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PLURICANONICAL MAPS OF A THREEFOLD
OF GENERAL TYPE

EZIO STAGNARO

Dedicated to Silvio Greco in occasion of his 60-th birthday.

We construct a non-singular threefold X of general type as a desingular-
ization of a hypersurface of degree six in P*, having the birational invariants
q1 = q2 = Pg =O, P2 = 1, P3 = 2, P4 = P5 = 3, P6 = 5. Moreover,
we prove that the m-canonical map ¢,k |, where K is a canonical divisor
on X, has fibers that are generically finite sets if and only if m > 6 and it is
birational if and only if m > 11.

Introduction.

In this paper we summarize the results of a paper with the same title which
will be published elsewhere. The results are presented here without complete
proofs, but the idea giving the birationality of the m-canonical map ¢, g if and
only if m > 11 is written in some detail.

Let V be a reduced, irreducible algebraic hypersurface of degree 6 in
the projective space P* = P}, where k is an algebraically closed field of
characteristic zero, which we may assume to be the field of complex numbers.

We impose five triple points on V at the five vertices Ay, A;, Ay, Az, A4 of
the fundamental tetrahedron. We impose a double surface §; infinitely near each
point A;,i = 0, 1, 2, 3, 4. Other unimposed singularities appear on V, close to
these imposed singularities; they are actual and infinitely near singularities. As
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usual, we call actual a singularity on V to distinguish it from the infinitely near
singularities that are (actual) singularities on strict transforms of V belonging
to exceptional divisors. By calling o : X —> V a desingularization of V, we
obtain that the unimposed singularities do not affect the birational invariants of
X.

The birational invariants we find for X are: ¢, = ¢ = p, = 0,
Pp=1,Ps =2 P, =Ps=23,P =5 P, =6 P =28, P, = 10,
Py = 13, where ¢; = dimyH (X, Ox), P, = dimiH’(X, Ox(mK)), K
denotes a canonical divisor on X; the Kodaira dimension of X is three, i.e.
X is of general type, and the canonical divisors K on X do not satisfy the
two properties (simultaneously): the highest self-intersection number (K3) is
positive (i.e. (K?) > 0) and (K - C) > 0, for any curve C on X. If K
enjoys the latter property, it is called numerically effective, abbreviated as nef.
Furthermore, regarding the m-canonical map ¢j,x; : X — — — P71 we
have the following results: ¢, x| has fibers that are generically given by two
points if and only if 6 < m < 10, and ¢, k| is birational if and only if m > 11.

We prefer from now on to call ¢}, x| an m-canonical transformation, rather
than an m-canonical map, in order to emphasize that ¢, k| is not, strictly
speaking, a map: it does not need to be defined on all of X. Moreover, in
the following pages a rational transformation having the generic fiber given by
a finite set of n points will be called a rational transformation n : 1.

In the literature, the following results are given for the m-canonical trans-
formation of a non-singular threefold of general type X having canonical divi-
sors K satisfying the two properties: (K*) > 0 and K nef. The m-canonical
transformation ¢y, k| is a birational transformation providing

m > 9, X. Benveniste 1984, [1];
m > 8, K. Matsuki 1986, [7];
m > 6, M. Chen and S. Lee (independently) 1998-1999, [2], [6].

In the case of a non-singular threefold of general type Y, a lemma proved
by A. Sommese (cf. [4], p. 44) states that if the canonical divisors Ky on Y are
nef, then (K ;) > 0. So, from Sommese’s result, we deduce that the canonical
divisors K of our example X are not nef.

As far as I know, the results for the birationality of ¢y, x| in the case of non-
singular projective threefolds of general type X without the two hypotheses for
K ((K?®) > 0 and K nef) are as follows.

—J. Kollar [5] has proved that if P, > 2, then ¢|(7,43)x| is generically finite
and 11,45k 18 birational;

— S. Chiaruttini and R. Gattazzo [3] constructed a non-singular threefold of
general type such that the m-canonical transformation is birational if and only
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if m > 6.

Many problems regarding the birationality of ¢, x|, and the fact that it
is a rational transformation n: 1, are therefore still open if we abandon the
hypothesis of K nef. The example constructed in the present paper is a
contribution in the direction of these problems.

1. Imposing singularities on a degree six hypersurface V in P*.

Let us indicate as fs(Xo, X1, X2, X3, X4) a form (homogeneous poly-
nomial) defining a hypersurface of degree six V' C P* with a triple point
at each of the five vertices Ap = (1,0,0,0,0), A, = (0,1,0,0,0), A, =
0,0,1,0,0), A3 = (0,0,0,1,0,), A4, = (0,0,0,0, 1) of the fundamantal
tetrahedron. The equation of V is given by

Vi f6(Xo, X1, X2, X3, X4) =

X3 (az3000X3 + ... + Xi(asi00X¢ X2+ ..) + X53(.) + X3(.) +

4+ XZ(...)CZQZZO()X%X%X% + 6122110X(2)X%X2X3 4+ ...+ aoozszngXi = 0,
where a; ;1 € k denotes the coefficient of the monomial X} X ] X4 X% x".

We impose an infinitely near double surface §; at the point A;, i =
0, 1, 2, 3, 4, in the first neighbourhood. The surface §; is locally isomorphic to
a plane, according to our hypothesis on the singularities in [8], the Introduction
and section 1.

We follow the same method as we used in [S?], section 5 and impose a
double surface §y infinitely near Ay, then - by means of a permutation of indices
and variables - we impose the same singularity at A;, Ay, A3 and A4. We also
use the same permutations of indices and variables as in [8].

We give the final equation for our hypersurface V, after imposing all the
above-said singularities.

Vi f6(Xo, X1, X2, X3, X4) =

X3 (a33000X; + a32100X 1 X2 + a32010X3 X3 + a32001 X7 X4)+

X3( a23100X3 X2 + a23010X5 X3 + azs001 X5 X 4)+

X3 (a21300 X2 X 1)+

X3 (a3 Xo X))+

X3 (a10003 X0 X3)+

22000 X3 XTX3 + a110X{ X1 X2 X5 + anin X{X T X2 Xa+

2000 X3 XTX3 + anon1 X{X1X3X4 + a2210X3 X1 X5 X3+

@101 XEX1X3Xa + a21120X3 X1 X2 X5 + arnn X5 X1 X0 X3 X+
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a1102X5X 1 X2 X5 + 421001 X3 X1 X5 X4 + a12210X0 X T X5 X3+
12201 X0 X7 X3 X4 + a12120X0 X1 X2 X3 + armni Xo X1 X2 X3 X+
a12102X0 X7 X2 X5 + a12001 X0 X1 X3 X4 + a11200X0 X1 X5 X3+
a11211 X0X1X3X3X4 + a11200X0 X1 X3 X5 + a1 Xo X1 X2 X3 X4+
ainnXoX1X2X3X3 + a10212X0 X3 X3 X3 + apnn X1 X, X3X5 =0.

In the sequel, V denotes this final hypersurface defined by the above final
form f5(Xo, X1, X2, X3, X4) for a generic choice of the parameters a;jxy, -

2. Global and non-global m-canonical adjoints to V c P4,

Let
NN  RNENG AN R

be a sequence of blow-ups resolving the singularitieson V.
If we call V; C P; the strict transform of V;_; with respect to m;, then,
from the above sequence, we obtain

’ / ’

, T3 i) T
X=V,—... >V, =V — V=V,

where 7/ = T, V; — V,_; and X is a desingularization of V C P*.

Let us assume that 7; is a blow-up along a subvariety Z;,_; of P;_;, of
dimension j;_;, which can be either singular or non-singular subvariety of
Vi.1 € Pi_y (i.e. Z;_ is the locus of singular or simple points of V;_;). Let
m;_; be the multiplicity of the variety Z;_; on V;_;.

Letussetn;_y = -3+ ji_+m;_,fori =1, ..,r anddeg(V) =d.
A hypersurface ®,,;—s) of degree m(d —5) in P* is an m-canonical
adjoint to V (with respect to the sequence of the blow-ups 7y, ..., m,) if the

restriction to X of the divisor
Dm = JTr*{JTr*_l [ . 7Tl*(q>m(d—5)) — mn0E1 . ] — mnr_zE,_l} —mn,_y Er

is effective, i.e. Dy, > 0, where E; = 7~1(Z;_,) is the exceptional divisor of
m; and ' @ Div(Pi_1) — Div(IP;) is the homomorphism of the Cartier (or
locally principal) divisor groups (cf. [8], sections 1,2).

A hypersurface ®,,;_s) of degree m(d — 5) in P* is a global m-canonical
adjoint to V (with respect to my, ..., m,) if the divisor D,, is effective on P,,
ire. D, > 0 (loc. cit.).

As usual, if Dy, |, > 0 but D,, # 0, then the hypersurface ®,,4_s) will be
called a non-global m-canonical adjoint to V.
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Note that if ®,,;_s) is an m-canonical adjoint to V, then D, = mK,
where = denotes linear equivalence and K denotes a canonical divisoron X.

In our example, the blow-up 7; is the blow-up at Ay and 7, is the blow-
up along the surface Sy infinitely near Ag, 73 is the blow-up at A; and my
is the blow-up along the surface §; infinitely near Ay, ... ; i.e. w4 is the
blow-up at A; and 754, is the blow-up along the surface §; infinitely near A;,
j=0,1,2,3,4. Moreover, we have d = 6 and D,, is given by:

(x) D, = T*... {N*[ﬂ*(qu)] —mE;} —mEy—mEg—mEg —mE ;g +mE,
r 2 1

where FE; is the exceptional divisor of the blow-up 7, along the surface §
infinitely near Ag, E4 is the exceptional divisor of the blow-up w4 along the
surface 8 infinitely near Ay, ..., Eyq is the exceptional divisor of the blow-up
1o along the surface S, infinitely near A4; the divisor E is the exceptional
divisor of the blow-up at an unimposed double isolate point.

No other exceptional divisors appear in (), because the unimposed singu-
larities, which differ from the above isolated double point, are either actual or
infinitely near double singular curves on our (generic) V. So, the exceptional
divisors of the blow-ups along these curves appear with coefficient n, = 0 in
the above expression of D,,.

Warning. For the sake of brevity, from now on we omit the divisor E, since it is
not essential for our purposes.

3. In search of non-global m-canonical adjoints to V.

If ®,, is a non-global m-canonical adjoint to our V, it may be that a global
m-canonical adjoint &) to V exists such that

Cbm‘v == q);”‘v
We note that the equality ®,,), = CIDLn‘V is equivalent to the equality D,,, =
D,’n‘x, where D, = m} .. A} [n](®,)]| —mE,} —mEs —mEc —mEg —mEj
and D, =n).. {7} [7{ (P, )| —mEs} —mE4s—mEs—mEg —mE (cf. also
(), section 2).

Theorem 1. Let ®,, be a non-global m-canonical adjoint to V. A global m-
canonical adjoint @, to V exists such that D,,|, = D, ifand only if m < 10.
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As in [8], we denote by W, the vector space of degree m forms F,,
defining global m-canonical adjoints to V ; we denote as W’,, the vector space
of the elements F,, € k[V] = homogeneous coordinate ring of V, where F), is
a degree m form defining a global m-canonical adjoint to V'; we denote as ‘W',
the vector space of the m degree forms ¥,, defining m-canonical adjoints to V;
we denote as ‘W, the vector space of the elements F,, € k[V], where F,, is
a degree m form defining an m-canonical adjoint to V. There is the inclusion
Wi W,

With these notations, the above Theorem 1 states
Theorem 1. We have W',, = W', if and only if m < 10.

Proof. (Sketch only.) The long and tedious proof of theorem 1 (and 1”) consists
in proving thatif m < 10 and ®,, is a non-global m-canonical adjointto V, then
a global m-canonical adjoint W, to V exists such that

q)m\v = \Ijm\v'

Omitting this part, let us consider m = 11. The form defining V can be written
in the following way:
fo(Xo, X1, X2, X3, X4) =& (X0, X1, X2, X3, Xo) Xo+ f¢(Xo, X1, X2, X3, X4),
where & = a3100X5 X7 X2 + a32010X3 X3 X5 + azo0 XZ X7 X4+
a21300X0X1X3 + a10203 X5 X3 + a21210X0 X1 X3 X3 + @21201 X0 X1 X3 X4+
a21120X0X1X2X3 + a1 X0 X1 X2 X3X4 + a21100X0 X1 X2 X3 X3+
6121021Xv()lexv%Xv4—|—6110212X%Xv3)(421 is a form such that F11 = SOXSX%XZ defines
a non-global 11-canonical adjoint ®; and a global 11-canonical adjoint W,
does not exist with &y, = Wy, .

Now, we consider m = 12. As in the case of m = 11, the form
Fi, =§X SX %X 2 X3 defines a non-global 12-canonical adjoint @, and a global
12-canonical adjoint Wy such that ®15, = Wy, does not exist.

Next, in the case m > 12, we argue as follows: the form F, = XoX;
defines a global bicanonical adjoint to V, then the forms Fy;F) and Fi,F]

define the desired non-global m-canonical adjoints to V.
This proves the theorem.

4. Computing the m-genus P, of X for m < 10.

Lemma. If F,, is a form of degree m > 1 defining a global m-canonical adjoint
to V, then any monomial M in F,, is given by

M= cXyX1X5X5X),cek and s > 0.
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We note that Xy and X have the same exponent s.

Corollary 1. Let A # 0 be a form of degree m — 6 > 0. If F,, is a form, of
degree m, defining a global m—canonical adjoint to V, then the form:

Fm+Af6

cannot define a global m—-canonical adjoint (where the form fq defines V).
Next corollary follows from Corollary 1.

Corollary 2. If F,, and F,, are two forms, of degree m > 6, defining two global
m-canonical adjoints ®,, and ®),, respectively, then

F,=F,+Afs = A=0 and F, = F,,
equivalently
o, =@, = D, =P,

m‘v

With the notations at the beginning of section 3, from Corollary 2, we have
W = W', form > 6, and clearly W/ = W', for if m < 6. It follows from
Theorem 1/, section 3, that W’,, = W',,, for m < 10. Next, from [8], Lemma 4
and Corollary 8, section 3, P,, = dim;('W',,). Therefore, we obtain

P, = dim (W), form < 10,

and now it is possible to calculate the vector space W, from the above Lemma.

Let us write W/ = {F,}, varying F,, in the set of forms, of degree m, defining

global m-canonical adjoints; computing {F,,}, we obtain:

Py =p, =0;

P, =1, because W, = {aXoX,}, ack;

P3 =2, because W = {XoX (a1 X2 + a2 X3)}, a; €k;

Py = 3, because W, = {01 X5 X7 + XoX1(b2X2X3 + b3X2X4)}, b; €k;

Ps = 3, because W, = {X3X2(c1 X2 + 2X3) + c3X0X1X2X3X4}, ¢; €k;

Ps = 5, because W, = {di X3 X3 + X2 X (do X2+ d3 X2 X5 +ds X2 +dsX2X4)},
d; ek;

P; = 6, because W, = {X3 X3 (e1 X2 + e2X3) + X2 X2X2(e3X2 X3+ es X0 Xy +
e5X§ + e X3X4)}, e €k;

Ps =8; Py =10 and Py = 13.
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S. The m-canonical transformation ¢, k.

Let us consider the following commutative triangle

PimK |

> ]P)Pm—l

where 0, : X — V,witho =7, o... oy, is our desingularization of V and
where L,, = P(W',,) =(W,,)*/k* = (incomplete) linear system of m-canonical
adjoints to V restricted to V [with (...)* indicating (...) \ {0}], and ¢, is the
rational transformation defined by L,,.

Proposition 1. The rational transformation ¢y, (equivalently ¢, k) is a ratio-
nal transformationn : 1, with n <2, if and only if m > 6.

Corollary 3. The rational transformation ¢y, (equivalently ¢,k |) is a rational
transformation?2 : 1 for 6 <m < 10 .

Proof. Let F,, be a form, of degree m, defining a global m-canonical adjoint
to V. It follows from the Lemma in section 4 that any monomial M in F,, is
given by c X3 X3 X4 X XY . Then, in an affine open set U C P*, the intersection
of the hyperbola XgX; = const with V N U gives exactly two points; such
points go to one and the same point in the image of ¢ . So, the thesis follows
from Proposition 1 and from the equality W',, = W, if m < 10 (Theorem 1,
section 3).

Proposition 2. The m-canonical transformation ¢, k| is birational if and only
ifm>11.

Proof. The “only if ” part follows from Corollary 3 and from P,, <3 form < 6
(section 4).

It remains for us to prove that ¢,k is birational if m > 11. First we
prove that ¢k is birational. To do so, we consider the six forms of the vector
space W'y, given by the five generators of W/ multiplied by X2X?X,, plus the
form SOXSX fX ». We must remember that X%X %X » defines a global 5-canonical
adjoint, and that the product with elements of W gives elementsin W{, C W'y;.
The form Fy; = fOXSX %X 2 defines the non-global 11-canonical adjoint that we
considered in the proof of Theorem 1, section 3. If we prove that the six forms
considered in ‘W';; define a birational transformation on V, then ¢,k is also
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birational. The six forms define a rational transformation that we denote as
Y P*— — — P given by

Yo = XpX7 X

Y] = XoX1X3

Y, = XgX1X5X3
Ys = XgX1X2X3
Yo = XgX1X5X4
Ys = § X X1 X2

In the affine coordinates

Y, Y. Y Y. Y.
X=2,y=2,Z=2,T=2 w=2,
Y1 Y1 Y1 Yl Yl

XO Xl X3 X4

x="", y="0,7=2,1=22,

X, X, X, X,

we obtain that the restriction of v to k*, of affine coordinates (x, y, z, 1), is
given by

X =xy
Y=z
7 =72
T =t .
x’ b b 7t
WZSO( v, 1,2, 1)

xy?

We need to prove that v, is birational, but a more important fact is true,
i.e. that v is birational. Now, let us prove that i is birational. This
follows from the equality & (x, y, 1, z,t) = x’y?A 4+ xyB + C, with A, B, C
polynomials in z, ¢ (see the definition of & in section 3). In fact, let us consider
P = (xo, Yo, 20, f0) and Q = (x1, y1, 21, #1) such that ¢ (P) = ¥(Q), ie.
Lz,t0) _ So(x]ﬂy]al’Z]at])'

such that XoYo = X1Y1,20 = 21,00 = 4 and SO(XO’yO"z )
X0 X]}]

Considering the monomials in the polynomial & (x, y, 01 z,t), we deduce that
& (x0, Yo, 1, 20, to) = &o(x1, y1, 1, 21, t1). Thus, we obtain that xoyg = x1y12
and then yp = y;. So P = Q, proving that v is a rational transformation 1 : 1,
and this is the same as saying that v is birational. (It is also not difficult to find
Y ~! directly). This proves that @11k 18 birational.

Similarly, if we consider the form F; = SOXSX %X 2 X3 defining a non-
global 12-canonical adjoint, it can be demonstrated that ¢ ok is birational.
Therefore, multiplying by the form F; = X{X{ as usual, we find that @y, |
is birational, for m > 11, proving the proposition.
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6. Computing the irregularities of X .

There remains for us to prove that ¢; = dimyH (X, Ox) =0, fori =1, 2.
We know that ¢; = dimiH'(X, Ox) = q(S,) = dimH'(S,, Os), where
S, C X is the strict transform of a generic hyperplane section S of V (cf.,,
for instance, [8], section 4). S has finite many isolated (actual or infinitely near)
double points and no other singularities. So, we obtain g; = 0.

To prove that g, = 0 we use the formula (36), section 4 in [8], which states
that:

92 = pg(X) + pg(Sr) — dimy (W>),

where W, is the vector space of the degree 2 forms defining global adjoints &,
to V of degree 2, i.e. defining hyperquadrics &, such that

) [ (P)] — Ex — E4 — Eg— Eg — Ej9 >0,

that is hyperquadrics passing through the points Ag, Ay, A>, A3 and A4. Thus,
we have: dim; (W,) =15 -5 =10.
It follows from p,(S,) = 10 and from p,(X) = 0, section 4, that g, = 0.
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