r4 > t4 = 2.

4. Let v(r) = (13,121,133,163, 164, 166, 168,170, 171). We have § =
181, ¢ =322, r1 =4,60p = (121, 166, 168, 198, 216, 223, 234, 241, 248,
266). Hence [g(R/0p) = 43 and 0 = —3. Here bound in Prop. 3.11 is
better than bound in Lemma 3.6, ii). In fact: 26 — ¢ =40 < [r(R/0p) =
43 < (26 —¢c)(r; — 1) =120 < ¢ — § = 141. The type sequences ¢.s.(R)
and ¢.s.(fp) are respectively:

4 4 4 4 4322221221211111211112211211112211211
1122112111122112111121112111121...1]
[101010108633331321311111211113211211113211211
1132112111132112111131112111131...1]

5 Letv(R)={7,8,9,10,12 —}. Wehave § =7, ry =3, c=12. and R

is almost Gorenstein, so fp = m, hence 0 = 1, but 3§ — 2¢ < 0.

5. Minimality and maximality.

In the comparison between the type sequences of the ring and of the
Dedekind different, properties like minimality and maximality are completely
equivalent.

o Minimal type sequences . In [2] one can find the properties of almost
Gorenstein rings. Analogous properties for fractional ideals are considered in
[13]: a fractional ideal [ is called of minimal type sequence (m.t.s. for short) if
and only if ¢r.s.(I) = [r(I), 1, ...., 1], where r (/) is the Cohen Macaulay type
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of I as an R-module. Since it is well known that (/) = 1 < [ >~ w, it
follows in particular that #; = 1 = R is Gorenstein.
Next proposition deals with the m.t.s. property in the not Gorenstein case.

Proposition 5.1. Let R be not Gorenstein. The following are equivalent:

i) R is almost Gorenstein.
ii) Op is m.t.s.
i) o* =R :m,

iv) B=R:m.

In this case t; =ry + 1.

Proof.

i) <= ii) is equivalence iii) <= iv) of Theorem 4.3 fori = 1.

1) — iii) is immediate, since when R is almost Gorenstein, we have
6p = m = mw and by Prop. 2.6 ** = w?> = R : m. Last equality is
proved in [2], Prop. 28.

ili) = iv) o™ isaring => »** = w*> = B by Theorem 2.7.
i) = iv) has been proved by D’Anna in [5], Prop. 3.4. O

e Maximal type sequences. Recalling that in general f.s.(R) =
[r1, ...,y ], withry < e — 1 and r; < ry, of course “maximal” type sequence
means t.5.(R) = [e—1, ....,e—1]. In [7] and [6] the authors characterize all the
rings whose type sequence is closer to the maximal one in the following sense:
ts.(R)y=[e—1,..,e—1,e—1—a]. Forsimplicity, we call a-maximal a type
sequence of this form.

Proposition 5.2. (See [6] and [7]). Let a € N be such that a < r; — 1. The
following facts are equivalent:

i) (c—8)ri(R)—8§=aandri =e — 1.
iit) v(R) ={0,¢,2e, ..., (n—1)e,ne—a, —}.
iii) t.s.(R)y=[e—1,...,e—1,e—1—al].

Moreover, if a < ry — 2, then conditionr, = e — 1 in i) is superflous.

We want to show now that the a-maximality of z.s.(R) is equivalent to the
a-maximality of ¢.5.(0p), i.e. t.5.(0p) = [e, ...., e, e — a], (see Prop. 5.4). To
do this we need some more or less well known results, that we list below for
our convenience. In the following (/y, ...., [;) denotes the v(R)-set generated by
Iy, ....,l; and, for any numerical set H C Z, H +1:={h +1, he H}.
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Lemma 5.3. Let 0 <a < e —2andlet v(R) = {0,¢,2e, ..., (n — 1)e, ne —
a,—}. In this case c = ne —a, n = ¢ — 6.

i) Canonical ideals:
Fora =0 thenv(w) = (0, 1,2, ....,e — 2). Callit v(ayp).
For any a > 1, change the last a generators by addying 1 to each one, i.e.
viw,) =(0,1,..,e—a—2,e—a,...,e—1).
In particular, v(w,—») = (0,2,3, ....,e — 1).

ii) Type sequence of R :
ts.(R)y=[e—1,...,e—1,e—1—al].

iii) Omega square: .
fora=0,..,e—3 ®? = R,
fora=e—2 v(w?) ={0,2, —}.

iv) Type sequence of Op :
fora=0,...,e—3 ts.(0p)=le,e,..,e e—al,
fora=e—2 t.s.(0p) = e, e, ....,e, 1].

v) Dedekind different:
fora=0,..,e—3 O0p =y,

fora=e—2 Op = zR 4+ y with v(z) = (n — 1)e.
Proof.
i) Justremember that v(w) = {j€Z | c—1— j ¢ v(R)}.
ii) For every a = 0, ....,e — 2 and for every i = O, .....,n — 1, we have
v(wR;)) = v(w) + ie. Then for every i = 0,.....,n — 2, v(wR;) \

v(wR;+1) ={0,1,....,e —a—2,e—a,..,e — 1} +ie. So we obtain
that ;.1 = [g(wR;/wR;+1) = e — 1. Letnow i = n — 1. By definition
rn = #v(wR,_1) \ v(y)]. Since v(wR,_1) = viw) + (n — 1)e =
(n—1e,(n—1)e+1,.....ne —a — 2,ne — a, ....,ne — 1), we see
that only the first e — a — 1 elements are smaller than ¢ = ne — a and we
conclude thatr, = e —a — 1.

iii) Fora =0, ....,e — 3 we see that 1 € v(w), then > = R. Fora = e — 2,
by item i)w = (0,2, 3, ....,e — 1), then 0* = {0, 2, —}.
iv) Fora =0, ....,e —3 and fori = 0, ....,n — 2, using iii) we get t;11 =

lR(Riﬁ/RiHﬁ) =e¢. Fora =e—2andfori =0, ....,n — 2, we have
V(@?R)\v(@?’Riz1) =1{0,2,.....,e—1,e+1}+ie and we get again t; | =
e. It remains to compute the last component ¢, = #v(@*Ru_1) \ v(¥)].
Fora =0,...,e -3, v(w*R,_1) = v(R,_1R) = {(n — e, —}; in this
set the elements < c are e — a, so t, = e — a. For a = e — 2, we have by
i)r, = 1, then by Prop. 3.2 also#, = 1.

v) The thesis follows from iii), by applying Lemma 2.3. ]
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Proposition 5.4. Let e > 3.

i)

For 0 <a<e—2,
ts.(R)y=[e—1,...,e—1,e—1—a]l < t.s.(0p) = e, e, .....,e,e—al.

ii) ts(R)y=[e—1,...,e—1, 1|<=t.s5.(0p) = e, e, ....,e, 1].

Proof. Both implications = follow from Prop. 5.2 and Lemma 5.3.

i)

(2]
(3]
(4]
(5]

(6]

<— Suppose 0 < a < e — 2 and t.5.(0p) = [e,e,....,e,e — al.
By Prop. 4471, = § — Y !ri = ¢ —a — 1 and by hypothesis
8 +1x(R/0p) = ne —a. Thenne —a —Ig(R/0p) =Y\~ ri < e —a =
Zl'.:ll ri > m—1e—Ig(R/0p) =m—1)(e—1)+(n—Ix(R/0p))—1,1ie.
Sl r = (n—1)(e— 1)+ (n — g (R/6p)). On the other hand "/~ r; <
(n—1r; < (n—1)(e—1). The only possibility is Z;’:—f ri=m—1)(e—1)
and [z (R/0p) = n,ie. 0p =t°R.Hencer; =e —1fori=1,...,n—1
andr, = e —a — 1.

<— Suppose t.5.(0p) = [e, e, ....,e, 1]. By Lemma 4.2 r, = 1. As in the
above item we find Zf’;ll ri=m—1)(e—1)+n—Ix(R/0p) — 1. Hence
n—Igr(R/0p)—1 <0,i.e. cithern —Ig(R/0p) =0o0rn—Igr(R/6p) = 1.
In the first case p = y, moreover § = Zf’;ll ri+l=m—-1)(e—1) —
6 =ne—n—e+1=ne—c+86§—-e+1—=—c—1 = ne —e,
which is a contradiction. The other possibility leads to [z (6p/y) = 1 and

n—1

Y, ri=m—1)(e—1),hencer; =e—1foreveryi =0,..,n—1.0
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