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Dedicated to Silvio Greco in occasion of his 60th birthday.

In this paper we describe the components of the Hilbert scheme Hd,g̃

of locally Cohen�Macaulay curves of degree d and arithmetic genus g̃ =�d−3
2

�
− 1. We show that Hd,g̃ is connected thanks to the irreducible

component of extremal curves to which every curve can be connected.

1. Introduction.

The question of the connectedness of the Hilbert schemes Hd,g of locally
Cohen�Macaulay curves C ⊂ P

3 of degree d and arithmetic genus g arose
naturally after Hartshorne proved in his PhD thesis that the Hilbert scheme of
all one dimensional schemes with �xed Hilbert polynomial is connected. The
answer to the question in case of locally Cohen�Macaulay curves is known, so
far, only for low degrees or high genera. After the paper [6], it is well known
that Hd,g contains an irreducible component consisting of extremal curves (i.e.
curves having the largest possible Rao function). This is the only component
for d ≥ 5 and (d − 3)(d − 4)/2 + 1 < g ≤ (d − 2)(d − 3)/2 while in the
cases d ≥ 5, g = (d − 3)(d − 4)/2 + 1 and d ≥ 4, g = (d − 3)(d − 4)/2
the Hilbert scheme is not irreducible, but it is connected (see [1], [9]). The
connectedness has been proved also for d ≤ 4 and any genus (see [9], [10] and
the references therein). This note deals with the �rst unknown case for high
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genus, i.e. g̃ = (d −3)(d −4)/2−1. The paper [2] has given a new light to the
problem, in fact Hartshorne provides somemethods to connect particular classes
of curves to the irreducible component of extremal curves. The purpose of this
note is to prove the connectedness of Hd,g̃, �rst by identifying its components
for every d and then to connect them to extremal curves using [2] and its
continuation [14].

Acknowledgements. The author wish to warmly thank S. Greco and E.
Schlesinger for the useful discussions.

2. Preliminaries.

We will work on an algebraically closed �eld k of characteristic zero. A
curve C in P

3 = P
3
k is a closed subscheme of pure dimension one, locally

Cohen�Macaulay. Its degree and arithmetic genus will be denoted by d and g
respectively. The key tools we will use are the notion of spectrum of a curve
(see [12], [13]) and the notion of triangle diagram (see [4]). We will recall here
some of the basic results on these topics for sake of completeness.

De�nition 2.1. Let C be a curve in P
3. The spectrum of C is the �nitely

supported function hC(n) = �2h0(OC(n)).

The following proposition shows how the spectrum is related to other
invariants of the curve:

Proposition 2.2. Let C be a curve with spectrum hC . Then

d =
�

n

hC(n) g = 1+
�

n

(n − 1)hC(n).

Let now I be the saturated homogeneous ideal de�ning C in the homoge-
neous coordinate ring k[X, Y, Z , T ] of P

3 and let gin(I) be its initial ideal. We
de�ne the lower triangle diagram by the function �0 : N × N → N ∪ {∞}

de�ned as follows: �0(i, j ) = min{k : XiY j Z k ∈ gin(I)} and �0(i, j ) = ∞

if k does not exist. We can also de�ne an upper triangle diagram �1 : N×N →

N ∪ {∞} by means of the lower triangle diagram of a curve algebraically linked
to C in a suitable complete intersection. The pair of functions � = (�0, �1) is
called the triangle diagram associated to the curve C.
To our purposes, it is important to recall the following result, proved in [4],
Prop. 3.6.3 that links the notion of triangle with the notion of spectrum:

A(n) = �{(i, j ) : i + j − �1(i, j ) = n} = hC(n)

where � denotes the cardinality of a �nite set. The following proposition
describes some properties of the triangles that allow their construction (see [4]):
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Proposition 2.3. Let C be a curve in P
3. Then � satis�es the following

conditions:

1. �1(0, 0) = 0,

2. �1(i, j ) = ∞ ⇐⇒ �0(i, j ) �= ∞,

3. �0(i, j + 1) < �0(i, j ) unless they are both 0 or ∞,

4. �0(i + 1, j − 1) ≤ �0(i, j ) unless they are both 0 or ∞,

5. �1(i, j ) < �1(i + 1, j ) unless they are both 0 or ∞,

6. �1(i, j ) < �1(i, j + 1) unless they are both 0 or ∞.

Using the triangles one can compute the dimensions of the cohomology group
of the ideal sheaf IC of the curve:

Proposition 2.4. Let C be a curve with triangle diagram � = (�0, �1) and
let

B(n) = �{(i, j ) : i + j + �0(i, j ) = n}.

Then we have

h0(IC(n)) =

n�

0

(n − k + 1)B(k)

h1(IC(n)) =
�

0<�1(i, j)<+∞

min{�1(i, j ), max(n + 1− i − j + �1(i, j ), 0)}−

�

0<�0(i, j)<+∞

min{�0(i, j ), max(n + 1− i − j, 0)}.

3. The case of degree d ≥ 9.

Let us consider the Hilbert scheme Hd,g̃ for d ≥ 9 and g̃ =
�
d−3
2

�
− 1. We

will show that there are only two types of spectrum associated to the pair (d, g̃)

and that Hd,g̃ does not contain ACM curves. We will classify the possible Rao
modules and we will list the curves belonging to Hd,g̃ .

Proposition 3.1. Let C be a curve of degree d ≥ 9 and genus g̃. Then its
spectrum is either:
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(1) spC = {−(d − 3)} ∪ {0, 1, 2, . . . , d − 2} =

or

(2) spC = {02, 12, 2, . . . , d − 3}.

Proof. The spectrum (1) correspond to the case of an extremal curve having
the given degree and genus and if hC(d − 2) �= 0 this is the only spectrum
possible. If hC(d − 2) = 0 and hC(d − 3) �= 0 the spectrum, that is connected
in positive degrees, contains {0, 1, 2, . . . , d − 2}. It is now easy to verify, using
the relations between the spectrum and d , g̃ in Prop. 2.2, that to get the desired
degree and genus the only possibility is the one given in (2). If one supposes
that hC(d − 3) = 0 then there is no spectrum possible associated to the pair
(d, g̃). This �nishes the proof. �

Proposition 3.2. If d ≥ 9, there are no ACM curves in Hd,g̃ .

Proof. Theorem 0.6 in [12] shows that there exists an ACM curve having
spectrum {hC(n)} if and only if hC(n) is an s-sequence, where s is the least
degree of a surface containing C. In particular, one has hC(n) = n + 1 for
0 ≤ n ≤ s − 1. In our case it is s ≥ 2 so that there exists an ACM curve C

if and only if hC(0) = 1, hC(1) = 2. This is absurd being the spectrum of the
type (1) or (2). �

Theorem 3.3. The Rao modules of a curve of degree d ≥ 6 and genus g̃
associated to the spectra (1), (2) are (up to type):

1. the extremal module

M1 = R(d − 3)/(X, Y, f3, f4) where deg f3 = d − 2, deg f4 = 2(d − 2),

where (X, Y, f3, f4) form a regular sequence

2. the subextremal module

M2 = R/(X, Y, f3, f4) where deg f3 = 2, deg f4 = d − 2,

where (X, Y, f3, f4) form a regular sequence

3. the module
M3 = R/(X, Y, Z 2, T 2),

4. the module
M4 = R/(X, Y, Z 2, ZT , Td−2).
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Proof. The spectrum (1) characterizes the extremal curves. From the general
theory, see [6], the associated module is M1 = M(a − 1) where M =

R/( f1, f2, f3, f4) is an extremal Koszul module with deg f1 = deg f2 = 1,
deg f3 = a and deg f4 = a + l . In our case, we have a =

�d−2
2

�
− g̃ = d − 2

and l = d − 2 and with a suitable choice of the coordinates we may suppose
that the module is as above. In case the spectrum is (2), the curve C contains
a plane curve Cd−2 of degree (d − 2) (see [13], Theorem 3.2). Let now
consider the integer s(C) = min{n | h0(IC(n)) �= 0}. If s(C) = 2 then the
curve is subextremal. If s(C) ≥ 3 then s(C) = 3 for reason of genus, being
g ≤

�
d−3
2

�
−

�
s−1
3

�
by Cor. 2.11 in [7], and the Rao function ρ(n) is bounded

above by the following inequalities given in [7]:

(3) ρ(n) ≤






0 n < 0, n > d − 3
1 n = 0
2 n = 1
1 2 ≤ n ≤ d − 3.

The Rao modules associated to the spectrum (2) are monogeneous, in fact if
µC(n) denotes the number of their minimal generators of in degree n, we have
that hC(n) ≥ 1 + µC(n), for 0 ≤ n ≤ d − 2 and if the equality holds for
n = �, 1 ≤ � ≤ d − 2 then hC(n) = 1 and µC(n) = 0 for � ≤ n ≤ d − 2
(see [13], Theorem 3.2). So, for n ≥ 1 the spectrum forces µC(n) = 0 and
the only generator e appears in degree 0. Note that the spectrum �xes the Rao
function for n = 0, 1, 2. In fact we have: h0(OC(0)) = 2, h0(OC(1)) = 6,
h0(OC(2)) = 11 and h0(IC(n)) = 0 for n = 0, 1, 2. The Riemann�Roch
theorem gives ρ(n) = 1 for n = 0, 2 and ρ(1) = 2. The relations that generate
the module structure can only be of two types, in fact, up to a choice of the
coordinates, the �rst relations are Xe = Ye = 0. The next relations can be
either Z 2e = T 2e = 0 or Z 2e = ZTe = 0. In the �rst case the module is
of the type M3 and its Rao function vanishes for n ≥ 3. In the second case,
T ie = ei is a basis of the i�th component (M)i of the Rao module for i ≥ 2,
so the module will be of the type M4 = R/(X, Y, Z 2, ZT , Tr ) for some r ≥ 3.
Note that r cannot be 3 in fact, in this case, M4 has the same Rao function as
the module M3. The Rao modules with ρ(n) = 1 for n = 0, 2 and ρ(1) = 2
are classi�ed in [6] where the authors prove that M4, for r = 3, is associated to
a curve which is, up to a deformation, a curve of degree 5 and genus 0 obtained
as the disjoint union of a line and a quartic of genus 1. Then r > 3 and we can
look at the module M4 as the module of a curve that is, up to a deformation,
union the line X = Y = 0 and the curve Z 2 = ZT = T r , so that, by reason of
degree, r = d − 2 and the Rao function satis�es the equalities in (3). �
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Remark 3.4. If the curve C has the spectrum (2) and degree d ≥ 9, we can
consider the residual sequence with respect to the plane H containing the plane
subcurve Cd−2:

(4) 0 −→ IC� (−1) −→ IC −→ IC∩H,H −→ 0.

Following the proof of Theorem 3.1 of [11] we get that the genus of the residual
curve C

� is given by
g(C�) = r − 2

where r = h0(OR), R denotes the residual scheme coming from the sequence

(5) 0 −→ IC∩H |H −→ I
CM
C∩H |H −→ OR −→ 0,

and I
CM
C∩H |H is the largest locally Cohen�Macaulay curve contained in C ∩ H .

This shows that g(C�) ≥ −2. The genus g̃ allows only three cases. If g(C�) = 0
then C

� is a conic, the curve C is a subextremal curve that is the disjoint union of
two plane curves of degree (d − 2) and 2 respectively. Such a curve is obtained
from an extremal curve by an elementary biliaison of height 1 on a quadric.
Its Rao module is, modulo a shift, the Rao module of an extremal curve of
parameters a = 2 and l = d − 2.
If g(C�) = −1 then the general curve C

� is the union of two skew lines; one of
them must intersect Cd−2 giving rise to an ACM curve of degree d − 1. The
Rao module is M4 by Cor. 3.5 I, [5]. The Rao function in this case is ρ(n) = 1
for n = 0 and 2 ≤ n ≤ d − 3, ρ(1) = 2 and ρ(n) = 0 otherwise. In fact, being
the values of ρ(n) �xed by the spectrum for n = 0, 1, 2 and since (3) holds, we
only have to prove that ρ(d − 3) = 1, since the module is monogeneous. This
can be easily computed by using the residual sequence written above, in fact,
from (4) we get H 1(IC(d −3)) ∼= H 1(IC∩H |H (d −3)) while from (5) it follows
that

0 −→ H 0(ICM
C∩H |H (d−3)) −→ H 0(OR(d−3)) −→ H 1(IC∩H |H (d−3)) −→ 0

so h1(IC∩H |H (d − 3)) = r and the statement follows.
Finally, if g(C�) = −2 then C

� is a double line of genus −2 that must intersect
Cd−2 in a 0�dimensional scheme of length 2. We wish to prove that the curve
C is bilinked to C

� on a surface of degree d − 2. Note that there is a surface
S containing C de�ned by F ∈ H 0(IC(d − 2)) and cutting properly the plane
H . In fact, the surface S must contain H and C

� , so that F = hF � , where
h is the linear form de�ning H and F � ∈ H 0(IC� (d − 3)). By the Riemann�
Roch theorem one has h0(IC(d −2)) ≥

�
d+1
3

�
−d(d −2)−1+

�
d−3
2

�
−1 while
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h0(IC� (d−3)) =
�
d
3

�
−d(d−3)+1, so that h0(IC(d−2)) > h0(IC�(d−3)) and

one can conclude that there are surfaces S as above. If we apply an elementary
biliaison to C

� on the surface S de�ned by F , we get the curve C̃ = C
�∪(S∩H ),

but S ∩ H = Cd−2 for reason of degree, so C̃ = C.

Note that, in case C ∈ Hd,g̃ the Rao module is uniquely associated to the
postulation of the curve and its Rao function and vice versa. So, in the proof of
Theorem 3.3 it is contained also the proof of the following Corollary:

Corollary 3.5. Let ψd the map that associates to each curve C ∈ Hd,g̃ its
postulation γ and its Rao function ρ . Then the image of ψd contains four pairs
(γi , ρi).

Remark 3.6. Let us set Hγi ,ρi
= ψ−1

d (γi , ρi); the subschemes Hγi ,ρi
for

i = 1, 2, 3 are smooth and irreducible since the corresponding modules are
Koszul. For i = 4, we have that Hγ4,ρ4 contains only curves associated to the
module M4 so we can consider Hγ4,M4

, instead of Hγ4,ρ4 , which is smooth and
irreducible by Corollaries 1.2 and 1.7, VII in [5]. Then it is possible to compute
the dimensions tγi ,ρi

of the schemes Hγi ,ρi
, i = 2, 3, 4; in the extremal case it

is known that tγ1,ρ1 = d(d + 5)/2 − 1, by Theorem 2.5, [6]. In the remaining
cases tγi ,ρi

= δγi
+ �γi ,ρi

− hMi
+ ex t1(Mi , Mi )

0, where all the quantities can be
determined using the formulas in [5], IX and are based on the knowledge of the
postulation γi , its �rst difference ∂γi and the Rao function that are listed in the
diagram.

n 0 1 2 3 4 5 6 7 . . . d − 3 d − 2 d − 1 d d + 1 d + 2 d + 3

γ2 −1 −1 0 1 0 0 0 0 . . . 0 0 1 1 −1 0 0

∂γ2 −1 0 1 1 −1 0 0 0 . . . 0 0 1 0 −2 1 0

ρ2 1 2 2 2 . . . . . . . . . . . . . . . 2 1 0 0 0 0 0

γ3 −1 −1 −1 2 1 −1 0 0 . . . 0 1 0 0 0 0 0

∂γ3 −1 0 0 3 −1 −2 1 0 . . . 0 1 −1 0 . . . 0 0

ρ3 1 2 1 0 0 0 0 0 . . . 0 0 0 0 0 0 0

γ4 −1 −1 −1 3 −1 0 0 0 . . . 0 0 2 −1 0 0 0

∂γ4 −1 0 0 4 −4 1 0 0 . . . 0 0 2 −3 1 0 0

ρ4 1 2 1 1 1 . . . . . . . . . . . . 1 0 0 0 0 0 0
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The dimensions are the following:

i δγi
�γi ,ρi

hMi
ex t1(Mi , Mi)

0 tγi ,ρi

2 d(d − 1)/2+ 6 −2 1 7 d(d − 1)/2+ 10

3 d(d − 1)/2+ 8 −4 1 6 d(d − 1)/2+ 9

4 d(d − 1)/2+ 7 −2 1 5 d(d − 1)/2+ 9

We can now describe the general curve of each component of the Hilbert
scheme:

Theorem 3.7. The Hilbert scheme Hd,g̃ of curves of degree d ≥ 9 and genus
g̃ has four irreducible components (which are the closures of the subschemes
Hγ,ρ ):

1. The family H1 of extremal curves, whose dimension is d(d+5)
2

− 1.

2. The closure H2 of the family of subextremal curves associated to the
module M2, whose general member is the disjoint union of two plane
curves of degrees d − 2 and 2. The dimension of H2 is d(d−1)

2
+ 10.

3. The closure H3 of the family of curves associated to the module M3

whose general curve is obtained by a biliaison of height 1 on a surface
of degree d − 2 from a double line of genus −2 and corresponds to the
union of a plane curve Cd−2 of degree d − 2 with a double line of genus
−2 intersecting Cd−2 in a zero�dimensional subscheme of length 2. The
dimension of H3 is d(d−1)

2
+ 9.

4. The closure H4 of the family of curves associated to the module M4 whose
general member is the union of a plane curve Cd−2 of degree d − 2 with
two skew lines, one of them intersecting transversally Cd−2 in one point.
The dimension of H4 is d(d−1)

2
+ 9.

Proof. The case of extremal curves is well known: they form an irreducible
component of Hd,g̃ having the given dimension so we can consider non extremal
curves. To prove the result we will show that the sets of curves described in 2,
3, 4 of the statement are contained in Hi , i = 2, 3, 4 respectively and that they
form families with dimension equal the values already obtained in the diagram.
If s = 2, we have already proved that the curve is associated to M2 and it is
contained in the union of two planes; if π is the plane containing Cd−2 then
the residual curve with respect to π is again a plane curve disjoint from Cd−2 .
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Counting the irreducible choices we get tγ2,ρ2 . If s = 3 then the module is
either M3 or M4. The module M3 is, modulo a shift, the module of a double
line C

� of genus −2. There exists a surface of degree d − 2 containing C
� so

that we can consider an elementary biliaison of height 1 on this surface that
produces a curve having the given module. The general curve in H3 can be
found as in Remark 3.4 and the statement on the dimension follows from direct
computation. Finally, M4 is the module of a curve that specializes to the disjoint
union of the line de�ned by the ideal (X, Y ) and the ACM curve de�ned by
(Z 2, ZT , Td−2) that is contained in the double plane Z 2 = 0. The intersection
with the Z = 0 gives the plane curve (Z , Td−2) and the line (Z , T ), so this
ACM curve appears as the union of a plane curve of degree d − 2 and a line
meeting in one point. As before, if we count the choices made we get tγ4,ρ4 . The
families of curves listed above are not contained one into another. First of all,
note that the only inclusion allowed by the value of the dimensions and by the
semicontinuity is H4 ⊆ H3. Now if H4 ⊆ H3 then H3 must intersect the open
subset of H4 formed by the reduced curves but this is absurd, since the general
curve in H3 is non reduced. �

4. The case d ≤ 8.

The Hilbert scheme Hd,g with d = 3 was already studied for all the values
of the genus in [8], moreover it is well known that all curves with d ≤ 2 are
planar or extremal. The case (d, g) = (4, −1) has been treated in [10] while
(d, g) = (5, 0) was dealt by Liebling in his PhD thesis [4]. Then, the cases we
have to consider are (d, g) ∈ {(6, 2), (7, 5), (8, 9)}.

Easy calculations prove the following:

Proposition 4.1. Let C be a curve of degree 6 ≤ d ≤ 8 and genus g̃. Then its
spectrum is either (1) or (2) or

(6) spC = {0, 13, 22} i f d = 6,

(7) spC = {0, 12, 23, 3} i f d = 7,

(8) spC = {0, 12, 22, 32, 4} i f d = 8.
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Remark 4.2. The Rao modules of the curves of degree d ≥ 6 associated to
spectra (1) and (2) can be classi�ed as in Theorem 3.3 and the general curves
are described in Theorem 3.7, in fact the results obtained in the previous section
hold also for d = 6, 7, 8. In particular, the dimensions tγi ,ρi

, i = 1, . . . , 4 can
be computed as in Remark 3.6 giving the same results listed in the diagram. So
we turn our attention to the spectra listed in the previous Proposition.

In this case, we will determine the cohomology and then the Rao modules
of curves C ∈ Hd,g̃, using the triangles introduced by Liebling in [4].

Curves with (d, g) = (6, 2).
Following the notations in the introduction we consider A(n) = �{ (i, j ) :
i + j − �1(i, j ) = n}. The knowledge of the spectrum allows the construction
of the upper triangle diagram associated to C, since A(n) = hC(n). If the curve
is in general coordinates, we have the following two types of triangles:

........
........
........
........
........
.......
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
........
........
........
........
........
....................................................................................................................................................................................

0
0 0
0 01

........
........
........
........
........
.......
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
........
........
........
........
........
....................................................................................................................................................................................

..................................................................................................................................................

0
0 0

01
1

Since
�

n∈Z
A(n) =

�
n∈Z

B(n), with B(n) = �{(i, j ) : i + j + �1(i, j ) = n},
the complete triangle arising from the �rst type is

........
........
.......
........
........
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
........
......................................................................................................................................................................................

0
0 0
0 0

0 0 0
1

1

A1

We can now prove the following classi�cation:

Proposition 4.3. The curves C ∈ H6,2 having spectrum (6) belong to the
following families:

1. the closure H5 of the family of curves associated to the module R(−1)/
(X, Y, Z , T2) that can be obtained by applying a biliaison (3, 1) to the
disjoint union of a line and a conic. The dimension of the family H5 is 24.
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while the second triangle gives rise to six different triangles that are listed below:

........
........
.......
........
.......
........
........
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
.......................................................................................................................................................................................

.................................................................................................................................................

0
0 0

0
0 0 0
0 0 0 0 0

1
1

2

A2

........
........
.......
........
.......
........
........
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
.......................................................................................................................................................................................

.................................................................................................................................................

0
0 0
0 0
0 0
0 0 0 0 0

1
12

A3

........
........
.......
........
.......
........
........
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
.......................................................................................................................................................................................

.................................................................................................................................................

0
0 0
0 0
0 0 0
0 0 0 0

1
1
2

A4

........
........
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
........
........
........
........
.......
........
.....................................................................................................................................................................................

.................................................................................................................................................

0
0 0

0
0 0
0 0 0 0 0

1 1
1 1

A5

........
........
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
........
........
........
........
.......
........
.....................................................................................................................................................................................

.................................................................................................................................................

0
0 0
0 0
0 0
0 0 0 0

1
1 1

1

A6

........
........
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
........
........
........
........
.......
........
.....................................................................................................................................................................................

.................................................................................................................................................

0
0 0

0
0 0 0
0 0 0 0

1 1
1
1

A7

2. the closure H6 of the family of curves having Rao module R(−1)/
(X, Y, Z 2, T 2) that can be obtained by applying a biliaison (2, 1) to the
disjoint union of two conics. H6 has dimension 23.

Proof. The spectrum (6) implies that the Rao module is monogeneous and
moreover that ρ(0) = 0, ρ(1) = 1. The triangles A1 , A2 and A5 give the
same Rao function that is ρ(2) = 1, ρ(n) = 0 for n ≥ 3 and h0(IC(n)) = 0 for
n = 0, 1, 2, h0(IC(n)) =

�
n+3
3

�
−6n +1 for n ≥ 3. When the Rao function of a

connected module is bounded above by 1, Lemma 1.8 of [1] applies, so that the
module in this case is M(−h)/(X, Y, Z , T 2). By Prop. 0.5 in [6] the minimal
curve C0 associated to this module has degree 3 and genus −1 and there is a
sequence of curves {Ci } such that Ci is obtained from Ci−1 by an elementary
biliaison (si , 1) and Ch = C. The only possibility is h = 1 and s1 = 3, so that
C0 is the disjoint union of a line and a conic and C is bilinked to the curve C0 on
a cubic surface. The postulation is γC(n) = −1, for n = 0, 1, 2, γC(n) = 2, for
n = 3, 4, γC(5) = −1 and 0 otherwise; by the formulas in [5], IX it is possible
to compute the dimension of the family; we have δγ = 24, �γ,ρ = −2, hM = 1
and ex t1(Mi , Mi )

0 = 3.

The triangles A3 and A6 give the following cohomology: h0(IC(n)) = 0 for
n = 0, 1, h0(IC(2)) = 1 so that the curve lies on a quadric, h0(IC(3)) = 4,
h0(IC(n)) =

�
n+3
3

�
− 6n + 1 for n ≥ 4, ρ(n) = 1 for n = 1, 3, ρ(2) = 2 and

ρ(n) = 0 otherwise. A curve with this cohomology bilinks down on a quadric
by Prop. 3.4.15 in [4], so that it lies in the biliaison class of the disjoint union
of two conics. Its Rao module is of the type R(−1)/(X, Y, Z 2, T 2). As above,
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one can compute δγ = 22, �γ,ρ = −4, hM = 1 and ex t1(Mi , Mi)
0 = 6 so that

dim H6 = 23.
The triangle A7 gives h0(IC(n)) = 0 for n = 0, 1, 2, h0(IC(3)) = 4,
h0(IC(n)) =

�n+3
3

�
− 6n + 1 for n ≥ 4, ρ(n) = 1 for n = 1, 2, 3 and

ρ(n) = 0 otherwise. Reasoning as above, we have that the Rao module can
only be R(−1)/(X, Y, Z , T3) and the curve C would be in the biliaison class
of the disjoint union of a line and a plane cubic. But such a curve would have
genus 3 so this case cannot happen.
Finally, the triangle A4 gives ρ(n) = 1 for n = 1, 4, h1(IC(n)) = 2 for n = 2, 3
and it is zero otherwise. If such a curve exists, it lies on a quadric so, by Prop.
3.4.15 in [4], it bilinks down to a quartic of genus −1 that, on the other hand,
cannot have the given Rao function (modulo a shift) and this is absurd. �

Proposition 4.4. The Hilbert scheme H6,2 has �ve components:

1. the four components in Theorem 3.7,

2. the closure H5 of the family of curves in the biliaison class of the disjoint
union of a line and a conic.

Proof. We have to consider only the curves having spectrum (6). The com-
putations on the dimensions of the various families show that only H5 can be a
component, since, if X is a component, it is dim X ≥ 24. By the semicontinuity
we have that the only inclusion allowed is H6 ⊂ H5, so H6,2 =

�5
i=1 Hi . �

The case (d, g) = (7, 5)
The values of A(n) and B(n) introduced above, allow us to produce �rst the
upper triangles (that can be only of two types) and then the complete triangles
that are the following

........
........
........
........
.......
........
........
........
........
........
........
........
........
........
........
.......
........
.......
........
.......
........
.......
...........................................................................................................................................................................................

...............................................................................................................................................

0
0 0

0
0 0
0 0 0 0 0

0 0
0 0

B1

........
........
........
........
.......
........
........
........
........
........
........
........
........
........
........
.......
........
.......
........
.......
........
.......
...........................................................................................................................................................................................

....................................................................................................................................................

0
0 0
0 0

0 0 0
0 0 0 0 0

1
1

B2

........
........
........
........
.......
........
........
........
........
........
........
........
........
........
........
.......
........
.......
........
.......
........
.......
...........................................................................................................................................................................................

....................................................................................................................................................

0
0 0
0 0 0
0 0 0
0 0 0 0

1
1

B3

The curves associated to these triangles are listed in the next Proposition.

Proposition 4.5. The curves C ∈ H7,5 having spectrum (7) belong to the
following families
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1. the closure H5 of family of ACM curves; H5 has dimension 28

2. the closure H6 of the family of curves having Rao module R(−2)/
(X, Y, Z , T2), that are in the biliaison class of the disjoint union of a conic
and a line; H6 has dimension 27.

Proof. First note that the Rao module must be monogeneous, by Theorem
3.2 in [13]. In the case B1 the curve is ACM since all the entries of the
triangles are zero, moreover h0(IC(n)) = 0 for n = 0, 1, 2, h0(IC(3)) = 3,
h0(IC(n)) =

�
n+2
3

�
+

�
n−2
2

�
− 3n + 2, for n ≥ 4. By direct computation it is

possible to show that also a curve having the triangle B2 is ACM and with the
same cohomology as above. We have γC(n) = −1 for n = 0, 1, 2, γC(3) = 2,
γC(4) = 1 and 0 otherwise, δγ = 28, �γ,ρ = hM = ex t1(Mi , Mi )

0 = 0 so that
dim H5 = 28.
In the case B3 we have h0(IC(n)) = 0 for n = 0, 1, h0(IC(2)) = 1,
h0(IC(3)) = 4, h0(IC(n)) =

�
n+2
3

�
+

�
n−2
2

�
− 3n + 2, for n ≥ 4. Moreover

ρ(n) = 1 for n = 2, 3 and it vanishes otherwise. Reasoning as in the proof of
Prop. 4.3, the Rao module is of the type R(−h)/(X, Y, Z , T 2) and the curve C

is not minimal. Its minimal model is given by a disjoint union of a line with a
conic so that h = 2 and the curve C can be obtained, up to deformations, by
two elementary biliaisons (2, 1). We also have δγ = 27, �γ,ρ = −2, hM = 1,
ex t1(Mi , Mi)

0 = 3 so that dim H6 = 27. �

Proposition 4.6. The Hilbert scheme H7,5 has �ve irreducible components:

1. the four components listed in Theorem 3.7,

2. the closure of the family of ACM curves.

Proof. We consider only the curves having spectrum (7): the dimensions of
the two families show that only H5 is a component and by semicontinuity, it is
H6 ⊂ H5. �

The case (d, g) = (8, 9)
In this last case, the only upper triangle allowed by the spectrum (8) is

........
........
........
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
........
........
........
........
.......
.....................................................................................................................................................................................

.................................................................................................................................................................................

0
0 0
0 0
0 0

0

C1
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then it immediately follows that the curve C ∈ H8,9 having spectrum (8) is
ACM. Computations as above show that h0(IC(n) = 0 for n = 0, 1 and
h0(IC(n) =

�
n+2
3

�
+

�
n−3
2

�
− 3n + 3 for n ≥ 2 so that γC(n) = −1 for n = 0, 1,

γC(4) = 1, γC(5) = 1 and 0 otherwise, δγ = 33 = tγ,ρ . Then we have the
following

Proposition 4.7. The Hilbert scheme H8,9 has the four components listed in
Theorem 3.7 and the closure H5 of family of ACM curves that has dimension
33.

Proof. Note that in this case, the family of ACM curves is a family that, by the
semicontinuity, is not contained in any of the previous ones. The result follows.

�

Now, we can state our main result:

Theorem 4.8. The Hilbert scheme Hd,g̃ is connected for d ≥ 3.

Proof. Let d ≥ 9: we have classi�ed the curves C lying in Hd,g̃ in theorem
3.7. The subextremal curves can be connected to extremal curves by [3], Prop.
9.12, while curves in the family associated to the module M3 are in the biliaison
class of a double line of genus −2 so they can be connected to an extremal
curve by [14], Lemma 2.1. Finally, a curve associated to M4 can be connected
to an extremal curve by [2], Propositions 2.2 and 3.4. Then, via the irreducible
component of Hd,g̃ formed by extremal curves, we have shown that Hd,g̃ is
connected. The cases of degrees d = 3, 4, 5 are studied in [9], [10], [4], so let
d = 6, 7, 8. We already know that the four components listed in Theorem 3.7
contain curves that can be connected to an extremal curve. If d = 6, the curves
in the component H5 are in the biliaison class of the disjoint union of a line with
a plane curve of degree two, so they can be connected to an extremal curve by
Proposition 2.2 in [14]. If d = 7, again we only have to consider the component
of ACM curves that can be connected to an extremal curve by Prop. 3.4 in [2].
The same argument shows also that the component H5 of the case H8,9 can be
connected. This �nishes the proof. �
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