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A. Introduction.

The purpose of this note is to substantiate and explain the following quote
from Hilbert. In fact, we will see that the correspondence between Hilbert’s and
Euclid’s foundations of geometry is even greater than Hilbert himself observed.
Hilbert writes about Euclid in the Lecture Notes (p. 44/45) from 1898/99, after
he has discussed the axioms:

The sequence of our theorems will differ greatly from what one usually finds
in text books on elementary geometry. It will however frequently be the same as
in Euclid’s Elements. Thus we will be led by our most modern investigations to
appreciate the acute insight of this ancient mathematician and to admire him in
the highest degree.

(... So fiihren uns diese ganz modernen Untersuchungen dazu, den Scharf-
sinn dieses alten Mathematikers recht zu wiirdigen und aufs hochste zu bewun-
dern.)

As the basis of our discussion I am usmg the English translation of Euclid’s
Elements by Th. L. Heath.

We have to keep in mind that the name “Euclid” is ambiguous: (a) it stands
for the author/editor of the Elements, and (b) it is a collective name of the many
Greek mathematicians 450 - 300 BC who contributed to the Elements.

From Hilbert I am using not the polished text of the official editions of
the Foundations of Geometry, but rather the much more lively lecture notes (by
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H. v. Schaper) of his course Elemente der Euklidischen Geometrie during the
winter term 1898/99, which precedes the first edition of the Foundations on 17
June 1899. All my quotations are from these lecture notes (my translations)
unless stated explicitely otherwise.

B. Congruence Geometry.

We compare the axiomatics of Euclid and Hilbert in a schematic way:

Euclid Hilbert

“Common notions” (Axioms) like

(1) equality is transitive.

(4) Things wich coincide wich each other are equal.
(5) The whole is greater than the part.

Postulates

(1) Existence of segment P Q, but Axioms of incidence,
no axioms of 3-dim. geometry. including 3-space
(5) Parallel postulate. The parallel axiom.
Ordering used implicitely Axioms of ordering

(segments instead of lines),
except “archimedean postulate™

Congruence “Theorem” side-angle-side, Axioms of congruence,
SAS (prop. 1, 4) esp. SAS
(connects to Common Notion (4)) (Hilbert p. 75: essentially

we have Euclid’s axioms)

Area: Book I, 32-48 and more Area: incorporated into the

(Implicit definitions and assumptions theory of proportions, Euclid’s

are listed by Hartshorne.) Comm. Notions (4,5) very important.
Proportion: General theory Proportion and similarity

in Book V for general magnitudes, geometry based on

Similarity based on V congruence axioms
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Example 1. The congruence axiom SAS.

Euclid “proves” the congruence property side-angle-side for triangles, SAS, in
his Prop. 1,4 by superposition, an undefined concept, so that in fact he uses SAS
as an axiom. Hilbert starts with congruence axioms for segments etc. and states
SAS as his most important axiom. Others, like F. Klein, M. Pieri 1899 and F.
Schur 1909 have preferred to put the group of congruence mappings into the
foreground.

Example 2. The exterior angle of a triangle.

A B D

Fig. 1: The exterior angle of a triangle

Euclid states in Prop. 1, 16: In any triangle the exterior angle § is greater than
either of the interior and opposite angles o or y .

In the proof Euclid uses implicitely properties of ordering. Hilbert p. 46—
51 has the same proposition and uses ordering explicitely. Note that after the
introduction of the parallel postulate in I, 29 the result of I, 16 would be a trivial
consequence of the theorem about the sum of angles in any triangle. Both Euclid
and Hilbert deduce important consequences from I, 16:

(i) The triangle inequality (I, 20)
(i1) The existence of non-intersecting lines (parallels) in I, 27
At this occasion Hilbert praises Euclid once more (p. 76):

The fact that Euclid proves I, 16 before the introduction of the parallel
postulate indicates how deeply he understood the mutual dependencies of the
theorems of geometry. |
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C. Similarity geometry.

Hilbert (p. 77) quotes the Englishman Henry Savile, who wrote in 1621:
There are

duo macula in pulcherrimo geometriae corpore,

namely

(1) the theory of parallels
(ii) the theory of proportion.
We leave aside the much debated theory of parallels and concern ourselves with
proportion and similarity geometry.
When Hilbert starts his treatment of proportion, he writes p. 111/112:

The fundamental importance of the theorem just proved [i.e. Pappus-
Pascal] consists in enabling us to develop the theory of proportion without any
new axiom. This shows that in this case — as before — Euclid is fundamentally
right. We have however to add: the particular way that Euclid introduces
proportion is completely misguided.

In order to develop an opinion about this seemingly contradictory statement we
have to look more closely at Euclid’s and Hilbert’s theories of proportion. Our
result will be: Most likely, Hilbert did not find the time to study Euclid’s Ele-
ments carefully, because otherwise, he would have been even more enthusiastic
about how similar Euclid’s theories are to his own ones. This concerns two
points: (i) the definition of proportion and (ii) the use of archimedean ordering
in order to prove the theorem of Pappus-Pascal.

Before going into a detailed discussion of points (i) and (ii), we state the
two most important theorems and present Euclid’s and Hilbert’s theories of
proportion in a schematic way

s A Q
Fig. 2: The theorem of proportional segments.

With the notation of Fig. 2, the theorem of proportional segments (Thalete,
Strahlensatz) says

AB || QR < SA:SB=SQ: SR.
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For both Euclid and Hilbert this theorem is the basis of similarity geometry.
Thus the foundation of similarity geometry consists in defining proportion and
proving the theorem of proportional segments.

Our second theorem is the affine theorem of Pappus, or, as Hilbert says,
“Pascal’s theorem of lines”. It is (after Hilbert and many other authors) well
known that the theorem of Pappus is the strongest configuration theorem in the
incidence-theory of affine and projective planes. Its validity implies that the
plane may be coordinatized by a field. Hence it is of great interest to see how it
can be deduced from other axioms (Hilbert) or what its implicit equivalents are
(Euclid).

Fig. 3: The theorem of Pappus.

With the notation of Fig. 3, the theorem of Pappus says
AC'||CB’ and A'C| C'B <= AA' || BB’

(By the way, Pappus himself proves the projective variant of the theorem in a
series of propositions in his Collectio, Book VII, 207 in the edition of A. Jones).

Just as a reminder, let us state a third theorem from elementary geometry,
which plays an essential role in both Euclid’s and Hilbert’s theories (see Fig. 4).

Hilbert’s Way to Similarity Geometry.

Axioms of incidence, ordering, congruence and the parallel axiom
= (p. 108) Theorem about the invariance of angles in segments of circles
= (p. 110) Theorem of Pappus (“Pascal for lines”)

p. 113: Definition of the multiplication of segments.
Important: The product ab is a segment.

Pappus = Field axioms for the arithmetic of segments
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Fig. 4: 1t is the theorem about the invariance of angles
in segments of circules, ¢ = f§ = y etc.

p. 116: Definition a : b = ¢ : d means nothing else than ad = bc for
segments a, b, ¢, d, ad, bc.

=> (p. 117/118) Theorem of proportional segments (similar triangles) p. 122
Now we could do all of similarity geometry, coordinatization

(p. 123-138) Theory of areas of polygons, measurement of areas and finally
a : b = c:d & areas of rectangles ad = bc (product measure)

(p. 163) Archimedean ordering => Pappus

Euclid’s Way to Similarity Geometry.
Axioms of incidence, (ordering tacitely assumed), congruence, parallel axiom

Book I, 33-45 Parallelograms and comparison of areas (no measurement!)
of parallelograms and triangles

Book I, 46-48 Theorem of Pythagoras (“equal areas”)

Book III, 21 Theorem about the invariance of angles in segments of circles

Book V Theory of proportion for general magnitudes (esp. length, area).
Def. 4 assumes archimedean ordering of the magnitudes. Ratio
remains undefined, but the equality of ratios (i.e. proportion) is
defined by a procedure equivalent to Dedekind cuts.

Book V, 16 Archimedean ordering implies alternation (enallax), that is

a:b=c:d & a:c=>b:d

Book VI, 1 In effect a product measure for areas is constructed. (But never
any formulas!)
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Book VI, 2 Theorem of proportional segments via areas of triangles
Book VL, 16 a : b = ¢ : d & equality of rectangle (a, d) and rectangle
(b, c).

The Definition of Proportion.

At a closer look, one finds in Euclid’s Elements, Book I-1V, several instances
where Euclid proves theorems typical for similarity geometry by congruence
methods. In order to emphasize the difficulties involved, let us state the problem
in modern terms.

We have the congruence group (say of R?) of mappings of the type

x — QOx+t, where Qe O0,(R) and reR?%

Especially we have |det Q| = 1. Is it possible to construct with the help of
these mappings a similarity mapping

x — Ax, where A€R and |A|#1?

The answer is

yes: Hilbert 1898/99, the essential tool being Pappus-Pascal and the
arithmetic of segments.

yes: Hjelmslev &~ 1905-1910, theory of reflections and “half turns”,
the direct way. (A modern presentation of Hjelmslev’s work can
be found in the book by F. Bachmann 1959. One basic tool is
the so-called “Lotensatz”, a special case of the theorem about the
invariance of angles in segments of circles, which was introduced
by Hilbert p. 109 in order to prove Pappus’ theorem.)

almost yes: Euclid 300 BC.

Because Euclid’s “almost yes” can be found in his first four Books before he
introduces proportion in Book V, we will deal with this issue first.

When Euclid (or one of his predecessors not long before him) wrote the
Books I-1V, he knew quite well that in Book VI he was going to establish the
equivalence for segments a, b, ¢, d (see Fig. 5) :

Prop. VI, 16: a:b=c:d <= rectangle(a, d) = rectangle(b, c)
In the first Books Euclid uses the area-part of this equivalence at several

instances. We present one typical example, an exhaustive discussion can be
found in the paper Artmann 1985.



152 BENNO ARTMANN

Fig. 6: Hilbert’s proof

The theorern about tangents and secants (in modern terms the power of a
point with respect to a circle), (see Fig. 6).

With the notation of Fig. 6 and ST = ¢, SP = p, SQ = g we have
Euclid III, 36: pq = t2.

Hilbert’s proof (p. 122): Use similar triangles. By Euclid’s III, 32 we have
a = B, hence ASPT is similar to ASTQ. This givesus p : t =t : q and
finally pg = 2.

Euclid’s proof: In spite of the just preceding proposition III, 32, Euclid cannot
speak of similar triangles. We present his proof for the case that the center M of
the circle is on SQ. (The general case is a little more complicated but uses the
same idea, see Euclid).

Let r be the radius of the circle and SM = a, hence SP = p = a — r and
SQ=qg=a+r.
We get
pg=(a—r)(a+r)
=qg% —r? - by Euelid I1, 5/6

=1 by Pythagoras I, 47.
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Fig. 7: Euclid’s proof

Using similar procedures, always combining II 5/6 with the theorem of Pythago-
ras, Euclid proves II, 11, II, 14, III, 35 and ultimately manages to construct the
regular pentagon in IV, 11 without ever mentioning proportion. In the end we
see that Euclid uses the same trick as Hilbert in his definition of proportion. The
essential difference lies in Hilbert’s interpretation of ad and bc as segments, so
that he avoids area, or at least the comparison of areas, which is indispensable
for Euclid. But I think that Euclid has shown that he is as clever as Hilbert in
this respect. We will get the same impression in our next section.

Hilbert uses the theorem of Pappus as the cornerstone of his theory of
coordinatization and the subsequent definition of proportion plus the proof of the
theorem of proportional segments. He deduces the theorem of Pappus from the
invariance of angles in segments of circles, that is ultimately from the axioms of
congruence. This substantiates his claim that he does not need any new axioms
for the theory of proportion, but it still takes considerable time to arrive at the
state where he says (p. 122) Now we could do all of similarity geometry

Hilbert is critical about Euclid’s introduction of proportion because Euclid
in his Book V develops his theory for general magnitudes and not just for
segments. Euclid, on the other hand, is proud to have found the unifying
bond of the mathematical sciences (Eratosthenes) in his overarching theory of
proportion for general magnitudes. Aristotle (Post. Analytics I, 5; 74a 18-
24) explicitely praises the mathematicians of his time because they now have
a general concept of magnitude and can prove things like alternation (to be
described below) at one stroke, whereas before they had to give separate proofs
in the cases of numbers, length, times and solids.

Even if Aristotle, Eratosthenes and certainly all the Greek mathematicians
saw the principal merits of Euclid’s Book V in its generality, we will for the
present purposes restrict our attention to the case of segments (and areas). This
is the case that concerns the foundations of geometry.

Euclid’s Book V is completely independent of the preceding Books. We
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quote the important definitions at the beginning of Book V in modernized
language. “Magnitude” and “measuring” are undefined concepts in Euclid’s
theory.

V Def 3: A ratio is a sort of relation in respect of size between two magnitudes
of the same kind.

V Def 4: Magnitudes are said to have a ratio to one another if they are capable,
when multiplied, of exceeding one another.

In other words, magnitudes a, b have a ratio if there exist natural numbers 7, s
such that
b<ra and a < sb.

This, clearly, is the condition of archimedean ordering for the “magnitudes of
the same kind”.

V Def 5: Magnitudes a, b, ¢, d are said to be in the same ratio,
a:b=c:d,
if for all natural numbers r, s
sa>rb & sc>rd

sa=rb & sc=rd
sa<rb & sc<rd.

If, for the moment, we interpret a and b as positive real numbers, then a short
calculation derives from the first line

r _ r -1
forall rs: - <ab & - <ced.
K s

We see that the equality of the real numbers/ratios ab™! and cd~! is defined
via the equality of sets of rational numbers just as it is done in the theory of
Dedekind cuts. We should however keep in mind that Euclid does not define
or create any new numbers. In his case of lines (or segments), ab™!' will
be a constructible algebraic number. Further, in the case of segments Def. 5
defines an equivalence relation for pairs of segments (transitivity is established
by Euclid in Prop. V, 11 directly from the definition). Then, again with a
language not available to Euclid, the ratio a : b will be the equivalence class
of the pair (a, b) of lines determined by Def. 5.
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Returning to Hilbert’s objections, it seems that he does not like the (hidden)
intrusion of (a subset of) the real numbers into geometry. Hilbert is able to
avoid Euclid’s undefined magnitudes. If, on the other hand, one would restrict
the attention to segments constructible by Euclidean means, Euclid’s procedure
would finally result in the same field of constructible algebraic numbers as
the one defined by Hilbert’s segment arithmetic. But even if we have quite
analoguous results in the case of segments, Euclid has to transgress this theory
in order to prove the theorem of proportional segments where he needs the
equality of ratios of segments a, b and of rectangles with sides a, b and common
height %. (This is shown in Prop. VI, 1 with a proof using nothing but V Def.
5). Because Euclid does not have an explicit theory of area, this gives Hilbert
another reason to believe that Euclid is misguided.

D. Archimedean Ordering and the Theorem of Pappus.

In projective or affine planes without any further structure, one has to
take the configuration theorem of Pappus as an axiom in order to be able to
coordinatize the plane by a field. Hilbert has shown that one can prove the
theorem of Pappus from the congruence axioms. At the end of his lecture
(p. 139-166, esp. 163-166) he discusses the axioms of ordering in more
detail, showing that without the theorem/axiom of Pappus one may coordinatize
the plane by means of a skew field, and that axiom of Archimedes implies
commutativity, which in turn is equivalent to the theorem of Pappus. Below
we will indicate that hidden in Euclid’s Book V one can find very similar ideas
about archimedean ordering and commutativity. Before sketching the proof we
will explain the relation of Euclid’s Prop. V, 16 (alternation) and the theorem of
Pappus.

Euclid Prop. V, 16 (alternation, enallax) is:

a:b=c:d&a:c=b:d

If we use the equivalence of proportion and products from VI, 16 and look at
this carefully in an algebraic way, we see

a:b=c:d <+ ad=bc

a:c=b:d <= ad=cbh

that is, enallax is equivalent to the commutativity of multiplication, and hence
to the theorem of Pappus.
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Fig. 8: Alternation implies Pappus

A more direct geometric proof runs as follows. In addition to alternation it
uses the theorem of proportional segments VI, 2, which Euclid derives via VI,
1 directly from V, Def. 5 (see Fig. 8).
~ As the hypothesis of Pappus’ theorem we have

AC' | CB' and A'C| C'B.

We have to show AA’ || BB'.
From the hypothesis we get
(1) SA:SC'=8C:SB’
(2) SC:SA'=8B:SC".
Alternation gives us
(3) SA:SC=S8C":SB’
4) SC:SB=SA":SC’
Now we may use Euclid’s “ex aequali” Prop. V, 22 to derive
(5) SA:SB=SA": SB’'
and again by alternation
(6) SA:SA'=SB:SB,

resulting in
AA’ || BB’

as desired. (A similar derivation has been, proposed by Freudenthal 1957, who
uses congruent segments in order to prove the reverse implication. Because this
is clear enough from the algebraic interpretation, we leave it aside.)
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After this the point of main interest to us is Euclid’s derivation of alterna-
tion from the archimedean postulate. We will present the main outlines of Eu-
clid’s arguments in modern notation, for the details the interested reader should
consult Euclid’s Elements or Freudenthal 1957, Beckmann 1967 or Mueller
1981. As above we will restrict our attention to segments and interpret ratios as
equivalence classes of pairs of segments. In a series of propositions in Book V
Euclid shows how the concept of ratio behaves with respect of certain operations
with segments, for instance

Prop. V,12: a:b=c:d —> (a+c¢): (b+d)=a:b

We are concerned with ordering. Euclid tacitely assumes the linear ordering of
his magnitudes and defines for ratios:

V Def 7. If, for magnitudes a, b, c, d, there exist natural numbers 7, s such that
ra > sb and rc < sd, then we will say

a:b>c:d.

(A short calculation shows cd™' < £ < ab~!, hence the ratios are separated
by a rational number. But again we stress that Euclid does not know rational
numbers, he always works with multiples as in the definition. Taking into
account the linear ordering of the magnitudes, Def. 7 amounts to nothing else
than the negation of Def. 5).

The key for the proof of alternation is the proposition V, 8, which carries
the ordering of segments over to ratios.

Prop. V,8:a>c=a:b>c:b.
Proof: By the archimedean postulate in V, Def. 4 there exist r, s € N such that

M r@a—c)>>
2) sb>rc>(s—1b.

This implies
ra=r(a—c)+rc>b+ (s —1)b = sb,

hence we have
ra>sb and rc < sb, -

that is, according to the definition,

a:b>c:b.
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At this point an aside concerning stylistic observations may be of interest. Eu-
clid uses segments as variables for magnitudes, but he does not know variables
for numbers. Our relation (2) reads in Euclid’s words: “let L be taken double
of b, M triple of it, and successive multiples increasing by one, until what is
taken is a multiple of b and the first one greater than rc. Let it be taken, and let
it be N which is quadruple of b and the first multiple of it that is greater than
rc, ... and let M be triple of »”. Hence in fact he uses 4 and 3 as variables for
s and s - 1, but from the text it is clear what he means. Another point is the
whole presentation of the proof by Euclid. Heath and other authors have noted
Euclid’s long windes arguments and superfluous parts of the proof. My personal
interpretation of this fact is that we have in our hands an original proof that has
been written down and never re-worked so as to give a smoother presentation.
Because Eudoxos is said to have been the original author of Book V, this inge-
nious definition and proof may well bave been preserved as a piece of Eudoxos’
personal writing.

With the aid of Prop. V, 8 Euclid proves Prop V, 14: a : b = ¢ : d and
a > ¢ = b > d. This, together with some other simple propositions, leads to
the proof of alternation.

Prop. V,16: a : b =c:d = a : c = b : d. We have to check that for all
r,seN
sa >rc= sb>rd etc.

starting from a : b = ¢ : d Euclid has for all 7, s:
sa:sb=rc:rd

Now V, 14 implies
sa >rc = sb>rd etc.

and hence Def. 5 is verified.
(Once more, the reader interested in the details should look up Euclid and the
comments by Beckmann 1967 and Mueller 1981)

E. Conclusion.

Our last two sections make obvious that the analogy of contents between
the Elements and the Foundations is even closer than Hilbert himself had
observed. With respect to the axioms Hilbert says on p. 75: essentially our
axioms are the same as Euclid’s ones, obviously including the axioms of order.
Typically the most important archimedean property is stated by Euclid, whereas
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he keeps quiet about the more obvious aspects of ordering. Seen that way, Hil-
bert completes and refines Euclid’s axioms.

On the other hand, Hilbert is radically different from Euclid in his concep-
tion of the objects of geometry. The very first words of the printed version of
the Foundations are: “We think certain objects. ..” instead of “We imagine. . .,
the German is: “Vir denken drei verschiedene Systeme. ..” instead of the col-
loquial: “Wir denken uns...” as the lecture notes p. 4 have it. This is quite
exacting: he creates in bis mind the very objects he is talking about!

Moreover we find in the Foundations the rightly famous algebra of seg-
ments, which has had its forerunners, but certainly not Euclid. Even if I have
stressed the analogy between enallax and Pappus, we cannot say that Euclid has
recognized its fundamental importance.

Finally the Foundations have opened up the way to the structural under-
standing of mathematics, which via Emmy Noether and B. L. van der Waerden
has culminated in Bourbaki’s work.
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