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PLURICANONICAL MAPS OF A THREEFOLD

OF GENERAL TYPE

EZIO STAGNARO

Dedicated to Silvio Greco in occasion of his 60-th birthday.

We construct a non-singular threefold X of general type as a desingular-
ization of a hypersurface of degree six in P4, having the birational invariants
q1 = q2 = pg = 0, P2 = 1, P3 = 2, P4 = P5 = 3, P6 = 5. Moreover,
we prove that the m-canonical map ϕ|mK |, where K is a canonical divisor
on X , has �bers that are generically �nite sets if and only if m ≥ 6 and it is
birational if and only if m ≥ 11.

Introduction.

In this paper we summarize the results of a paper with the same title which
will be published elsewhere. The results are presented here without complete
proofs, but the idea giving the birationality of the m-canonical map ϕ|mK | if and
only if m ≥ 11 is written in some detail.

Let V be a reduced, irreducible algebraic hypersurface of degree 6 in
the projective space P

4 = P
4
k , where k is an algebraically closed �eld of

characteristic zero, which we may assume to be the �eld of complex numbers.
We impose �ve triple points on V at the �ve vertices A0 , A1 , A2 , A3, A4 of

the fundamental tetrahedron. We impose a double surface Si in�nitely near each
point Ai , i = 0, 1, 2, 3, 4. Other unimposed singularities appear on V , close to
these imposed singularities; they are actual and in�nitely near singularities. As
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usual, we call actual a singularity on V to distinguish it from the in�nitely near
singularities that are (actual) singularities on strict transforms of V belonging
to exceptional divisors. By calling σ : X −→ V a desingularization of V , we
obtain that the unimposed singularities do not affect the birational invariants of
X .

The birational invariants we �nd for X are: q1 = q2 = pg = 0,
P2 = 1, P3 = 2, P4 = P5 = 3, P6 = 5, P7 = 6, P8 = 8, P9 = 10,
P10 = 13, where qi = dimkH

i(X, OX), Pm = dimkH
0(X, OX (mK )), K

denotes a canonical divisor on X ; the Kodaira dimension of X is three, i.e.
X is of general type, and the canonical divisors K on X do not satisfy the
two properties (simultaneously): the highest self-intersection number (K 3) is
positive (i.e. (K 3) > 0) and (K · C) ≥ 0, for any curve C on X . If K
enjoys the latter property, it is called numerically effective, abbreviated as nef.
Furthermore, regarding the m-canonical map ϕ|mK | : X − − → P

Pm−1 , we
have the following results: ϕ|mK | has �bers that are generically given by two
points if and only if 6 ≤ m ≤ 10, and ϕ|mK | is birational if and only if m ≥ 11.

We prefer from now on to call ϕ|mK | an m-canonical transformation, rather
than an m-canonical map, in order to emphasize that ϕ|mK | is not, strictly
speaking, a map: it does not need to be de�ned on all of X . Moreover, in
the following pages a rational transformation having the generic �ber given by
a �nite set of n points will be called a rational transformation n : 1.

In the literature, the following results are given for the m-canonical trans-
formation of a non-singular threefold of general type X having canonical divi-
sors K satisfying the two properties: (K 3) > 0 and K nef. The m-canonical
transformation ϕ|mK | is a birational transformation providing

m ≥ 9, X. Benveniste 1984, [1];

m ≥ 8, K. Matsuki 1986, [7];

m ≥ 6, M. Chen and S. Lee (independently) 1998-1999, [2], [6].

In the case of a non-singular threefold of general type Y , a lemma proved
by A. Sommese (cf. [4], p. 44) states that if the canonical divisors KY on Y are
nef, then (K 3

Y ) > 0. So, from Sommese�s result, we deduce that the canonical
divisors K of our example X are not nef.

As far as I know, the results for the birationality of ϕ|mK | in the case of non-
singular projective threefolds of general type X without the two hypotheses for
K ((K 3) > 0 and K nef) are as follows.

� J. Kollàr [5] has proved that if Pr ≥ 2, then ϕ|(7r+3)K | is generically �nite
and ϕ|(11r+5)K | is birational;

� S. Chiaruttini and R. Gattazzo [3] constructed a non-singular threefold of
general type such that the m-canonical transformation is birational if and only
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if m ≥ 6.
Many problems regarding the birationality of ϕ|mK |, and the fact that it

is a rational transformation n : 1, are therefore still open if we abandon the
hypothesis of K nef. The example constructed in the present paper is a
contribution in the direction of these problems.

1. Imposing singularities on a degree six hypersurface V in P
4.

Let us indicate as f6(X0, X1, X2, X3, X4) a form (homogeneous poly-
nomial) de�ning a hypersurface of degree six V ⊂ P

4 with a triple point
at each of the �ve vertices A0 = (1, 0, 0, 0, 0), A1 = (0, 1, 0, 0, 0), A2 =

(0, 0, 1, 0, 0), A3 = (0, 0, 0, 1, 0, ), A4 = (0, 0, 0, 0, 1) of the fundamantal
tetrahedron. The equation of V is given by

V : f6(X0, X1, X2, X3, X4) =

X 3
0(a33000X

3
1 + . . .) + X 3

1(a23100X
2
0X2 + . . .) + X 3

2(...) + X 3
3(...) +

+ X 3
4(...)a22200X

2
0X

2
1X

2
2 + a22110X

2
0X

2
1X2X3 + . . . + a00222X

2
2X

2
3X

2
4 = 0,

where ai jklh ∈ k denotes the coef�cient of the monomial Xi
0X

j
1X

k
2X

l
3X

h
4 .

We impose an in�nitely near double surface Si at the point Ai , i =

0, 1, 2, 3, 4, in the �rst neighbourhood. The surface Si is locally isomorphic to
a plane, according to our hypothesis on the singularities in [8], the Introduction
and section 1.

We follow the same method as we used in [St], section 5 and impose a
double surface S0 in�nitely near A0 , then - by means of a permutation of indices
and variables - we impose the same singularity at A1, A2, A3 and A4 . We also
use the same permutations of indices and variables as in [8].

We give the �nal equation for our hypersurface V , after imposing all the
above-said singularities.

V : f6(X0, X1, X2, X3, X4) =

X 3
0(a33000X

3
1 + a32100X

2
1X2 + a32010X

2
1X3 + a32001X

2
1X4)+

X 3
1( a23100X

2
0X2 + a23010X

2
0X3 + a23001X

2
0X4)+

X 3
2(a21300X

2
0X1)+

X 3
3(a12030X0X

2
1)+

X 3
4(a10203X0X

2
2)+

a22200X
2
0X

2
1X

2
2 + a22110X

2
0X

2
1X2X3 + a22101X

2
0X

2
1X2X4+

a22020X
2
0X

2
1X

2
3 + a22011X

2
0X

2
1X3X4 + a21210X

2
0X1X

2
2X3+

a21201X
2
0X1X

2
2X4 + a21120X

2
0X1X2X

2
3 + a21111X

2
0X1X2X3X4+
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a21102X
2
0X1X2X

2
4 + a21021X

2
0X1X

2
3X4 + a12210X0X

2
1X

2
2X3+

a12201X0X
2
1X

2
2X4 + a12120X0X

2
1X2X

2
3 + a12111X0X

2
1X2X3X4+

a12102X0X
2
1X2X

2
4 + a12021X0X

2
1X

2
3X4 + a11220X0X1X

2
2X

2
3+

a11211X0X1X
2
2X3X4 + a11202X0X1X

2
2X

2
4 + a11121X0X1X2X

2
3X4+

a11112X0X1X2X3X
2
4 + a10212X0X

2
2X3X

2
4 + a01122X1X2X

2
3X

2
4 = 0.

In the sequel, V denotes this �nal hypersurface de�ned by the above �nal
form f6(X0, X1, X2, X3, X4) for a generic choice of the parameters ai jklh .

2. Global and non-global m-canonical adjoints to V ⊂ P
4.

Let
Pr

πr
−→ . . .

π3
−→ P2

π2
−→ P1

π1
−→ P0 = P

4

be a sequence of blow-ups resolving the singularities on V .
If we call Vi ⊂ Pi the strict transform of Vi−1 with respect to πi , then,

from the above sequence, we obtain

X = Vr

π �
r

−→ . . .
π �
3

−→ V2
π �
2

−→ V1
π �
1

−→ V0 = V ,

where π �
i = πi|Vi

: Vi −→ Vi−1 and X is a desingularization of V ⊂ P
4.

Let us assume that πi is a blow-up along a subvariety Zi−1 of Pi−1 , of
dimension ji−1, which can be either singular or non-singular subvariety of
Vi−1 ⊂ Pi−1 (i.e. Zi−1 is the locus of singular or simple points of Vi−1). Let
mi−1 be the multiplicity of the variety Zi−1 on Vi−1.

Let us set ni−1 = −3+ ji−1 + mi−1 , for i = 1, ..., r and deg(V ) = d .
A hypersurface �m(d−5) of degree m(d − 5) in P

4 is an m-canonical
adjoint to V (with respect to the sequence of the blow-ups π1, . . . , πr ) if the
restriction to X of the divisor

Dm = π∗
r {π∗

r−1[. . . π
∗
1 (�m(d−5)) − mn0E1 . . .] − mnr−2Er−1} − mnr−1Er

is effective, i.e. Dm |X ≥ 0, where Ei = π−1(Zi−1) is the exceptional divisor of
πi and π∗

i : Div(Pi−1) −→ Div(Pi ) is the homomorphism of the Cartier (or
locally principal) divisor groups (cf. [8], sections 1,2).

A hypersurface �m(d−5) of degree m(d − 5) in P
4 is a global m-canonical

adjoint to V (with respect to π1, . . . , πr ) if the divisor Dm is effective on Pr ,
i.e. Dm ≥ 0 (loc. cit.).

As usual, if Dm |X ≥ 0 but Dm �≥ 0, then the hypersurface �m(d−5) will be
called a non-global m-canonical adjoint to V .
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Note that if �m(d−5) is an m-canonical adjoint to V , then Dm |X ≡ mK ,
where ≡ denotes linear equivalence and K denotes a canonical divisor on X .

In our example, the blow-up π1 is the blow-up at A0 and π2 is the blow-
up along the surface S0 in�nitely near A0 , π3 is the blow-up at A1 and π4
is the blow-up along the surface S1 in�nitely near A1, . . . ; i.e. π2 j+1 is the
blow-up at Aj and π2 j+2 is the blow-up along the surface Sj in�nitely near Aj ,
j = 0, 1, 2, 3, 4. Moreover, we have d = 6 and Dm is given by:

(∗) Dm = π∗
r . . . {π∗

2 [π
∗
1 (�m)]−mE2}−mE4 −mE6 −mE8 −mE10 +mE,

where E2 is the exceptional divisor of the blow-up π2 along the surface S0

in�nitely near A0 , E4 is the exceptional divisor of the blow-up π4 along the
surface S1 in�nitely near A1, . . ., E10 is the exceptional divisor of the blow-up
π10 along the surface S4 in�nitely near A4; the divisor E is the exceptional
divisor of the blow-up at an unimposed double isolate point.

No other exceptional divisors appear in (∗), because the unimposed singu-
larities, which differ from the above isolated double point, are either actual or
in�nitely near double singular curves on our (generic) V . So, the exceptional
divisors of the blow-ups along these curves appear with coef�cient nh = 0 in
the above expression of Dm .

Warning. For the sake of brevity, from now on we omit the divisor E , since it is
not essential for our purposes.

3. In search of non-global m-canonical adjoints to V.

If �m is a non-global m-canonical adjoint to our V , it may be that a global
m-canonical adjoint ��

m to V exists such that

�m |V = ��
m |V

.

We note that the equality �m |V = ��
m |V

is equivalent to the equality Dm |X =

D�
m |X
, where Dm = π∗

r . . . {π∗
2 [π

∗
1 (�m)]−mE2}−mE4 −mE6 −mE8 −mE10

and D�
m = π∗

r . . . {π∗
2 [π

∗
1 (�

�
m)]−mE2}−mE4 −mE6 −mE8 −mE10 (cf. also

(∗), section 2).

Theorem 1. Let �m be a non-global m-canonical adjoint to V . A global m-
canonical adjoint ��

m to V exists such that Dm |X = D�
m |X

if and only if m ≤ 10.



538 EZIO STAGNARO

As in [8], we denote by W �
m the vector space of degree m forms Fm

de�ning global m-canonical adjoints to V ; we denote as W �
m the vector space

of the elements Fm ∈ k[V ] = homogeneous coordinate ring of V , where Fm is
a degree m form de�ning a global m-canonical adjoint to V ; we denote as W

�
m

the vector space of the m degree forms Fm de�ning m-canonical adjoints to V ;
we denote as W�

m the vector space of the elements F m ∈ k[V ], where Fm is
a degree m form de�ning an m-canonical adjoint to V . There is the inclusion
W �

m ⊆ W�
m

With these notations, the above Theorem 1 states

Theorem 1� . We have W �
m = W�

m if and only if m ≤ 10.

Proof. (Sketch only.) The long and tedious proof of theorem 1 (and 1�) consists
in proving that ifm ≤ 10 and�m is a non-globalm-canonical adjoint to V , then
a global m-canonical adjoint �m to V exists such that

�m |V = �m |V .

Omitting this part, let us consider m = 11. The form de�ning V can be written
in the following way:

f6(X0, X1, X2, X3, X4)=ξ0(X0, X1, X2, X3, X4)X0+ f �
6(X0, X1, X2, X3, X4),

where ξ0 = a32100X
2
0X

2
1X2 + a32010X

2
0X

2
1X3 + a32001X

2
0X

2
1X4+

a21300X0X1X
3
2 + a10203X

2
2X

3
4 + a21210X0X1X

2
2X3 + a21201X0X1X

2
2X4+

a21120X0X1X2X
2
3 + a21111X0X1X2X3X4 + a21102X0X1X2X3X

2
5+

a21021X0X1X
2
3X4+a10212X

2
2X3X

2
4 is a form such that F11 = ξ0X

3
0X

2
1X2 de�nes

a non-global 11-canonical adjoint �11 and a global 11-canonical adjoint �11

does not exist with �11|V = �11|V .
Now, we consider m = 12. As in the case of m = 11, the form

F12 = ξ0X
3
0X

2
1X2X3 de�nes a non-global 12-canonical adjoint�12 and a global

12-canonical adjoint �12 such that �12|V = �12|V does not exist.
Next, in the case m ≥ 12, we argue as follows: the form F2 = X0X1

de�nes a global bicanonical adjoint to V , then the forms F11F
q
2 and F12F

q
2

de�ne the desired non-global m-canonical adjoints to V .
This proves the theorem.

4. Computing the m-genus Pm of X for m ≤ 10.

Lemma. If Fm is a form of degree m ≥ 1 de�ning a global m-canonical adjoint
to V , then any monomial M in Fm is given by

M = cXs
0X

s
1X

u
2X

v
3X

w
4 , c∈ k and s > 0.
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We note that X0 and X1 have the same exponent s .

Corollary 1. Let A �= 0 be a form of degree m − 6 ≥ 0. If Fm is a form, of
degree m, de�ning a global m−canonical adjoint to V , then the form:

Fm + A f6

cannot de�ne a global m−canonical adjoint (where the form f6 de�nes V ).

Next corollary follows from Corollary 1.

Corollary 2. If Fm and F �
m are two forms, of degree m ≥ 6, de�ning two global

m-canonical adjoints �m and ��
m, respectively, then

F �
m = Fm + A f6 �⇒ A = 0 and F �

m = Fm,

equivalently

�m |V
= ��

m |V
�⇒ �m = ��

m .

With the notations at the beginning of section 3, from Corollary 2, we have
W �

m = W �
m , for m ≥ 6, and clearly W �

m = W �
m for if m < 6. It follows from

Theorem 1� , section 3, that W �
m = W�

m , for m ≤ 10. Next, from [8], Lemma 4
and Corollary 8, section 3, Pm = dimk(W�

m). Therefore, we obtain

Pm = dimk(W
�
m), for m ≤ 10,

and now it is possible to calculate the vector space W �
m from the above Lemma.

Let us write W �
m = {Fm}, varying Fm in the set of forms, of degree m, de�ning

global m-canonical adjoints; computing {Fm}, we obtain:

P1 = pg = 0;

P2 = 1, because W �
2 = {aX0X1}, a ∈ k;

P3 = 2, because W �
3 = {X0X1(a1X2 + a2X3)}, ai ∈ k;

P4 = 3, because W �
4 = {b1X

2
0X

2
1 + X0X1(b2X2X3 + b3X2X4)}, bi ∈ k;

P5 = 3, because W �
5 = {X 2

0X
2
1(c1X2 + c2X3) + c3X0X1X2X3X4}, ci ∈ k;

P6 = 5, because W �
6 = {d1X

3
0X

3
1 + X 2

0X
2
1(d2X

2
2 +d3X2X3+d4X

2
3 +d5X2X4)},

di ∈ k;

P7 = 6, because W �
7 = {X 3

0X
3
1(e1X2 + e2X3) + X 2

0X
2
1X2(e3X2X3 + e4X2X4 +

e5X
2
3 + e6X3X4)}, ei ∈ k;

P8 = 8; P9 = 10 and P10 = 13.
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5. The m-canonical transformation ϕ|mK| .

Let us consider the following commutative triangle

X
ϕ|mK | �����

σ|X
���

�
�

�
�

�
�

� P
Pm−1

V

ϕLm

���
�

�

where σ|X : X −→ V , with σ = πr ◦ . . . ◦π1, is our desingularization of V and
where Lm = P(W�

m) = (W�
m)∗/k∗ = (incomplete) linear system of m-canonical

adjoints to V restricted to V [with (. . .)∗ indicating (. . .) \ {0}], and ϕLm
is the

rational transformation de�ned by Lm .

Proposition 1. The rational transformation ϕLm
(equivalently ϕ|mK |) is a ratio-

nal transformation n : 1, with n ≤ 2, if and only if m ≥ 6.

Corollary 3. The rational transformationϕLm
(equivalently ϕ|mK |) is a rational

transformation 2 : 1 for 6 ≤ m ≤ 10 .

Proof. Let Fm be a form, of degree m, de�ning a global m-canonical adjoint
to V . It follows from the Lemma in section 4 that any monomial M in Fm is
given by cXs

0X
s
1X

u
2X

v
3X

w
4 . Then, in an af�ne open set U ⊂ P

4, the intersection
of the hyperbola X0X1 = const with V ∩ U gives exactly two points; such
points go to one and the same point in the image of ϕLm

. So, the thesis follows
from Proposition 1 and from the equality W �

m = W�
m if m ≤ 10 (Theorem 1� ,

section 3).

Proposition 2. The m-canonical transformation ϕ|mK | is birational if and only
if m ≥ 11 .

Proof. The �only if � part follows from Corollary 3 and from Pm ≤ 3 for m < 6
(section 4).

It remains for us to prove that ϕ|mK | is birational if m ≥ 11. First we
prove that ϕ|11K | is birational. To do so, we consider the six forms of the vector
space W

�
11 given by the �ve generators of W

�
6 multiplied by X 2

0X
2
1X2, plus the

form ξ0X
3
0X

2
1X2. We must remember that X

2
0X

2
1X2 de�nes a global 5-canonical

adjoint, and that the product with elements ofW �
6 gives elements inW �

11 ⊂ W
�
11.

The form F11 = ξ0X
3
0X

2
1X2 de�nes the non-global 11-canonical adjoint that we

considered in the proof of Theorem 1, section 3. If we prove that the six forms
considered in W

�
11 de�ne a birational transformation on V , then ϕ|11K | is also
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birational. The six forms de�ne a rational transformation that we denote as
ψ : P

4 − − → P
5 given by






Y0 = X 5
0X

5
1X2

Y1 = X 4
0X

4
1X

3
2

Y2 = X 4
0X

4
1X

2
2X3

Y3 = X 4
0X

4
1X2X

2
3

Y4 = X 4
0X

4
1X

2
2X4

Y5 = ξ0X
3
0X

2
1X2

.

In the af�ne coordinates

X =
Y0

Y1
, Y =

Y2

Y1
, Z =

Y3

Y1
, T =

Y4

Y1
, W =

Y5

Y1
,

x =
X0

X2
, y =

X1

X2
, z =

X3

X2
, t =

X4

X2
,

we obtain that the restriction of ψ to k4, of af�ne coordinates (x , y, z, t), is
given by 





X = xy
Y = z
Z = z2

T = t

W =
ξ0(x , y, 1, z, t)

xy2

We need to prove that ψ|V is birational, but a more important fact is true,
i.e. that ψ is birational. Now, let us prove that ψ is birational. This
follows from the equality ξ0(x , y, 1, z, t) = x 2y2A + xyB + C , with A, B,C
polynomials in z, t (see the de�nition of ξ0 in section 3). In fact, let us consider
P = (x0, y0, z0, t0) and Q = (x1, y1, z1, t1) such that ψ(P) = ψ(Q), i.e.
such that x0y0 = x1y1, z0 = z1, t0 = t1 and

ξ0(x0 ,y0,1,z0,t0)

x0 y
2
0

=
ξ0(x1,y1,1,z1,t1)

x1 y
2
1

.

Considering the monomials in the polynomial ξ0(x , y, 1, z, t), we deduce that
ξ0(x0, y0, 1, z0, t0) = ξ0(x1, y1, 1, z1, t1). Thus, we obtain that x0y

2
0 = x1y

2
1

and then y0 = y1. So P = Q , proving that ψ is a rational transformation 1 : 1,
and this is the same as saying that ψ is birational. (It is also not dif�cult to �nd
ψ−1 directly). This proves that ϕ|11K | is birational.

Similarly, if we consider the form F12 = ξ0X
3
0X

2
1X2X3 de�ning a non-

global 12-canonical adjoint, it can be demonstrated that ϕ|12K | is birational.
Therefore, multiplying by the form F

q
2 = X

q
0X

q
1 as usual, we �nd that ϕ|mK |

is birational, for m ≥ 11, proving the proposition.
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6. Computing the irregularities of X .

There remains for us to prove that qi = dimkH
i (X, OX) = 0, for i = 1, 2.

We know that q1 = dimkH
1(X, OX) = q(Sr) = dimk H

1(Sr , OSr), where
Sr ⊂ X is the strict transform of a generic hyperplane section S of V (cf.,
for instance, [8], section 4). S has �nite many isolated (actual or in�nitely near)
double points and no other singularities. So, we obtain q1 = 0.

To prove that q2 = 0 we use the formula (36), section 4 in [8], which states
that:

q2 = pg(X ) + pg(Sr ) − dimk(W2),

where W2 is the vector space of the degree 2 forms de�ning global adjoints �2

to V of degree 2, i.e. de�ning hyperquadrics �2 such that

π∗
r . . . π∗

2 [π
∗
1 (�2)] − E2 − E4 − E6 − E8 − E10 ≥ 0,

that is hyperquadrics passing through the points A0, A1, A2, A3 and A4. Thus,
we have: dimk(W2) = 15− 5 = 10.

It follows from pg(Sr) = 10 and from pg(X ) = 0, section 4, that q2 = 0.
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