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DEDEKIND DIFFERENT AND TYPE SEQUENCE
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Dedicated to Silvio Greco in occasion of his 60-th birthday.

Let R be a one-dimensional, local, Noetherian domain. We assume R
analitycally irreducible and residually rational. Let ω be a canonical module
of R such that R ⊆ ω ⊆ R and let θD := R : ω be the Dedekind different of
R.

Our purpose is to study how θD is involved in the type sequence of R
and to compare the type sequence of R with the type sequence of θD (for the
notion of type sequence we refer to [11], [1] and [13]). These relations yield
some interesting consequences.

1. Introduction.

Let (R, m) be a one-dimensional, local, Noetherian domain and let R be
the integral closure of R in its quotient �eld K . We assume that R is a DVR and
a �nite R-module, which means that R is analitycally irreducible. Let t ∈ R be
a uniformizing parameter for R, so that t R is the maximal ideal of R. We also
suppose R to be residually rational, i.e. R/m � R/t R.

In our hypotheses there exists a canonical module of R unique up to
isomorphism, namely a fractional ideal ω such that ω : (ω : I) = I for each
fractional ideal I of R. We can assume that R ⊆ ω ⊂ R. The Dedekind
different of R is the ideal θD := R : ω.

Let ν : K −→ Z ∪ ∞ be the usual valuation associated to R. The image
ν(R) = {ν(x), x ∈ R, x �= 0} ⊆ N is a numerical semigroup of N.
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The multiplicity of R is the smallest non-zero element e in ν(R). The
conductor of ν(R) is the minimal c ∈ ν(R) such that every m ≥ c is in ν(R) and
γ := t c R is the conductor ideal of R. We denote by δ the classical singularity
degree, that is the number of gaps of the semigroup ν(R) in N.

We brie�y recall the notion of type sequence given for rings in [11],
recently revisited in [1] and extended to modules in [13].

Let n = c − δ , and call s0 = 0, s1, . . . , sn = c the �rst n + 1 elements of
ν(R). Form the chain of ideals R0 ⊃ R1 ⊃ R2 ⊃ . . . ⊃ Rn , where, for each i ,
Ri := {x ∈ R : ν(x) ≥ si }.
Note that R = R0 , R1 = m, Rn = γ .
Now construct the two chains:

R = R : R0 ⊂ R : m ⊂ R : R2 ⊂ . . . ⊂ R : Rn = R
θD = θD : R0 ⊂ θD : m ⊂ θD : R2 ⊂ . . . ⊂ θD : Rn = R

For every i = 1 . . . n, de�ne
ri = lR(R : Ri/R : Ri−1) = lR(ωRi−1/ωRi ),

ti = lR(θD : Ri/θD : Ri−1) = lR(ω2Ri−1/ω
2Ri ).

The type sequence of R, denoted by t .s.(R), is the sequence [r1, . . . , rn]. The
type sequence of θD , denoted by t .s.(θD), is the sequence [t1, . . . , tn]. Observe
that r1 is the Cohen Macaulay type of R which is also the minimal number of
generators of ω and that t1 is theC.M. type of the R-module θD , or the minimal
number of generators of ω2. Moreover, for every i , we have 1 ≤ ri ≤ r1 and
1 ≤ ti ≤ t1 (see e.g. [13], Prop. 1.6, for all details).

We show in Prop. 3.4 that, if si ∈ ν(θD), then the correspondent ri + 1 is
1. Hence, denoting by p the number of 1�s in the type sequence of R, we get
(see Theorem 3.7) the inequalities

δ ≤ (c − δ)r1 − p(r1 − 1) ≤ (c − δ)r1 − lR(θD/γ )(r1 − 1)

which improve the well known formula δ ≤ (c − δ)r1 (see Remark 3.12).
A ring R is called almost Gorenstein ring if its type sequence is of the

kind [r1, 1, . . . , 1]; in the general case we focus our attention to the last i such
that ri > 1, and we show its special meaning related to the blowing up of
the canonical module and to the Dedekind different (Theorem 4.3). An easy
corollary is the inequality lR(R/θD) ≤ i .

We compare the two type sequences in several cases. For instance, in a
ring R of CM type 2 they can be completely determined by using the Dedekind
different (Prop. 4.10). Under suitable hypotheses we have that ri ≤ ti , although
this is not always true. We conjecture however that r1 ≤ t1 always holds and we
can prove this inequality in the following cases:

• R is almost Gorenstein (see Prop. 5.1);
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• R has C.M. type 2, 3, e − 1 (see Prop. 4.10, Corollary 3.9, Prop. 4.9 );
• θD = γ (see Prop. 4.8);
• R satis�es the inequality lR(R/θD)(r1 − 2) ≤ 2δ − c (see Prop. 4.11).

In section 5 some results are achieved for minimal and maximal type
sequences. In particular in Prop. 5.1, we prove that R is a almost Gorenstein
ring, (that is t .s.(R) is minimal), if and only if t .s.(θD) is also minimal. On
the other side we prove in Prop. 5.4, that the t .s.(R) is maximal, i.e. of
the kind [e − 1, ...., e − 1, e − 1 − a] for some a < e − 2 or of the kind
[e − 1, ...., e − 1, 1], if and only if t .s.(θD) is maximal, i.e. of the kinds
[e, e, ...., e, e − a], [e, e, ...., e, 1] respectively.

2. Preliminaries and remarks on the canonical module.

A fractional ideal of the value semigroup ν(R) is a subset H ⊆ Z such that
H + ν(R) ⊆ H . We denote by c(H ) the conductor of H , which is the smallest
integer j ∈ H such that j + N ⊆ H . The number δ(H ) := #[N≥h0 \ H ] where
h0 = min{h ∈ H } is the number of gaps of H . For any fractional ideal I of R,
ν(I) is a fractional ideal of ν(R). Further we set:

c(I) := c(ν(I)), δ(I) := δ(ν(I)), c := c(R), δ := δ(R).

We point out the useful fact that, given two fractional ideals I1, I2, I2 ⊆ I1 ,
the length of the R-module I1/I2 can be computed by means of valuations:
lR(I1/I2) = #[ν(I1) \ ν(I2)], (see [11], Proposition 1).

Now we collect some of the properties of the canonical module which are
important in this context.

First we recall the following well-known:

Proposition 2.1. (see [8], [10], [12]) Let ω be a canonical module of R such
that R ⊆ ω ⊆ R and let ω∗∗ be its bidual, i.e. ω∗∗ = R : (R : ω). Then:

1) ω : ω = R.
2) lR(I/J ) = lR(ω : J/ω : I).
3) c(ω) = c and ν(ω) = { j ∈ Z|c − 1− j /∈ ν(R)}.
4) ω : R = γ .
5) ω ⊆ ω∗∗ = ω : ωθD.
6) R is Gorenstein ⇐⇒ ω = R ⇐⇒ θD = R ⇐⇒ ω = ω∗∗. Hence: R not

Gorenstein �⇒ γ ⊆ θD ⊆ m.
7) If S ⊇ R is an overring birational to R, then ω : S is a canonical module

for S.
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Lemma 2.2. Let I be a fractional ideal of R.

i) If I ⊇ γ and ν(I) ⊆ ν(ω), then there exists a unit u ∈ R such that u I ⊆ ω.

If ν(I) = ν(ω), then uI = ω.

ii) There exists a unit u ∈ R such that utc−c(I ) I ⊆ ω.

Proof.

i) We note that I ⊇ γ �⇒ ω : I ⊆ R �⇒ (ω : I)R ⊆ R. The hypotheses
I ⊇ γ and ν(I) ⊆ ν(ω) imply that c(I) = c, hence I : R = γ and
lR(R/(ω : I)R) = lR(I : R/ω : R) = 0. From the equality R = (ω : I)R
we deduce that ω : I contains a unit u of R and uI ⊆ ω. The second
assertion is now immediate, since lR(ω/uI) = #[ν(ω) \ ν(I)] = 0.

ii) We can apply item i) to the fractional ideal t c−c(I )I , because the conditions
t c−c(I )I ⊇ γ and ν(t c−c(I )I) ⊆ ν(ω) are satis�ed. �

A strict connection between the value sets of θD and ω2 is remarked by
D�Anna in [5], Lemma 3.2. Part iii) of next lemma is a slight generalization of
it.

Lemma 2.3. Let I be a fractional ideal of R. Let h, s ∈ Z, h ≥ 1. Then:

i) ν(ω : I) = ν(ω) − ν(I).

ii) ν(ω : I) = {y ∈ Z|c − 1− y /∈ ν(I)}.

iii) s ∈ ν(R : ωh−1 I) ⇐⇒ c − 1− s /∈ ν(ωh I).

In particular: s ∈ ν(θD) ⇐⇒ c − 1− s /∈ ν(ω2).

Proof.

i) The proof given in [13], Prop. 2.4, works also under our assumptions.

ii) ⊆ Using i), we see that y ∈ ν(ω : I) �⇒ c − 1 − y /∈ ν(I), since
c − 1 /∈ ν(ω).

⊇ Let y ∈ Z be such that c − 1 − y /∈ ν(I), and let z ∈ ν(I). Again by i) we
can prove that y+ z ∈ ν(ω). Now c−1− (y + z) = (c−1− y)− z /∈ ν(R) �⇒

y + z ∈ ν(ω).

iii) Observe that R : ωh−1I = ω : ωh I , then apply ii). �

Lemma 2.4. Let I be a fractional ideal of R and let J := I : ω. Then

i) J is a re�exive R-module, i.e. J = R : (R : J ).

ii) If J is not invertible, then m : m ⊆ J : J .

In particular, θD is re�exive and m : m ⊆ θD : θD.
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Proof.

i) The inclusion J ⊆ R : (R : J ) always holds. To prove ⊇, observe that

x(R : J ) ⊆ R �⇒ x(R : J )ω ⊆ ω �⇒

xω ⊆ ω : (R : J ) = ω : (ω : Jω) = Jω ⊆ I �⇒ x ∈ J.

ii) It suf�ces to note that

J not invertible �⇒ J (R : J ) �= R �⇒

J (R : J ) ⊆ m �⇒ J : J = R : J (R : J ) ⊇ R : m = m : m. �

In the last part of this section we point out how θD brings some relations
with the bidual ω∗∗ and the blowing up of the canonical module.

Denote by B := ∪n=0,...,∞ ωn : ωn the blowing up of the canonical module
of R (independent on the choice of ω). This overring has been studied recently
in relation to almost Gorenstein rings (see [2], ch.3, [5], ch.3).

Remark 2.5. The ring B satis�es the following properties:

i) For m >> 0, B = ωm : ωm = ωm . ( See [5], 3).

ii) B is a re�exive R-module. In fact B = (ωm : ωm−1) : ω and we can apply
Lemma 2.4.

iii) γ ⊆ R : B ⊆ θD .

iv) ω(R : B) = ω : B = R : B. In fact ω(R : B) = ω : (ω : (ω(R : B))) =

ω : Bω : ωm+1 = R : ωm = R : B.

v) θD : θD ⊆ B. In fact B = R : (R : B) = R : ω(R : B) = θD : (R : B) ⊇

θD : θD.

Proposition 2.6. The following facts hold:

i) ω ⊆ ω∗∗ ⊆ ω2 ⊆ B ⊆ R.

ii) lR(θD/γ ) = lR(R/ω2).

iii) lR(ω2/ω∗∗) = lR(ωθD/θD).

iv) If R is not Gorenstein, then:

c(ω2) ≤ c(ω∗∗) ≤ c − e.

c(ω2) = c − e ⇐⇒ e ∈ ν(θD).
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Proof.

i) ω∗∗ = R : (R : ω) = ω : ω(ω : ω2) ⊆ ω : (ω : ω2) = ω2.
ii) Since ω : γ = R and ω : θD = ω : (ω : ω2) = ω2, using the second
property in Prop. 2.1, we get the thesis.

iii) is immediate by Prop. 2.1.
iv) j ≥ c−e �⇒ c−1− j ≤ e−1 �⇒ either c−1− j = 0 or c−1− j /∈ ν(R).

Hence j ∈ ν(ω) ∪ {c − 1} ⊆ ν(ω∗∗).
Finally observe that e ∈ ν(θD) ⇐⇒ c − 1− e /∈ ν(ω2) by Lemma 2.3. �

Since a ring is Gorenstein if and only if B = ω, it is now natural to set
a characterization for the condition B = ω2. The condition is always veri�ed
by almost Gorenstein rings (see [2], Prop. 28). We point out that there exist
not almost Gorenstein rings with B = ω2, for instance the semigroup ring
R = C[[t h]], h ∈ ν(R) = {0, 7, 8, 9, 11, 13, →}.

Theorem 2.7. The following conditions are equivalent:

i) ω∗∗ is a ring.
ii) ω∗∗ = ω2.
iii) ωθD = θD.
iv) θD : θD = B.
v) R : B = θD.
vi) B = ω2.

Proof.

i) �⇒ ii). In this hypothesis: ω ⊆ ω∗∗ ⊆ ω2 ⊆ ωω∗∗ = ω∗∗.
ii) �⇒ iii) is immediate by Prop. 2.6.
iii) �⇒ iv) ωθD = θD �⇒ ωmθD = θD �⇒ B ⊆ θD : θD and the other

inclusion always holds (see Remark 2.5).
iv) �⇒ v) θD : θD = B �⇒ BθD ⊆ R �⇒ θD ⊆ R : B and the other

inclusion always holds (see Remark 2.5).
v) �⇒ vi) θD = ω : ω2 = R : B = ω : Bω = ω : B �⇒ ω : (ω : ω2) =

ω : (ω : B).
vi) �⇒ i) ω3θD = ω2θ2 ⊆ ω �⇒ ω2 ⊆ ω : ωθD = ω∗∗ �⇒ ω∗∗ = B . �

3. Type-sequences and length.

The number p of 1�s in t .s.(R), is related to the length of the R/m-algebra
R/θD and is involved in other interesting inequalities. First we show (Prop. 3.4)
how elements of ν(θD) give rise to 1�s in t .s.(R), and in t .s.(θD). From this we
get δ ≤ (c − δ)r1 − p(r1 − 1) ≤ (c − δ)r1 − lR(θD/γ (r1 − 1) (Theorem 3.7)
and we state other bounds.
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Proposition 3.1. (see [5]) Let ν(R) = {s0 = 0, s1, ....sn = c, →}, n = c − δ,

and let t .s.(R) = [r1, ...., rn ] and t .s.(θD) = [t1, ...., tn] be the type sequences
of R and θD respectively. Then:

i) c(θD : Ri ) = c(R : Ri ) = c − si , for each i = 0, ...., n.
ii) ν(θD : Ri )<c−si = {c − 1− b, b∈ Z≥si \ ν(ω2Ri )}, for each i = 0, ...., n.
iii) Let ni := c(R : Ri ) − δ(R : Ri),mi := c(θD : Ri ) − lR(R/θD : Ri ).

Then:

1. ri+1 = si+1 − si + ni+1 − ni, i = 0, ...., n − 1.
2. ti+1 = si+1 − si + mi+1 − mi , i = 0, ...., n − 1.
3.

�n
i=1 ri = δ .

4.
�n

i=1 ti = δ + lR(R/θD).

iv) Denoting by ωi the canonical module ω : (R : Ri ) of the overring R : Ri

obtained by duality, we have: ri = lR(ωi−1/ωi ).

Proof. By Lemma 2.3 we have that: x ∈ ν(θD : Ri ) ⇐⇒ c− 1− x /∈ ν(ω2Ri ).
i) If j ≥ c− si �⇒ c− 1− j < si �⇒ c− 1− j /∈ ν(ω2Ri ) �⇒ j ∈ ν(θD :

Ri ) ⊆ ν(R : Ri ). Moreover si ∈ ν(ωRi ) �⇒ c − si − 1 /∈ ν(R : Ri ) by
Lemma 2.3.

ii) follows from the above considerations.
iii) For the �rst equality see [5]. The second one is analogous: by de�nition

and item i), mi+1 = c−si+1+lR(R/θD : Ri+1) and mi = c−si+lR(R/θD :
Ri ). Since lR(R/θD : Ri ) − lR(R/θD : Ri+1) = lR(θD : Ri+1/θD : Ri) =

ti+1 , we get the thesis by subtraction. The other equalities are immediate
by de�nition.

iv) Apply Prop. 2.1, 7): ωi = ω : (R : Ri ) = ω : (ω : ωRi) = ωRi . �

Proposition 3.2. Let t .s.(R) = [r1, ...., rn ] and t .s.(θD) = [t1, ...., tn]. Let
xi−1 ∈ m be such that ν(xi−1) = si−1 < c. Then:

i) ri = 1 ⇐⇒ xi−1 ∈ AnnR

�
ω/(xi−1R + ωRi )

�
.

ii) ri = 1 �⇒ ti = 1.

Proof.

i) Since Ri−1 = xi−1R + Ri , we have ωRi−1 = xi−1ω + ωRi . Then
ri = lR(ωRi−1/ωRi ) = 1 ⇐⇒ ωRi−1 = xi−1R + ωRi ⇐⇒ xi−1 ∈

AnnR

�
ω/(xi−1R + ωRi )

�
.

ii) By hypothesisωRi−1 = xi−1R+ωRi �⇒ ω2Ri−1 = xi−1ω+ω2Ri , hence
by i), ω2Ri−1 = xi−1R + ω2Ri �⇒ ti = lR(ω2Ri−1/ω

2Ri) = 1. �

Lemma 3.3. ([5], Lemma 4.1) Let z1, ...., zr be any minimal set of generators
of ω. Then, if xi ∈ R and ν(xi ) = si , the R-module ωRi/ωRi+1 is generated by
xi z1 + ωRi+1, ...., xi zr + ωRi+1 .
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Proposition 3.4. Let t .s.(R) = [r1, ...., rn ] and t .s.(θD) = [t1, ...., tn] be the
type sequences of R and θD respectively. Then :

si ∈ ν(θD) �⇒ ri+1 = ti+1 = 1.

Proof. ri+1 = lR(ωRi/ωRi+1). Let ω = (1, z2, ..., zr ) and let xi ∈ θD be
such that ν(xi) = si < c. Then ωRi =< xi , ..., xi zr > mod ωRi+1 , by
Lemma 3.3. Thus xi ∈ R : ω �⇒ xi zj ∈ Ri+1 ⊆ ωRi+1 for all j > 1 (since
ν(xi zj ) > i) �⇒ ri+1 = 1 and by Prop. 3.2, ti+1 = 1. �

Notation 3.5. We put:

p := # [i ∈ {1, ..., c − δ} | ri = 1]

σ := lR(ω/R) − lR(R/θD) = 2δ − c − lR(R/θD)

The invariant σ has been introduced in [9]. It is known that σ(R) ≥ 0,
when r1 ≤ 3 or R is smoothable, but there are examples with σ < 0 (see 4.12).

Lemma 3.6. The following facts hold:

i) lR(θD/γ ) ≤ p.
ii) c − δ − p ≤ lR(R/θD) ≤ c − δ .
iii) 3δ − 2c ≤ σ ≤ 3δ − 2c + p.
iv) c − p ≤

�n
i=1 ti ≤ c.

Proof.

i) follows from Prop. 3.4.
ii) First inequality comes from i), since lR(R/θD) = lR(R/γ ) − lR(θD/γ );
the second one holds since γ ⊆ θD .

iii) is obvious by ii).
iv) lR(R/θD)+ δ =

�n
i=1 ti , so the inequalities are immediate from ii). �

Theorem 3.7. Let p be the number de�ned in 3.5. Then:

2(c− δ) − p ≤ δ ≤ (c − δ)r1 − p(r1 − 1) ≤ (c − δ)r1 − lR(θD/γ )(r1 − 1).

Proof. Since ri1 = . . . = rip = 1, and ri ≤ r1∀ i , using Prop. 3.1, iii) we get:

c−δ+(c−δ−p) ≤ δ =

c−δ�

1

ri = c−δ+

c−δ�

1

(ri−1) ≤ c−δ+(c−δ−p)(r1−1).

To get the last inequality use Lemma 3.6, i). �
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Corollary 3.8. Let, as above, n = c − δ . Then:

i) 2δ − c =
�n

i=1(ri − 1) ≤ (c − δ − p)(r1 − 1) ≤ lR(R/θD)(r1 − 1).
ii) 2δ − c ≤ lR(R/θD)(t1 − 2).

Proof.

i) See the proof of Theorem 3.7, then use Lemma 3.6, ii).
ii) As in the proof of Theorem 3.7, using Prop. 3.1 and Prop. 3.2, we obtain:

2δ − c + lR(R/θD) =

n�

i=1

(ti − 1) ≤ (c − δ − p)(t1 − 1) ≤ lR(R/θD)(t1 − 1).

�

Corollary 3.9. Either t1 = 1 (i.e. R is Gorenstein) or t1 ≥ 3.

From the �rst inequality of Theorem 3.7 we deduce the following

Corollary 3.10. p ≥ 2c − 3δ .

Of course, the above lower bound for p is signi�cant in the case 2c − 3δ > 0.
Using iii) of Lemma 3.6 we see that if σ < 0, then 2c − 3δ > 0. Example 5 in
4.12 shows that the converse is false. The following bound for lR(R/θD) is non
trivial when σ < 0 (see Example 4 in 4.12).

Proposition 3.11. lR(R/θD) ≤ (2δ − c)(r1 − 1).

Proof. Let ω = (1, z2, . . . , zr1 )R and consider, as in [10], Satz 3), for every
i = 1, . . . , r1 the R-module ωi := (1, . . . , zi )R. In particular ω2 is two-
generated, so by [3], Satz 2, lR(R/R : ω2) = lR(ω2/R). It is clear that
ωi+1/ωi � R/bi+1 , where bi+1 = AnnR(ωi+1/ωi ). By [10], Hilfssatz 4 and
Satz 1 we obtain: lR(R : ωi/R : ωi+1) ≤ lR(R : bi+1/R) ≤ lR(R/bi+1) + 2δ −

c = lR(ωi+1/ωi ) + 2δ − c. Since R = R : ω1 ⊃ R : ω2 ⊃ .... ⊃ R : ωr1 = θD ,

we have lR(R/θD) = lR(R/R : ω2) +
�r1−1

i=2 lR(R : ωi/R : ωi+1) ≤

lR(ω2/R)+
�r1−1

i=2 lR(ωi+1/ωi )+(2δ−c)(r1−2) = lR(ω/R)+(2δ−c)(r1−2).
The thesis follows. �

Remark 3.12. The difference a := (c − δ)r1 − δ has been taken into account
by several authors. In [10] it is proved that a ≥ 0, when R is a one-dimensional
local analytically unrami�ed Cohen Macaulay ring. In [11] it had already been
shown that a ≥ 0, under more particular hypotheses. In [4] some general
stucture theorems are presented for rings with a = 0 (the so called rings of
maximal length) or a = 1 (the so called rings of almost maximal length).
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Theorem 3.7 implies that a ≥ lR(θD/γ )(r1 − 1). Hence:

a < r1 − 1 �⇒ θD = γ .
a = r1 − 1 �⇒ lR(θD/γ ) ≤ 1.

The cases a ≤ r1 − 1 are studied in [6] and [7]. See also the following 5.2.

4. Relations between ri �s and ti �s.

Starting from the almost Gorenstein case, we are led to consider in a
t .s. [r1, . . . , ri , 1, 1, . . . , 1] the index i of the last element ri which is not 1.
This number has a central role in Theorem 4.3 which involves Ri , θD and B .
When i = 1, this theorem gives again the known characterizations of almost
Gorenstein rings.

Lemma 4.1. Let J be any proper ideal of R. If ν(Ri ) ⊆ ν(J ), then Ri ⊆ J .

Proof. In fact

ν(Ri ) ⊆ ν(J ) �⇒ ν(Ri ∩ J ) = ν(Ri ) �⇒ Ri ∩ J = Ri �⇒ Ri ⊆ J. �

Lemma 4.2. The following facts hold:

i) ri+1 > 1 �⇒ c − 1∈ ν(ω2Ri ).
ii) c − 1∈ ν(ω2Ri ) ⇐⇒ Ri �⊆ θD .
iii) If rn > 1, then tn ≥ rn + 1.

Proof.

i) By Prop. 3.4, ri+1 > 1 �⇒ si /∈ ν(θD) �⇒ c − 1− si ∈ ν(ω2) \ ν(ω) �⇒

c − 1 = si + (c − 1− si ) ∈ ν(ω2Ri ).
ii) By Lemma 2.3 c − 1 ∈ ν(ω2Ri) ⇐⇒ 0 /∈ ν(R : ωRi ). Suppose

c − 1 ∈ ν(ω2Ri ). If Ri ⊆ θD , then 1 ∈ θD : Ri = R : ωRi , contradiction.
Vice versa, if Ri �⊆ θD , by Lemma 4.1 there exists an element x ∈ Ri \ θD
such that ν(x) /∈ ν(θD); then u xω �⊆ R for all units u ∈ R. It follows that
0 /∈ ν(R : ωRi ).

iii) We have: rn = lR(ωRn−1/ωRn) = lR(ωRn−1/γ ) ≤ lR(ω2Rn−1/γ ) =

lR(ω2Rn−1/ω
2Rn) = tn . Looking at valuations we see that the above

inequality is strict since c − 1∈ ν(ω2Rn−1) \ ν(ωRn−1), by i). �

In [2] it is proved that

R is almost Gorenstein ⇐⇒ m = ω m ⇐⇒ r1 − 1 = 2δ − c.

Hence: R almost Gorenstein, not Gorenstein⇐⇒ θD = m. In other words:
t .s.(R) = [r1, . . . , 1] with r1 > 1 ⇐⇒ R1 ⊆ θD and R0 �⊆ θD .

Next proposition is a generalization of this fact.
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Theorem 4.3. Let 1 ≤ i ≤ n and let B = ωm be the blowing up of the
canonical module of R. The following are equivalent:

i) Ri ⊆ θD and Ri−1 �⊆ θD.
ii) B ⊆ R : Ri and B �⊆ R : Ri−1 .
iii) t .s.(R) = [r1, . . . , ri , 1, 1, . . . , 1] with ri > 1.
iv) t .s.(θD) = [t1, . . . , ti , 1, 1, . . . , 1] with ti > 1.

Proof.

i ) ⇐⇒ ii) Ri ⊆ θD ⇐⇒ ωRi = Ri ⇐⇒ ωm Ri = Ri ⇐⇒ B ⊆ R : Ri .

i ) �⇒ iii) By hypothesis sj ∈ ν(θD) ∀ j ≥ i �⇒ rj = 1 ∀ j > i .
We have to prove that ri > 1. If ri = 1, then by Prop. 3.2, i),
ωRi−1 = xi−1R + ωRi ⊆ R �⇒ Ri−1 ⊆ θD , absurd.

iii) �⇒ iv ) ri = lR(R/R : Ri−1)−lR(R/R : Ri ) = lR(R/R : Ri−1)−(n− i)
and analogously, by Prop. 3.2, ii), ti = lR(R/θD : Ri−1) − (n − i) �⇒

ti ≥ ri > 1.
iv) �⇒ iii) If i = n, the implication is true by Prop. 3.2, ii). Let i ≤ n − 1.

Surely, by Prop. 3.2, ri > 1 and by Lemma 4.2, iii), rn = 1. If rj > 1
with i < j < n and all the subsequents equal to 1, as above we would get
tj ≥ rj > 1, contradiction.

iii) �⇒ i ) rn = 1 �⇒ ωRn−1 = xn−1R + γ ⊆ R �⇒ Rn−1 ⊆ θD . If also
rn−1 = 1, then ωRn−2 = xn−2R + ωRn−1 ⊆ R, then Rn−2 ⊆ θD and so
on. If Ri−1 ⊆ θD , then ri = 1, and this concludes the proof. �

Proposition 4.4. If i ≤ n is such that ri > 1 and rj = 1 for all j ≥ i + 1,

then ti = ri + 1.

In particular: rn > 1 �⇒ tn = rn + 1.

Proof. By Theorem 4.3 we have Ri ⊆ θD , hence ri = lR(ωRi−1/Ri ) and
ti = lR(ω2Ri−1/Ri ). Since, by Lemma 4.2, i), c − 1 ∈ ν(ω2Ri−1), our
thesis will follow by proving that ν(ω2Ri−1) = ν(ωRi−1) ∪ {c − 1}.
Hence, let m ∈ ν(ω2Ri−1) \ ν(ωRi−1) : we claim that m = c − 1. By
Lemma 2.3 c − 1 − m ∈ ν(R : Ri−1). Let m = ν(x), x ∈ ω2Ri−1 and
c − 1 − m = ν(y), y ∈ R : Ri−1 . If ν(y) > 0, then yRi−1 ⊆ Ri , hence
c − 1 = ν(xy) ∈ ν(ω2Ri ) = ν(Ri ), absurd. Hence ν(y) = 0 and the thesis
is achieved. �

Proposition 4.5. The following are equivalent:

i) sn−1 ∈ ν(θD).
ii) sn−1 = c − 2.
iii) rn = 1.
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Proof. Recall that ωRn = γ .

i) �⇒ ii). If c − 2 /∈ ν(R), then 1 ∈ ν(ω). But this would imply that sn−1
and sn−1 + 1∈ ν(ωRn−1) \ ν(γ ) �⇒ rn > 1 �⇒ sn−1 /∈ ν(θD), absurd.

ii) �⇒ iii) Obviously ν(ωRn−1) \ ν(γ ) = {sn−1}. �

Corollary 4.6. B = R ⇐⇒ rn > 1.

Proof. B = R ⇐⇒ 1∈ ν(ω) ⇐⇒ c − 2 /∈ ν(R). �

Corollary 4.7. If θD = Ri for some i , then the equivalent conditions of
Theorem 2.7 hold.

Proof. B ⊆ R : Ri by Theorem 4.3 �⇒ R : B ⊇ Ri = θD �⇒ R : B = θD ,
since the other inclusion is always true. �

In the particular case θD = Rn we obtain:

Proposition 4.8. Set, as above, ni := c(R : Ri ) − δ(R : Ri ) and mi := c(θD :
Ri ) − lR(R/θD : Ri ). The following facts are equivalent:

i) θD = γ .
ii) ω2 = R.
iii) ti = si − si−1 for each i = 1, ...., n.
iv) mi = 0 for each i = 0, ...., n.
v) θD : Ri = t c−si R for each i = 0, ...., n.
vi) ω∗∗ = R.

If the above conditions hold, then

a) t1 = e.
b) ∀ i > 1, ri > ti ⇐⇒ ni > ni−1 .

Proof.

i) ⇐⇒ ii) See Prop. 2.6, ii).
ii) �⇒ iii) In fact ti = lR(ω2Ri/ω

2Ri−1) = lR(Ri R/Ri−1R) = si − si−1 .
iii) �⇒ iv) We have seen in Prop. 3.1 that ti = si − si−1 + mi − mi−1 .

Hypothesis iii) implies that m1 = m2 = .... = mn = c(R) − δ(R) = 0.
iv) �⇒ v) mi = 0 �⇒ ν(θD : Ri ) = [c − si , +∞). Since the inclusion

t c−si R ⊆ θD : Ri holds for every i = 0, ...., n, the equality of the value
sets implies the other inclusion.

v) �⇒ i) Take in v) i = 0.
vi) �⇒ ii) and i) �⇒ vi) are immediate by Prop. 2.6.
a) t1 = s1 − s0 = e.
b) Using Prop. 3.1 iii), it is immediate. �

Our conjecture t1 ≥ r1 is true for rings having maximal C.M. type, namely
r1 = e − 1. In this case we get a more precise result.
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Proposition 4.9. Let e ≥ 3. If for some 1 ≤ i ≤ n ri = e − 1, then ti = e.
Moreover, for the same i we have: si−1 = (i − 1)e, si = ie.

Proof. Since t eRi−1 ⊆ Ri ⊂ Ri−1 , we have the chain t eωRi−1 ⊆ ωRi ⊆

ωRi−1 . Hypothesis ri = e − 1 implies that lR(ωRi/t
eωRi−1) = 1 and since

c − 1+ e ∈ ν(ωRi) \ ν(t eωRi−1), it follows that

(∗) ωRi = t eωRi−1 + zR with ν(z) = c − 1+ e.

Analogously, considering the chain t eω2Ri−1 ⊆ ω2Ri ⊆ ω2Ri−1 , we see that
the thesis ti = e is equivalent to t eω2Ri−1 = ω2Ri . It will be suf�cient to
prove this last equality. From (∗) we have ω2Ri = t eω2Ri−1 + zω. Now,
z ∈ γ ⊆ Ri for every i �⇒ zω ⊆ ωRi �⇒ ω2Ri = t eω2Ri−1 + zR. By
Lemma 4.2 ri > 1 �⇒ c − 1∈ ν(ω2Ri−1), then ν(z) ∈ ν(t eω2Ri−1): we obtain
that t eω2Ri−1 = ω2Ri , as claimed.

To prove the other equalities, note that by de�nition si ≤ si−1 + e. As
already remarked ri = e − 1 implies that ν(ωRi) = ν(t eωRi−1) ∪ {c − 1+ e}.
Hence si ∈ ν(t eωRi−1), but si ≥ si−1 + e �⇒ si = si−1 + e = ie. �

For rings of C.M. type 2, we have a complete description of the type
sequences of R and θD . In this case the arrow �⇒ of Prop. 3.4 becomes
⇐⇒.

Proposition 4.10. Suppose r1 = 2. Then:

si ∈ ν(θD) �⇒ ri+1 = ti+1 = 1
si /∈ ν(θD) �⇒ ri+1 = 2, ti+1 = 3.

Proof. We have from Corollary 3.8, i) and Prop. 3.11 that lR(R/θD) = 2δ − c
hence lR(θD/γ ) = 2c−3δ . The elements of the type sequence [r1, ...., rn ], n =

c−δ , of R are 1 or 2, suppose p times 1 and n− p times 2. Then δ =
�n

i=1 ri =

p+2(n− p) �⇒ p = 2c−3δ . Hence p = lR(θD/γ ) and ri+1 = 1 ⇐⇒ si ∈ θD
(see Prop. 3.4). By hypothesis ω is two-generated, say ω = (1, z), then 1, z, z2

constitute a system of generators for ω2; hence t1 ≤ 3, and Corollary 3.9
implies that t1 = 3. Consider now the type sequence of θD , by Prop. 3.2,
ri = 1 �⇒ ti = 1. Suppose that for some i either ti = 2 or ri = 2 and ti = 1.
Then δ+lR(R/θD) =

�n
i=1 ti < lR(θD/γ )+3lR(R/θD) �⇒ δ < c−δ+2δ−c,

absurd. The thesis follows. �

Another case in which our conjecture t1 ≥ r1 is true comes directly from
Corollary 3.8:

Proposition 4.11. If lR(R/θD)(r1 − 2) ≤ 2δ − c, then r1 ≤ t1.
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Proof. If r1 > t1, from Corollary 3.8, ii), we get 2δ−c ≤ lR(R/θD)(t1−2) <

lR(R/θD)(r1 − 2) . �

Example 4.12. Suppose R = C[[t h]], h ∈ ν(R), is a semigroup ring. The �rst
three examples show that the converses of Prop. 3.2, ii), Prop. 3.4 and Prop.
4.9 are false.

1. Let ν(R) = {0, 10, 11, 17, 20 →}, then θD = γ, δ = 16, c − δ = 4 <

12 = 2δ − c, t .s.(R) = [7, 2, 5, 2], t .s.(θD) = [10, 1, 6, 3]. In this case
t2 = 1 and r2 > 1.

2. Let ν(R) = {0, 5, 6, 10→}, then θD = γ , δ = 7, c−δ = 3 < 4 = 2δ−c,
t .s.(R) = [3, 1, 3], t .s.(θD) = [5, 1, 4]. In this case t2 = r2 = 1. But
s1 = 5 /∈ ν(θD).

3. Let ν(R) = {0, 10, 11, 12, 14, 17, 20→}. Then: c = 20, δ = 14, r1 = 5,
ω = �0, 1, 3, 4, 6�, ω2 = R, hence θD = γ . t .s(R) = [5, 1, 1, 3, 2, 2],
t .s.(θD) = [10, 1, 1, 2, 3, 3]. In this case t1 = 10, but r1 = 5 < e − 1,
moreover r4 > t4 = 2.

4. Let ν(r) = �13, 121, 133, 163, 164, 166, 168, 170, 171�. We have δ =

181, c = 322, r1 = 4, θD = �121, 166, 168, 198, 216, 223, 234, 241, 248,
266�. Hence lR(R/θD) = 43 and σ = −3. Here bound in Prop. 3.11 is
better than bound in Lemma 3.6, ii). In fact: 2δ − c = 40 < lR(R/θD) =

43 < (2δ − c)(r1 − 1) = 120 < c − δ = 141. The type sequences t .s.(R)

and t .s.(θD) are respectively:

[4 4 4 4 4 3 2 2 2 2 1 2 2 1 2 1 1 1 1 1 2 1 1 1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 2 1 1

1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 . . . 1]

[10 10 10 10 8 6 3 3 3 3 1 3 2 1 3 1 1 1 1 1 2 1 1 1 1 3 2 1 1 2 1 1 1 1 3 2 1 1 2 1 1

1 1 3 2 1 1 2 1 1 1 1 3 2 1 1 2 1 1 1 1 3 1 1 1 2 1 1 1 1 3 1 . . . 1]

5 Let ν(R) = {7, 8, 9, 10, 12→}. We have δ = 7, r1 = 3, c = 12. and R
is almost Gorenstein, so θD = m, hence σ = 1, but 3δ − 2c < 0.

5. Minimality and maximality.

In the comparison between the type sequences of the ring and of the
Dedekind different, properties like minimality and maximality are completely
equivalent.

• Minimal type sequences . In [2] one can �nd the properties of almost
Gorenstein rings. Analogous properties for fractional ideals are considered in
[13]: a fractional ideal I is called of minimal type sequence (m.t.s. for short) if
and only if t .s.(I) = [r(I), 1, ...., 1], where r(I) is the Cohen Macaulay type
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of I as an R-module. Since it is well known that r(I) = 1 ⇐⇒ I � ω, it
follows in particular that t1 = 1 �⇒ R is Gorenstein.

Next proposition deals with the m.t.s. property in the not Gorenstein case.

Proposition 5.1. Let R be not Gorenstein. The following are equivalent:

i) R is almost Gorenstein.

ii) θD is m.t.s.

iii) ω∗∗ = R : m,

iv) B = R : m.

In this case t1 = r1 + 1.

Proof.

i) ⇐⇒ ii) is equivalence iii)⇐⇒ iv) of Theorem 4.3 for i = 1.

i) �⇒ iii) is immediate, since when R is almost Gorenstein, we have
θD = m = mω and by Prop. 2.6 ω∗∗ = ω2 = R : m. Last equality is
proved in [2], Prop. 28.

iii) �⇒ iv) ω∗∗ is a ring �⇒ ω∗∗ = ω2 = B by Theorem 2.7.

i) �⇒ iv) has been proved by D�Anna in [5], Prop. 3.4. �

• Maximal type sequences. Recalling that in general t .s.(R) =

[r1, ...., rn ], with r1 ≤ e − 1 and ri ≤ r1, of course �maximal� type sequence
means t .s.(R) = [e−1, ...., e−1]. In [7] and [6] the authors characterize all the
rings whose type sequence is closer to the maximal one in the following sense:
t .s.(R) = [e−1, ...., e−1, e−1−a]. For simplicity, we call a-maximal a type
sequence of this form.

Proposition 5.2. (See [6] and [7]). Let a ∈ N be such that a ≤ r1 − 1. The
following facts are equivalent:

i) (c − δ)r1(R) − δ = a and r1 = e − 1.

ii) ν(R) = {0, e, 2e, ...., (n − 1)e, ne − a, →}.

iii) t .s.(R) = [e − 1, ...., e − 1, e − 1− a].

Moreover, if a ≤ r1 − 2, then condition r1 = e − 1 in i) is super�ous.

We want to show now that the a-maximality of t .s.(R) is equivalent to the
a-maximality of t .s.(θD), i.e. t .s.(θD) = [e, ...., e, e − a], (see Prop. 5.4). To
do this we need some more or less well known results, that we list below for
our convenience. In the following �l1, ...., li � denotes the ν(R)-set generated by
l1, ...., li and, for any numerical set H ⊂ Z, H + l := {h + l, h ∈ H }.
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Lemma 5.3. Let 0 ≤ a ≤ e − 2 and let ν(R) = {0, e, 2e, ...., (n − 1)e, ne −

a, →}. In this case c = ne − a, n = c − δ .

i) Canonical ideals:
For a = 0 then ν(ω) = �0, 1, 2, ...., e − 2�. Call it ν(ω0).
For any a ≥ 1, change the last a generators by addying 1 to each one, i.e.
ν(ωa) = �0, 1, ...., e − a − 2, e − a, ...., e − 1�.
In particular, ν(ωe−2) = �0, 2, 3, ...., e − 1�.

ii) Type sequence of R :
t .s.(R) = [e − 1, ...., e − 1, e − 1− a].

iii) Omega square:
for a = 0, ...., e − 3 ω2 = R,
for a = e − 2 ν(ω2) = {0, 2, →}.

iv) Type sequence of θD :
for a = 0, ...., e − 3 t .s.(θD) = [e, e, ...., e, e − a],
for a = e − 2 t .s.(θD) = [e, e, ...., e, 1].

v) Dedekind different:
for a = 0, ...., e − 3 θD = γ ,
for a = e − 2 θD = zR + γ with ν(z) = (n − 1)e.

Proof.

i) Just remember that ν(ω) = { j ∈ Z | c − 1− j /∈ ν(R)}.
ii) For every a = 0, ...., e − 2 and for every i = 0, ...., n − 1, we have

ν(ωRi ) = ν(ω) + ie. Then for every i = 0, ...., n − 2, ν(ωRi ) \

ν(ωRi+1) = {0, 1, ...., e − a − 2, e − a, ...., e − 1} + ie. So we obtain
that ri+1 = lR(ωRi/ωRi+1) = e − 1. Let now i = n − 1. By de�nition
rn = #[ν(ωRn−1) \ ν(γ )]. Since ν(ωRn−1) = ν(ω) + (n − 1)e =

�(n − 1)e, (n − 1)e + 1, ...., ne − a − 2, ne − a, ...., ne − 1�, we see
that only the �rst e − a − 1 elements are smaller than c = ne − a and we
conclude that rn = e − a − 1.

iii) For a = 0, ...., e − 3 we see that 1 ∈ ν(ω), then ω2 = R. For a = e − 2,
by item i)ω = �0, 2, 3, ...., e − 1�, then ω2 = {0, 2, →}.

iv) For a = 0, ...., e − 3 and for i = 0, ...., n − 2, using iii) we get ti+1 =

lR(Ri R/Ri+1R) = e. For a = e − 2 and for i = 0, ...., n − 2, we have
ν(ω2Ri )\ν(ω2Ri+1) = {0, 2, ...., e−1, e+1}+ie and we get again ti+1 =

e. It remains to compute the last component tn = #[ν(ω2Rn−1) \ ν(γ )].
For a = 0, ...., e − 3, ν(ω2Rn−1) = ν(Rn−1R) = {(n − 1)e, →}; in this
set the elements < c are e − a, so tn = e − a. For a = e − 2, we have by
i)rn = 1, then by Prop. 3.2 also tn = 1.

v) The thesis follows from iii), by applying Lemma 2.3. �
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Proposition 5.4. Let e ≥ 3.

i) For 0 ≤ a < e − 2,
t .s.(R) = [e−1, ...., e −1, e−1−a] ⇐⇒ t .s.(θD) = [e, e, ...., e, e−a].

ii) t .s.(R) = [e − 1, ...., e − 1, 1]⇐⇒ t .s.(θD) = [e, e, ...., e, 1].

Proof. Both implications �⇒ follow from Prop. 5.2 and Lemma 5.3.

i) ⇐� Suppose 0 ≤ a < e − 2 and t .s.(θD) = [e, e, ...., e, e − a].
By Prop. 4.4 rn = δ −

�n−1
i=1 ri = e − a − 1 and by hypothesis

δ + lR(R/θD) = ne−a. Then ne−a − lR(R/θD)−
�n−1

i=1 ri < e−a �⇒
�n−1

i=1 ri > (n−1)e−lR(R/θD) = (n−1)(e−1)+(n−lR (R/θD))−1, i.e.
�n−1

i=1 ri ≥ (n−1)(e−1)+ (n− lR (R/θD)). On the other hand
�n−1

i=1 ri ≤

(n−1)r1 ≤ (n−1)(e−1). The only possibility is
�n−1

i=1 ri = (n−1)(e−1)
and lR(R/θD) = n, i.e. θD = t c R. Hence ri = e − 1 for i = 1, . . . , n − 1
and rn = e − a − 1.

ii) ⇐� Suppose t .s.(θD) = [e, e, ...., e, 1]. By Lemma 4.2 rn = 1. As in the
above item we �nd

�n−1
i=1 ri = (n − 1)(e− 1) + n − lR(R/θD) − 1. Hence

n− lR(R/θD)−1 ≤ 0, i.e. either n− lR (R/θD) = 0 or n− lR (R/θD) = 1.
In the �rst case θD = γ , moreover δ =

�n−1
i=1 ri + 1 = (n− 1)(e− 1) �⇒

δ = ne − n − e + 1 = ne − c + δ − e + 1 �⇒ c − 1 = ne − e,
which is a contradiction. The other possibility leads to lR(θD/γ ) = 1 and�n−1

i=1 ri = (n − 1)(e − 1), hence ri = e − 1 for every i = 0, ..., n − 1. �

REFERENCES

[1] V. Barucci - D.E. Dobbs - M. Fontana, Maximality Properties in Numerical
Semigroups and Applications to One-Dimensional Analytically Irreducible Local
Domains, Mem. A. M. S., 125, n. 598 (1997).
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