# PLURICANONICAL MAPS OF A THREEFOLD OF GENERAL TYPE 

EZIO STAGNARO

Dedicated to Silvio Greco in occasion of his 60-th birthday.
We construct a non-singular threefold $X$ of general type as a desingularization of a hypersurface of degree six in $\mathbb{P}^{4}$, having the birational invariants $q_{1}=q_{2}=p_{g}=0, P_{2}=1, P_{3}=2, P_{4}=P_{5}=3, P_{6}=5$. Moreover, we prove that the $m$-canonical map $\varphi_{|m K|}$, where $K$ is a canonical divisor on $X$, has fibers that are generically finite sets if and only if $m \geq 6$ and it is birational if and only if $m \geq 11$.

## Introduction.

In this paper we summarize the results of a paper with the same title which will be published elsewhere. The results are presented here without complete proofs, but the idea giving the birationality of the $m$-canonical map $\varphi_{|m K|}$ if and only if $m \geq 11$ is written in some detail.

Let $V$ be a reduced, irreducible algebraic hypersurface of degree 6 in the projective space $\mathbb{P}^{4}=\mathbb{P}_{k}^{4}$, where $k$ is an algebraically closed field of characteristic zero, which we may assume to be the field of complex numbers.

We impose five triple points on $V$ at the five vertices $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}$ of the fundamental tetrahedron. We impose a double surface $S_{i}$ infinitely near each point $A_{i}, i=0,1,2,3,4$. Other unimposed singularities appear on $V$, close to these imposed singularities; they are actual and infinitely near singularities. As
usual, we call actual a singularity on $V$ to distinguish it from the infinitely near singularities that are (actual) singularities on strict transforms of $V$ belonging to exceptional divisors. By calling $\sigma: X \longrightarrow V$ a desingularization of $V$, we obtain that the unimposed singularities do not affect the birational invariants of $X$.

The birational invariants we find for $X$ are: $q_{1}=q_{2}=p_{g}=0$, $P_{2}=1, P_{3}=2, P_{4}=P_{5}=3, P_{6}=5, P_{7}=6, P_{8}=8, P_{9}=10$, $P_{10}=13$, where $q_{i}=\operatorname{dim}_{k} H^{i}\left(X, \mathcal{O}_{X}\right), P_{m}=\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}(m K)\right), K$ denotes a canonical divisor on $X$; the Kodaira dimension of $X$ is three, i.e. $X$ is of general type, and the canonical divisors $K$ on $X$ do not satisfy the two properties (simultaneously): the highest self-intersection number $\left(K^{3}\right)$ is positive (i.e. $\left(K^{3}\right)>0$ ) and $(K \cdot C) \geq 0$, for any curve $C$ on $X$. If $K$ enjoys the latter property, it is called numerically effective, abbreviated as nef. Furthermore, regarding the $m$-canonical map $\varphi_{|m K|}: X--\rightarrow \mathbb{P}^{P_{m}-1}$, we have the following results: $\varphi_{|m K|}$ has fibers that are generically given by two points if and only if $6 \leq m \leq 10$, and $\varphi_{|m K|}$ is birational if and only if $m \geq 11$.

We prefer from now on to call $\varphi_{|m K|}$ an $m$-canonical transformation, rather than an $m$-canonical map, in order to emphasize that $\varphi_{|m K|}$ is not, strictly speaking, a map: it does not need to be defined on all of $X$. Moreover, in the following pages a rational transformation having the generic fiber given by a finite set of $n$ points will be called a rational transformation $n: 1$.

In the literature, the following results are given for the $m$-canonical transformation of a non-singular threefold of general type $X$ having canonical divisors $K$ satisfying the two properties: $\left(K^{3}\right)>0$ and $K$ nef. The $m$-canonical transformation $\varphi_{|m K|}$ is a birational transformation providing
$m \geq 9$, X. Benveniste 1984, [1];
$m \geq 8$, K. Matsuki 1986, [7];
$m \geq 6$, M. Chen and S. Lee (independently) 1998-1999, [2], [6].
In the case of a non-singular threefold of general type $Y$, a lemma proved by A. Sommese (cf. [4], p. 44) states that if the canonical divisors $K_{Y}$ on $Y$ are nef, then $\left(K_{Y}^{3}\right)>0$. So, from Sommese's result, we deduce that the canonical divisors $K$ of our example $X$ are not nef.

As far as I know, the results for the birationality of $\varphi_{|m K|}$ in the case of nonsingular projective threefolds of general type $X$ without the two hypotheses for $K\left(\left(K^{3}\right)>0\right.$ and $K$ nef $)$ are as follows.

- J. Kollàr [5] has proved that if $P_{r} \geq 2$, then $\varphi_{|(7 r+3) K|}$ is generically finite and $\varphi_{|(11 r+5) K|}$ is birational;
- S. Chiaruttini and R. Gattazzo [3] constructed a non-singular threefold of general type such that the $m$-canonical transformation is birational if and only
if $m \geq 6$.
Many problems regarding the birationality of $\varphi_{\mid m K}$, and the fact that it is a rational transformation $n: 1$, are therefore still open if we abandon the hypothesis of $K$ nef. The example constructed in the present paper is a contribution in the direction of these problems.


## 1. Imposing singularities on a degree six hypersurface $\mathbf{V}$ in $\mathbb{P}^{4}$.

Let us indicate as $f_{6}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)$ a form (homogeneous polynomial) defining a hypersurface of degree six $V \subset \mathbb{P}^{4}$ with a triple point at each of the five vertices $A_{0}=(1,0,0,0,0), A_{1}=(0,1,0,0,0), A_{2}=$ $(0,0,1,0,0), A_{3}=(0,0,0,1,0),, A_{4}=(0,0,0,0,1)$ of the fundamantal tetrahedron. The equation of $V$ is given by

$$
\begin{aligned}
& V: f_{6}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)= \\
& X_{0}^{3}\left(a_{33000} X_{1}^{3}+\ldots\right)+X_{1}^{3}\left(a_{23100} X_{0}^{2} X_{2}+\ldots\right)+X_{2}^{3}(\ldots)+X_{3}^{3}(\ldots)+ \\
& +X_{4}^{3}(\ldots) a_{22200} X_{0}^{2} X_{1}^{2} X_{2}^{2}+a_{22110} X_{0}^{2} X_{1}^{2} X_{2} X_{3}+\ldots+a_{00222} X_{2}^{2} X_{3}^{2} X_{4}^{2}=0,
\end{aligned}
$$

where $a_{i j k l h} \in k$ denotes the coefficient of the monomial $X_{0}^{i} X_{1}^{j} X_{2}^{k} X_{3}^{l} X_{4}^{h}$.
We impose an infinitely near double surface $S_{i}$ at the point $A_{i}, i=$ $0,1,2,3,4$, in the first neighbourhood. The surface $S_{i}$ is locally isomorphic to a plane, according to our hypothesis on the singularities in [8], the Introduction and section 1 .

We follow the same method as we used in [St], section 5 and impose a double surface $\delta_{0}$ infinitely near $A_{0}$, then - by means of a permutation of indices and variables - we impose the same singularity at $A_{1}, A_{2}, A_{3}$ and $A_{4}$. We also use the same permutations of indices and variables as in [8].

We give the final equation for our hypersurface $V$, after imposing all the above-said singularities.

$$
\begin{aligned}
& V: f_{6}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)= \\
& X_{0}^{3}\left(a_{33000} X_{1}^{3}+a_{32100} X_{1}^{2} X_{2}+a_{32010} X_{1}^{2} X_{3}+a_{32001} X_{1}^{2} X_{4}\right)+ \\
& X_{1}^{3}\left(\quad a_{23100} X_{0}^{2} X_{2}+a_{23010} X_{0}^{2} X_{3}+a_{23001} X_{0}^{2} X_{4}\right)+ \\
& X_{2}^{3}\left(a_{21300} X_{0}^{2} X_{1}\right)+ \\
& X_{3}^{3}\left(a_{12030} X_{0} X_{1}^{2}\right)+ \\
& X_{4}^{3}\left(a_{10203} X_{0} X_{2}^{2}\right)+ \\
& a_{22200} X_{0}^{2} X_{1}^{2} X_{2}^{2}+a_{22110} X_{0}^{2} X_{1}^{2} X_{2} X_{3}+a_{22101} X_{0}^{2} X_{1}^{2} X_{2} X_{4}+ \\
& a_{22020} X_{0}^{2} X_{1}^{2} X_{3}^{2}+a_{22011} X_{0}^{2} X_{1}^{2} X_{3} X_{4}+a_{21210} X_{0}^{2} X_{1} X_{2}^{2} X_{3}+ \\
& a_{21201} X_{0}^{2} X_{1} X_{2}^{2} X_{4}+a_{2120} X_{0}^{2} X_{1} X_{2} X_{3}^{2}+a_{21111} X_{0}^{2} X_{1} X_{2} X_{3} X_{4}+
\end{aligned}
$$

$$
\begin{aligned}
& a_{21102} X_{0}^{2} X_{1} X_{2} X_{4}^{2}+a_{21021} X_{0}^{2} X_{1} X_{3}^{2} X_{4}+a_{12210} X_{0} X_{1}^{2} X_{2}^{2} X_{3}+ \\
& a_{12201} X_{0} X_{1}^{2} X_{2}^{2} X_{4}+a_{12120} X_{0} X_{1}^{2} X_{2} X_{3}^{2}+a_{12111} X_{0} X_{1}^{2} X_{2} X_{3} X_{4}+ \\
& a_{12102} X_{0} X_{1}^{2} X_{2} X_{4}^{2}+a_{12021} X_{0} X_{1}^{2} X_{3}^{2} X_{4}+a_{11220} X_{0} X_{1} X_{2}^{2} X_{3}^{2}+ \\
& a_{11211} X_{0} X_{1} X_{2}^{2} X_{3} X_{4}+a_{11202} X_{0} X_{1} X_{2}^{2} X_{4}^{2}+a_{11121} X_{0} X_{1} X_{2} X_{3}^{2} X_{4}+ \\
& a_{11112} X_{0} X_{1} X_{2} X_{3} X_{4}^{2}+a_{10212} X_{0} X_{2}^{2} X_{3} X_{4}^{2}+a_{01122} X_{1} X_{2} X_{3}^{2} X_{4}^{2}=0 .
\end{aligned}
$$

In the sequel, $V$ denotes this final hypersurface defined by the above final form $f_{6}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)$ for a generic choice of the parameters $a_{i j k l h}$.

## 2. Global and non-global m-canonical adjoints to $\mathrm{V} \subset \mathbb{P}^{4}$.

Let

$$
\mathbb{P}_{r} \xrightarrow{\pi_{r}} \ldots \xrightarrow{\pi_{3}} \mathbb{P}_{2} \xrightarrow{\pi_{2}} \mathbb{P}_{1} \xrightarrow{\pi_{1}} \mathbb{P}_{0}=\mathbb{P}^{4}
$$

be a sequence of blow-ups resolving the singularities on $V$.
If we call $V_{i} \subset \mathbb{P}_{i}$ the strict transform of $V_{i-1}$ with respect to $\pi_{i}$, then, from the above sequence, we obtain

$$
X=V_{r} \xrightarrow{\pi_{r}^{\prime}} \ldots \xrightarrow{\pi_{3}^{\prime}} V_{2} \xrightarrow{\pi_{2}^{\prime}} V_{1} \xrightarrow{\pi_{1}^{\prime}} V_{0}=V,
$$

where $\pi_{i}^{\prime}=\pi_{i_{V_{i}}}: V_{i} \longrightarrow V_{i-1}$ and $X$ is a desingularization of $V \subset \mathbb{P}^{4}$.
Let us assume that $\pi_{i}$ is a blow-up along a subvariety $Z_{i-1}$ of $\mathbb{P}_{i-1}$, of dimension $j_{i-1}$, which can be either singular or non-singular subvariety of $V_{i-1} \subset \mathbb{P}_{i-1}$ (i.e. $Z_{i-1}$ is the locus of singular or simple points of $V_{i-1}$ ). Let $m_{i-1}$ be the multiplicity of the variety $Z_{i-1}$ on $V_{i-1}$.

Let us set $n_{i-1}=-3+j_{i-1}+m_{i-1}$, for $i=1, \ldots, r$ and $\operatorname{deg}(V)=d$.
A hypersurface $\Phi_{m(d-5)}$ of degree $m(d-5)$ in $\mathbb{P}^{4}$ is an $m$-canonical adjoint to $V$ (with respect to the sequence of the blow-ups $\pi_{1}, \ldots, \pi_{r}$ ) if the restriction to $X$ of the divisor

$$
D_{m}=\pi_{r}^{*}\left\{\pi_{r-1}^{*}\left[\ldots \pi_{1}^{*}\left(\Phi_{m(d-5)}\right)-m n_{0} E_{1} \ldots\right]-m n_{r-2} E_{r-1}\right\}-m n_{r-1} E_{r}
$$

is effective, i.e. $D_{\left.m\right|_{X}} \geq 0$, where $E_{i}=\pi^{-1}\left(Z_{i-1}\right)$ is the exceptional divisor of $\pi_{i}$ and $\pi_{i}^{*}: \operatorname{Div}\left(\mathbb{P}_{i-1}\right) \longrightarrow \operatorname{Div}\left(\mathbb{P}_{i}\right)$ is the homomorphism of the Cartier (or locally principal) divisor groups (cf. [8], sections 1,2).

A hypersurface $\Phi_{m(d-5)}$ of degree $m(d-5)$ in $\mathbb{P}^{4}$ is a global $m$-canonical adjoint to $V$ (with respect to $\pi_{1}, \ldots, \pi_{r}$ ) if the divisor $D_{m}$ is effective on $\mathbb{P}_{r}$, i.e. $D_{m} \geq 0$ (loc. cit.).

As usual, if $D_{m_{\mid}} \geq 0$ but $D_{m} \nsucceq 0$, then the hypersurface $\Phi_{m(d-5)}$ will be called a non-global $m$-canonical adjoint to $V$.

Note that if $\Phi_{m(d-5)}$ is an $m$-canonical adjoint to $V$, then $D_{\left.m\right|_{X}} \equiv m K$, where $\equiv$ denotes linear equivalence and $K$ denotes a canonical divisor on $X$.

In our example, the blow-up $\pi_{1}$ is the blow-up at $A_{0}$ and $\pi_{2}$ is the blowup along the surface $\delta_{0}$ infinitely near $A_{0}, \pi_{3}$ is the blow-up at $A_{1}$ and $\pi_{4}$ is the blow-up along the surface $S_{1}$ infinitely near $A_{1}, \ldots$; i.e. $\pi_{2 j+1}$ is the blow-up at $A_{j}$ and $\pi_{2 j+2}$ is the blow-up along the surface $S_{j}$ infinitely near $A_{j}$, $j=0,1,2,3,4$. Moreover, we have $d=6$ and $D_{m}$ is given by:
(*) $D_{m}=\pi_{r}^{*} \ldots\left\{\pi_{2}^{*}\left[\pi_{1}^{*}\left(\Phi_{m}\right)\right]-m E_{2}\right\}-m E_{4}-m E_{6}-m E_{8}-m E_{10}+m E$,
where $E_{2}$ is the exceptional divisor of the blow-up $\pi_{2}$ along the surface $S_{0}$ infinitely near $A_{0}, E_{4}$ is the exceptional divisor of the blow-up $\pi_{4}$ along the surface $\delta_{1}$ infinitely near $A_{1}, \ldots, E_{10}$ is the exceptional divisor of the blow-up $\pi_{10}$ along the surface $S_{4}$ infinitely near $A_{4}$; the divisor $E$ is the exceptional divisor of the blow-up at an unimposed double isolate point.

No other exceptional divisors appear in $(*)$, because the unimposed singularities, which differ from the above isolated double point, are either actual or infinitely near double singular curves on our (generic) $V$. So, the exceptional divisors of the blow-ups along these curves appear with coefficient $n_{h}=0$ in the above expression of $D_{m}$.

Warning. For the sake of brevity, from now on we omit the divisor $E$, since it is not essential for our purposes.

## 3. In search of non-global m-canonical adjoints to $\mathbf{V}$.

If $\Phi_{m}$ is a non-global m-canonical adjoint to our $V$, it may be that a global $m$-canonical adjoint $\Phi_{m}^{\prime}$ to $V$ exists such that

$$
\Phi_{\left.m\right|_{V}}=\Phi_{\left.m\right|_{V}}^{\prime}
$$

We note that the equality $\Phi_{\left.m\right|_{V}}=\Phi_{\left.m\right|_{V}}^{\prime}$ is equivalent to the equality $D_{\left.m\right|_{X}}=$ $D_{\left.m\right|_{X}}^{\prime}$, where $D_{m}=\pi_{r}^{*} \ldots\left\{\pi_{2}^{*}\left[\pi_{1}^{*}\left(\Phi_{m}\right)\right]-m E_{2}\right\}-m E_{4}-m E_{6}-m E_{8}-m E_{10}$ and $D_{m}^{\prime}=\pi_{r}^{*} \ldots\left\{\pi_{2}^{*}\left[\pi_{1}^{*}\left(\Phi_{m}^{\prime}\right)\right]-m E_{2}\right\}-m E_{4}-m E_{6}-m E_{8}-m E_{10}$ (cf. also (*), section 2 ).

Theorem 1. Let $\Phi_{m}$ be a non-global $m$-canonical adjoint to $V$. A global $m$ canonical adjoint $\Phi_{m}^{\prime}$ to $V$ exists such that $D_{m_{\left.\right|_{X}}}=D_{\left.m\right|_{X}}^{\prime}$ if and only if $m \leq 10$.

As in [8], we denote by $W_{m}^{\prime}$ the vector space of degree $m$ forms $F_{m}$ defining global $m$-canonical adjoints to $V$; we denote as $\bar{W}_{m}$ the vector space of the elements $\bar{F}_{m} \in k[V]=$ homogeneous coordinate ring of $V$, where $F_{m}$ is a degree $m$ form defining a global $m$-canonical adjoint to $V$; we denote as $\mathcal{W}_{m}^{\prime}$ the vector space of the $m$ degree forms $\mathcal{F}_{m}$ defining $m$-canonical adjoints to $V$; we denote as $\overline{\boldsymbol{W}^{\prime}}{ }_{m}$ the vector space of the elements $\overline{\mathcal{F}}_{m} \in k[V]$, where $\mathcal{F}_{m}$ is a degree $m$ form defining an $m$-canonical adjoint to $V$. There is the inclusion ${\overline{W^{\prime}}}^{\prime} \subseteq \overline{\mathcal{W}}^{\prime}{ }_{m}$

With these notations, the above Theorem 1 states
Theorem $\mathbf{1}^{\prime}$. We have $\bar{W}_{m}^{\prime}={\overline{W^{\prime}}}_{m}$ if and only if $m \leq 10$.
Proof. (Sketch only.) The long and tedious proof of theorem 1 (and $1^{\prime}$ ) consists in proving that if $m \leq 10$ and $\Phi_{m}$ is a non-global $m$-canonical adjoint to $V$, then a global $m$-canonical adjoint $\Psi_{m}$ to $V$ exists such that

$$
\Phi_{\left.m\right|_{V}}=\Psi_{\left.\right|_{\mid v}} .
$$

Omitting this part, let us consider $m=11$. The form defining $V$ can be written in the following way:
$f_{6}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=\xi_{0}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right) X_{0}+f_{6}^{\prime}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)$, where $\xi_{0}=a_{32100} X_{0}^{2} X_{1}^{2} X_{2}+a_{32010} X_{0}^{2} X_{1}^{2} X_{3}+a_{32001} X_{0}^{2} X_{1}^{2} X_{4}+$
$a_{21300} X_{0} X_{1} X_{2}^{3}+a_{10203} X_{2}^{2} X_{4}^{3}+a_{21210} X_{0} X_{1} X_{2}^{2} X_{3}+a_{21201} X_{0} X_{1} X_{2}^{2} X_{4}+$
$a_{21120} X_{0} X_{1} X_{2} X_{3}^{2}+a_{21111} X_{0} X_{1} X_{2} X_{3} X_{4}+a_{21102} X_{0} X_{1} X_{2} X_{3} X_{5}^{2}+$
$a_{21021} X_{0} X_{1} X_{3}^{2} X_{4}+a_{10212} X_{2}^{2} X_{3} X_{4}^{2}$ is a form such that $F_{11}=\xi_{0} X_{0}^{3} X_{1}^{2} X_{2}$ defines a non-global 11-canonical adjoint $\Phi_{11}$ and a global 11-canonical adjoint $\Psi_{11}$ does not exist with $\Phi_{\left.1\right|_{V}}=\Psi_{\left.11\right|_{v}}$.

Now, we consider $m=12$. As in the case of $m=11$, the form $F_{12}=\xi_{0} X_{0}^{3} X_{1}^{2} X_{2} X_{3}$ defines a non-global 12-canonical adjoint $\Phi_{12}$ and a global 12-canonical adjoint $\Psi_{12}$ such that $\Phi_{\left.12\right|_{V}}=\Psi_{\left.12\right|_{V}}$ does not exist.

Next, in the case $m \geq 12$, we argue as follows: the form $F_{2}=X_{0} X_{1}$ defines a global bicanonical adjoint to $V$, then the forms $F_{11} F_{2}^{q}$ and $F_{12} F_{2}^{q}$ define the desired non-global $m$-canonical adjoints to $V$.

This proves the theorem.

## 4. Computing the $\mathbf{m}$-genus $\boldsymbol{P}_{\boldsymbol{m}}$ of $\mathbf{X}$ for $\boldsymbol{m} \leq \mathbf{1 0}$.

Lemma. If $F_{m}$ is a form of degree $m \geq 1$ defining a global $m$-canonical adjoint to $V$, then any monomial $\mathcal{M}$ in $F_{m}$ is given by

$$
\mathcal{M}=c X_{0}^{s} X_{1}^{s} X_{2}^{u} X_{3}^{v} X_{4}^{w}, c \in k \text { and } s>0 .
$$

We note that $X_{0}$ and $X_{1}$ have the same exponent $s$.
Corollary 1. Let $A \neq 0$ be a form of degree $m-6 \geq 0$. If $F_{m}$ is a form, of degree $m$, defining a global $m$-canonical adjoint to $V$, then the form:

$$
F_{m}+A f_{6}
$$

cannot define a global $m$-canonical adjoint (where the form $f_{6}$ defines $V$ ).
Next corollary follows from Corollary 1.
Corollary 2. If $F_{m}$ and $F_{m}^{\prime}$ are two forms, of degree $m \geq 6$, defining two global $m$-canonical adjoints $\Phi_{m}$ and $\Phi_{m}^{\prime}$, respectively, then

$$
\begin{gathered}
F_{m}^{\prime}=F_{m}+A f_{6} \Longrightarrow A=0 \text { and } F_{m}^{\prime}=F_{m} \\
\text { equivalently } \\
\Phi_{m_{\mid V}}=\Phi_{m_{\mid V}}^{\prime} \Longrightarrow \Phi_{m}=\Phi_{m}^{\prime}
\end{gathered}
$$

With the notations at the beginning of section 3, from Corollary 2, we have $W_{m}^{\prime}=\overline{W^{\prime}}{ }_{m}$, for $m \geq 6$, and clearly $W_{m}^{\prime}={\overline{W^{\prime}}}_{m}$ for if $m<6$. It follows from Theorem $1^{\prime}$, section 3, that ${\overline{W^{\prime}}}_{m}={\overline{\mathcal{W}^{\prime}}}_{m}$, for $m \leq 10$. Next, from [8], Lemma 4 and Corollary 8 , section $3, P_{m}=\operatorname{dim}_{k}\left(\overline{\mathcal{W}^{\prime}}{ }_{m}\right)$. Therefore, we obtain

$$
P_{m}=\operatorname{dim}_{k}\left(W_{m}^{\prime}\right), \text { for } m \leq 10
$$

and now it is possible to calculate the vector space $W_{m}^{\prime}$ from the above Lemma. Let us write $W_{m}^{\prime}=\left\{F_{m}\right\}$, varying $F_{m}$ in the set of forms, of degree $m$, defining global $m$-canonical adjoints; computing $\left\{F_{m}\right\}$, we obtain:

```
\(P_{1}=p_{g}=0 ;\)
\(P_{2}=1\), because \(W_{2}^{\prime}=\left\{a X_{0} X_{1}\right\}, a \in k ;\)
\(P_{3}=2\), because \(W_{3}^{\prime}=\left\{X_{0} X_{1}\left(a_{1} X_{2}+a_{2} X_{3}\right)\right\}, a_{i} \in k\);
\(P_{4}=3\), because \(W_{4}^{\prime}=\left\{b_{1} X_{0}^{2} X_{1}^{2}+X_{0} X_{1}\left(b_{2} X_{2} X_{3}+b_{3} X_{2} X_{4}\right)\right\}, b_{i} \in k\);
\(P_{5}=3\), because \(W_{5}^{\prime}=\left\{X_{0}^{2} X_{1}^{2}\left(c_{1} X_{2}+c_{2} X_{3}\right)+c_{3} X_{0} X_{1} X_{2} X_{3} X_{4}\right\}, c_{i} \in k\);
\(P_{6}=5\), because \(W_{6}^{\prime}=\left\{d_{1} X_{0}^{3} X_{1}^{3}+X_{0}^{2} X_{1}^{2}\left(d_{2} X_{2}^{2}+d_{3} X_{2} X_{3}+d_{4} X_{3}^{2}+d_{5} X_{2} X_{4}\right)\right\}\),
    \(d_{i} \in k ;\)
\(P_{7}=6\), because \(W_{7}^{\prime}=\left\{X_{0}^{3} X_{1}^{3}\left(e_{1} X_{2}+e_{2} X_{3}\right)+X_{0}^{2} X_{1}^{2} X_{2}\left(e_{3} X_{2} X_{3}+e_{4} X_{2} X_{4}+\right.\right.\)
                        \(\left.\left.e_{5} X_{3}^{2}+e_{6} X_{3} X_{4}\right)\right\}, e_{i} \in k ;\)
\(P_{8}=8 ; P_{9}=10\) and \(P_{10}=13\).
```


## 5. The m-canonical transformation $\varphi_{|m K|}$.

Let us consider the following commutative triangle

where $\sigma_{\left.\right|_{X}}: X \longrightarrow V$, with $\sigma=\pi_{r} \circ \ldots \circ \pi_{1}$, is our desingularization of $V$ and where $L_{m}=\mathbb{P}\left(\overline{\mathcal{W}^{\prime}}\right)=\left(\overline{\mathcal{W}^{\prime}}{ }_{m}\right)^{*} / k^{*}=$ (incomplete) linear system of $m$-canonical adjoints to $V$ restricted to $V$ [with $(\ldots)^{*}$ indicating (...) <br>{0\}], and } \varphi _ { L _ { m } } is the rational transformation defined by $L_{m}$.

Proposition 1. The rational transformation $\varphi_{L_{m}}$ (equivalently $\varphi_{|m K|}$ ) is a rational transformation $n: 1$, with $n \leq 2$, if and only if $m \geq 6$.

Corollary 3. The rational transformation $\varphi_{L_{m}}$ (equivalently $\varphi_{|m K|}$ ) is a rational transformation $2: 1$ for $6 \leq m \leq 10$.

Proof. Let $F_{m}$ be a form, of degree $m$, defining a global $m$-canonical adjoint to $V$. It follows from the Lemma in section 4 that any monomial $\mathcal{M}$ in $F_{m}$ is given by $c X_{0}^{s} X_{1}^{s} X_{2}^{u} X_{3}^{v} X_{4}^{w}$. Then, in an affine open set $U \subset \mathbb{P}^{4}$, the intersection of the hyperbola $X_{0} X_{1}=$ const with $V \cap U$ gives exactly two points; such points go to one and the same point in the image of $\varphi_{L_{m}}$. So, the thesis follows from Proposition 1 and from the equality $\overline{W^{\prime}}{ }_{m}={\overline{W^{\prime}}}_{m}$ if $m \leq 10$ (Theorem $1^{\prime}$, section 3).

Proposition 2. The $m$-canonical transformation $\varphi_{|m K|}$ is birational if and only if $m \geq 11$.

Proof. The "only if" part follows from Corollary 3 and from $P_{m} \leq 3$ for $m<6$ (section 4).

It remains for us to prove that $\varphi_{|m K|}$ is birational if $m \geq 11$. First we prove that $\varphi_{|11 K|}$ is birational. To do so, we consider the six forms of the vector space ${ }^{\prime} W^{\prime}{ }_{11}$ given by the five generators of $W_{6}^{\prime}$ multiplied by $X_{0}^{2} X_{1}^{2} X_{2}$, plus the form $\xi_{0} X_{0}^{3} X_{1}^{2} X_{2}$. We must remember that $X_{0}^{2} X_{1}^{2} X_{2}$ defines a global 5-canonical adjoint, and that the product with elements of $W_{6}^{\prime}$ gives elements in $W_{11}^{\prime} \subset \mathcal{W}_{11}^{\prime}$. The form $F_{11}=\xi_{0} X_{0}^{3} X_{1}^{2} X_{2}$ defines the non-global 11-canonical adjoint that we considered in the proof of Theorem 1, section 3. If we prove that the six forms considered in $\mathcal{W}^{\prime}{ }_{11}$ define a birational transformation on $V$, then $\varphi_{|11 K|}$ is also
birational. The six forms define a rational transformation that we denote as $\psi: \mathbb{P}^{4}--\rightarrow \mathbb{P}^{5}$ given by

$$
\left\{\begin{array}{l}
Y_{0}=X_{0}^{5} X_{1}^{5} X_{2} \\
Y_{1}=X_{0}^{4} X_{1}^{4} X_{2}^{3} \\
Y_{2}=X_{0}^{4} X_{1}^{4} X_{2}^{2} X_{3} \\
Y_{3}=X_{0}^{4} X_{1}^{4} X_{2} X_{3}^{2} \\
Y_{4}=X_{0}^{4} X_{1}^{4} X_{2}^{2} X_{4} \\
Y_{5}=\xi_{0} X_{0}^{3} X_{1}^{2} X_{2}
\end{array}\right.
$$

In the affine coordinates

$$
\begin{gathered}
X=\frac{Y_{0}}{Y_{1}}, Y=\frac{Y_{2}}{Y_{1}}, Z=\frac{Y_{3}}{Y_{1}}, T=\frac{Y_{4}}{Y_{1}}, W=\frac{Y_{5}}{Y_{1}} \\
x=\frac{X_{0}}{X_{2}}, y=\frac{X_{1}}{X_{2}}, z=\frac{X_{3}}{X_{2}}, t=\frac{X_{4}}{X_{2}},
\end{gathered}
$$

we obtain that the restriction of $\psi$ to $k^{4}$, of affine coordinates $(x, y, z, t)$, is given by

$$
\left\{\begin{array}{l}
X=x y \\
Y=z \\
Z=z^{2} \\
T=t \\
W=\frac{\xi_{0}(x, y, 1, z, t)}{x y^{2}}
\end{array}\right.
$$

We need to prove that $\psi_{\left.\right|_{V}}$ is birational, but a more important fact is true, i.e. that $\psi$ is birational. Now, let us prove that $\psi$ is birational. This follows from the equality $\xi_{0}(x, y, 1, z, t)=x^{2} y^{2} A+x y B+C$, with $A, B, C$ polynomials in $z, t$ (see the definition of $\xi_{0}$ in section 3). In fact, let us consider $P=\left(x_{0}, y_{0}, z_{0}, t_{0}\right)$ and $Q=\left(x_{1}, y_{1}, z_{1}, t_{1}\right)$ such that $\psi(P)=\psi(Q)$, i.e. such that $x_{0} y_{0}=x_{1} y_{1}, z_{0}=z_{1}, t_{0}=t_{1}$ and $\frac{\xi_{0}\left(x_{0}, y_{0}, 1, z_{0}, t_{0}\right)}{x_{0} y_{0}^{2}}=\frac{\xi_{0}\left(x_{1}, y_{1}, 1, z_{1}, t_{1}\right)}{x_{1} y_{1}^{2}}$. Considering the monomials in the polynomial $\xi_{0}(x, y, 1, z, t)$, we deduce that $\xi_{0}\left(x_{0}, y_{0}, 1, z_{0}, t_{0}\right)=\xi_{0}\left(x_{1}, y_{1}, 1, z_{1}, t_{1}\right)$. Thus, we obtain that $x_{0} y_{0}^{2}=x_{1} y_{1}^{2}$ and then $y_{0}=y_{1}$. So $P=Q$, proving that $\psi$ is a rational transformation $1: 1$, and this is the same as saying that $\psi$ is birational. (It is also not difficult to find $\psi^{-1}$ directly). This proves that $\varphi_{|11 K|}$ is birational.

Similarly, if we consider the form $F_{12}=\xi_{0} X_{0}^{3} X_{1}^{2} X_{2} X_{3}$ defining a nonglobal 12-canonical adjoint, it can be demonstrated that $\varphi_{|12 K|}$ is birational. Therefore, multiplying by the form $F_{2}^{q}=X_{0}^{q} X_{1}^{q}$ as usual, we find that $\varphi_{|m K|}$ is birational, for $m \geq 11$, proving the proposition.

## 6. Computing the irregularities of $X$.

There remains for us to prove that $q_{i}=\operatorname{dim}_{k} H^{i}\left(X, \mathcal{O}_{X}\right)=0$, for $i=1,2$. We know that $q_{1}=\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}\right)=q\left(S_{r}\right)=\operatorname{dim}_{k} H^{1}\left(S_{r}, \mathcal{O}_{S_{r}}\right)$, where $S_{r} \subset X$ is the strict transform of a generic hyperplane section $S$ of $V$ (cf., for instance, [8], section 4). $S$ has finite many isolated (actual or infinitely near) double points and no other singularities. So, we obtain $q_{1}=0$.

To prove that $q_{2}=0$ we use the formula (36), section 4 in [8], which states that:

$$
q_{2}=p_{g}(X)+p_{g}\left(S_{r}\right)-\operatorname{dim}_{k}\left(W_{2}\right),
$$

where $W_{2}$ is the vector space of the degree 2 forms defining global adjoints $\Phi_{2}$ to $V$ of degree 2, i.e. defining hyperquadrics $\Phi_{2}$ such that

$$
\pi_{r}^{*} \ldots \pi_{2}^{*}\left[\pi_{1}^{*}\left(\Phi_{2}\right)\right]-E_{2}-E_{4}-E_{6}-E_{8}-E_{10} \geq 0
$$

that is hyperquadrics passing through the points $A_{0}, A_{1}, A_{2}, A_{3}$ and $A_{4}$. Thus, we have: $\operatorname{dim}_{k}\left(W_{2}\right)=15-5=10$.

It follows from $p_{g}\left(S_{r}\right)=10$ and from $p_{g}(X)=0$, section 4 , that $q_{2}=0$.

## REFERENCES

[1] X. Benveniste, Sur les applications pluricanoniques des variétés de type très général en dimension 3, Amer. J. Math., 108 (1986), pp. 433-449.
[2] M. Chen, On pluricanonical maps for threefolds of general type, J. Math. Soc. Japan, 50 (1998), pp. 615-621.
[3] S. Chiaruttini - R. Gattazzo, Examples of birationality of pluricanonical maps, Rend. Sem. Mat. Univ. Padova, 107 (2002), to appear.
[4] Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann., 261 (1982), pp. 43-46.
[5] J. Kollár, Higher direct images of dualizing sheaves I, Ann. of Math., 123 (1986), pp. 11-42.
[6] S. Lee, Remarks on the pluricanonical and the adjoint linear series on projective threefolds, Comm. in Algebra, 27 (1999), pp. 4459-4476.
[7] K. Matsuki, On pluricanonical maps for 3-folds of general type, J. Math. Soc. Japan, 38 (1986), pp. 339-359.
[8] E. Stagnaro, Adjoints and pluricanonical adjoints to an algebraic hypersurface, Annali di Mat. Pura ed Appl., 180, (2001), pp. 147-201.

Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate,
Università di Padova,
Via Belzoni, 7
35131 Padova (ITALY)
email: stagnaro@dmsa.unipd.it

