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1. Introduction.

In this paper we extend some of the results of the authors on stochastic
differential games (!) to the case of risk sensitive payoffs. We consider that
the stochastic process describing the system is stopped at the exit of a domain
O of R". Like in the non stopped case (finite time horizon), the risk sensitive
parameter cannot be arbitrary, see H. Nagai [10], A. Bensoussan - J. Frehse -
H. Nagai [5] for the finite horizon case. On the other hand, the fact that we
consider risk sensitive payoffs prevents to make use of discount factors in the
cost functions. The system of Bellman equations related to the value functions
has Dirichlet boundary conditions, and does not contain zero order terms. This
complicates obtaining L bounds, since maximum principle arguments cannot
be obtained easily. Other methods, already used by the authors to solve ergodic
control problems apply conveniently to the present case.

Our approach to solve the stochastic differential games, taken as usual in
the sense of Nash, is to prove regularity results for the solution of the system of
Bellman equations. Then a standard verification argument can be used.

2. Se_tting of the Problem.
Let
2.1) Q = C%([0, 00); R™), 4 = Borel o — algebra on .

The elements of Q2 are denoted by w = w(¢), and we equip Q2 with a probability
measure P such that

(2.2) w(t) is a standardized n dimensional Wiener process.

(1) A. Bensoussan - J. Frehse [2], A. Bensoussan - J. Frehse [3].
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We then set

(2.3) Fl=o{w(s),s <t, weQ).
A trajectory starting at x, is simply

(2.4) x(t; w) =x+q)(t).

We now consider N players, each of them acting through a control v, (),
v=1,..., N. We assume that

(2.5) v, (t) = (v (), ..., vy (2)), adapted process with bounded values in R™",
which we call an admissible control. Let also
(2.6) g(x) be a measurable bounded function with values in R".

To a pair x, v(f), where v(¢) is a control vector as above, we associate the
process

2.7) Bew(® = g(x() + Y v, (2)
i

and the probability P, , such that

dPy,

(2.8) 7P

t 1 t
|1 = exp {f Bxw(s) dw(s) — 5/ lﬂx,v(S)lzdS}-
0 0

From the Girsanov theorem, if we introduce the process

2.9 W (t) = (1) — / Bon(s) ds,
) 0

then the system Q, 4, ¥’ P, ,w, ,(t) forms a probability system in which
Wy, (¢) is an F' standardized Wiener process. Note that from (2.9) one has

(2.10) dx = (g(x(t)) + Y v, (1) dt + dw, (1), x(0) = x.

W
Let now

(2.11) () = open smooth bounded domain of R”",
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and let
(2.123 T, = inf{t [ x(t) ¢ O}.

We shall stop the process x(¢) at the exit of the domain (9, and to save notation,
we shall denote by x(¢) also the stopped process. Let also

(2.13) fu(x) be a scalar measurable bounded function.
In the sequel, we shall use the notation
(2.14) v(t) = (v,(t), V' (1))

when v"(#) represents all components which are different from v,. We also
shall use the notation '

(2.15) ,(t) = Z v, (1).

HFEY
The payoff of player v is given by
(2.16)  Ju(x,v()) = Ju(x, v,(.),v"()) =
7, 1
= ;Sl-log Eyy expé[/ (fo(x(®) + 5|Uv(t)|2 + vy (t) - 5\1(0)611‘}
0

where § stands for the risk parameter. Note that as § tends to 0, this reduces to

Tx 1 ) _
E[ fo (£ + 31 OF + 00,0 - 5,0)) dt]

which is the payoff considered in [4], except for the fact that we do not have a
discount factor any more. If there is only one player, then the parameter o is

irrelevant.
A Nash point for the games defined by the functionals (2.16) is a control

v(.) such that
(2'17) ]U('xs ﬁl]’ﬁv) _<.Ju(xyvv7ﬁv)’ VU

for any admissible control v(.). See J. Nash [11], J. P. Aubin [1] for the concept

of Nash point. ,
As indicated in the introduction, the method to prove the existence of a
Nash point, will be to consider a system of Bellman equations for the value
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functions of the game. This means, that, for a convenient control 9, possibly
depending on x (the initial state), the functions

(2.18) uy(x) = J,(x, 0)

are the solutions of a system of partial differential equations. This system
will allow to characterize optimal feedbacks for the N players. The proof of
optimality will be performed by a verification argument. A key point is to
obtain sufficient regularity properties for the value functions, otherwise, it is
not possible to obtain feedbacks. Techniques of partial differential equation are
instrumental in obtaining these necessary regularity properties.

3. Preliminaries.

3.1. Lagrangians.
~ We introduce the Lagrangians by the following definition:

1
3.1) Ly, p) = S0 400y B+ pu - 3 vy,
' ©

where
P = (Pl,-”,PN)ERnN,

V= (Ul,..., UN)E]RnN
and, consistently, with the notation (2.15), we denote

3.2) By= ) v,

Ww#Y

(3.3) Py = Z Pu -
WAV

The first step is to consider, for a given p, a Nash point in v for the functions
L,(v, p). Clearly, the following conditions must hold (by differentiation) for
such a Nash point v(p):

(3.4) v, (p) +00,(p) + p, =0.
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Provided
1

(3.5) AL, BF -,

it is easy to check that the system (3.4) has a unique solution given by the
formulas '

QZMPM _ Pv
A-0A+(N-18 1-6°

(3.6) v (p) =

We note also the complementary formulas

_—Z/Lpl/« + Dv
1-0)0+(N-1DF 1-06

(3.7) vy (p) =
Then, we can define the quantities

(3.8) Ly(p) = L,(v(p), p).

It is useful to express also, from (3.6) and (3.7), the vectors p, in terms of v(p)
as follows:

(3.9) Pv = _Uv(P) - Gﬁv(p)
and also
(3.10) pv=—(N —1Db0v,(p) + (=NO +26 — 1)v,(p).

In particular, we can write

1
(3.11) Lu(p) = =3 0u(P)I* + py - Bu(p)

and also using (3.6), (3.7) in (3.11) after easy calculations we obtain

92
(3.12) Ly(p) = - 1> pulP+
2(1 = 0)2(1 + (N — 1)6)? - K’
1-20 . 20— 1
A T e
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3.2. More developments on Lagrangians.
We continue some useful developments on Lagrangians. We first note by
summing up (3:12)

_ 023N —4) —20(N —3) -2 )
(3.13) ZU:LV(p)— 2000 (Do) 'Zy:l’v’ +

1 — 26
T Z Ipl? =

_ 2N = 1)%6° + (N2 —3N + 1)6% +20 — 1 >
= 20 =021+ (N = D)y 2 pf+

(BN — 4)62 —2(N — 3)9 — 2
2 21— 0)2(1 + (N — 1))? 2 Pupy
nFEY

We shall be interested in guaranteeing the property

(3.14) Y Lup) = colpl Vp, o >0,

or, alternatively,

(3.15) Y Lup) < —cilpP, V¥p, ¢ >0,
v

From conditions on quadratic forms, in order to obtain (3.14) it will be enough
to have

92
(3.16) F(@):—(N—1)293+(N2—3N+1>5+9—%—

3N 5 )
—(N—l),<—2——2)9 —(N=30—1]>0
and
F(9)
Co = .
T U=021+ (N Doy
Similarly to obtain (3.15), it will be sufficient to assert that

. ' 62 1
(3.17) F ) =——(N—1)293+(N2—3N+1)?+9—§+
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+(N—1)|(%]Y——2)62—(N—3)9—1 <0

and A
~ G

1=+ (N =162

We shall characterize the values of 8 for which (3.16) and (3.17) hold. Consid-

ering the two possibilities for the absolute values, we are led to introducing the
following two functions (after reduction of terms)

]

—2N? 44N -3 3
(3.18) F;(8) = —(N-1)20°+ +2 62+6(N2—4N+4)+N—§,

4N? — 10N +5 1
(3.19) F(0) = —(N—1)%0>+ 5 + 92—9(N2—4N+2)~N+§.

To make explicit the values of F(0) and F (8), we consider the two roots of

92
(BN —4)7 — (N —-3)6 —1,

namely
N—-3—+/N2+1
(3.20) 6y = AN — 4 * , 0 > —1(for N > 3),6p) < —1(for N = 2)
N -3+ +/N2+1 ,
(3.2D 0 = T , 6y <1,
and we have
F®) = F;©), if6<é 0 >0,
(3.22) F(©) 1(0) .1 =0 Or/ Z
F(0) = F»(0), if6y <6 <6,
FO) =F6), if6h<6<8,,
(3.23) ) 1(6), ifby <6 <6,

F(0) = F>(0), if6 <6yor 6 >86,.

Fortunately F,(0) is quite simple. Indeed, from (3.19) it is easy to check that

(3.24) Fy(0) = (6 — 1)2<~(N— 1)29—N+%).
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Let then

N -1
3.25 =2
(3.25) N1y

and note that
(326) <0 <0 (=1<@y<bforN=>3),(6<6b<—1forN =2).
Clearly

FO)>0 if <4,
(3.27) 2(0) _5 |

0
FE)<0 if 6 >
From the identity (3.22) for F(0), we can immediately assert that

F@)>0 for <6 <8,

(3.28) _ ,
F@®) <0 for 6 <0 <6,
and similarly from (3.23)

FO) <0 for 0>6,, 01,

(3.29) R :
F@) >0 for 6 <6.

To proceed, we must study the sign of (), which is less simple.
However the case N = 2 is very simple and particular, since in this case one
has )

(3.30) RO =6+ -0+ %)

and note that for N = 2 we have

~1—14/5 -14+5 - 3
3.31 b= ——-", g=—T F__2
(3:3D) 0 2 0 2 2

and thus we can complete (3.28), (3.29) for N = 2 easily

F@)=F(@®)>0 for 6 <6,

(3.32) /
F0)=Fi(0) <0 for 0 > 6,
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. 1
(3.33)

N —

FO)=F ) >0 for <6<
Therefore we can state

for N =2, F(0) > 0 is equivalent to 6 < ~§ =0,
(3.34) ) =
F(9) < 0 is equivalent to 6 >‘:2- =0", 0 #1.
To study Fi(0), for N > 3, we consider ‘
F[(0) = =3(N — 1)%0%* 4+ (=2N* + 4N —3)0 + N> — 4N + 4
whose roots are 6y, 6] given by the formulas

—2N? + 4N —3 — 4/16N* — 88N3 + 184N2 — 168N + 57

3.35) 6, =

(3.35) 6 6V 12

(336) 6 = —2N? + 4N -3 4+ /16N* —88N? + 184N? — 168N + 57
' b= 6(N — 1)2

and we have the configuration

(3.37) ~1<6 <6 <0<0<0] <)<1

and F{(6) < O for 6 < 0, and 6 > 6], whereas F|(#) > 0 for 6; <6 < o;.
Note also that

Fi(=00) = +00, Fi(=1) <0, F(6) = F>(6y) > 0,

Fl({%) = F2(96) <0, Fi(4+00)=—00. ’

From the sign of F(6), it also follows that

F,(6)) <0, minimum of F;(0),

F1(6;) > 0, maximum of F;(9).

Therefore Fi (@) has three roots, two being negative, 6’, 6”, and one positive 8"
with the following location:

(3.38)

(3.39)

1
(3.40) 0 < -1, 6 < 8" < 6, o) < 5 < 0" < 6

and we can conclude easily that
(3.41) F(@) >0 for <6 or " <0 <48,

(3.42) F() <0 for 0>0",  6+#1.
We then state the
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Lemma 3.1. For N = 2, (3.14) holds whenever 6 < —%, and (3.15) holds
when 0 > %, 0 # 1. For N > 3, considering the numbers 6',0",0" 0, where
', 0" are the two negative roots of Fi(8), 6" the positive root and 0 is given by
(3.25), the property (3.14) holds when 6 < 6’ or 6" < 6 < 6, and the property
(3.15) holds when 60 > 0",6 # 1.

Remark 3.1. In (3.5) we had excluded the values 6 = 1, and 6§ = —L-.

Since 6 < _FIIT < 0, the value —N—I_T is out of the validity intervals defined
in Lemma 3.1. The value § = 1, valid for (3.15) but not for (3.14) has to be
excluded.

Remark 3.2. For N = 3, we have §' = —1,0” = 1}6—‘/—@, 0" = LJ{(;/—@,
_ —=9-+/129 — =9+/129 _ 10 _ N0 5 _5
=== 01= g0 =—5,0="5,0=—3

3.3. Other properties.
From formula (3.12) we can deduce by using Young’s inequality

(3.43) Ly(p) < TP [Py

We proceed now with a different estimate. Note first that from (3.7) we can
write

- _ (N—l)@pv"p—v
(3.44) Uy = Uy(p) = 1-0)A+ (N -10)

By analogy with the formula (3.44) we consider a similar combination of the
Lagrangians, namely

(3.45) Ly(p) = (N = DOE,(p) = > Lu(p).
HFV

Consider (3.9) and (3.11) which yields
1 - - 2 1 - 2 1 - 12
(346) Lv(p):"—"lvvl _vvvv_6|vv| :—_Ivv+vv| +lz—0 Ivv!
2 2 2
hence as easily seen

(347) Lo(p) = (N — 1)9(% - e)w 5O = DA =), + 5,1 -



16 ALAIN BENSOUSSAN - JENS FREHSE

1 - 1-6 _

*<~—9)Z|Uu| (N—1)9(5—9>|Uu|2+mlzvu|2—“
w#Y I
! s [ovoneflog)+ 112054
—(E—G)DW—[(N 1)9(2 9>+2N_1]1 . * +

v

1—9_ - 1 -
R % Y

UFY
Using
(3.48) DA VIR
WAV w#v
and assuming
(3.49) o> -
' =2

we deduce

- 1 11— 2,
(3.50) L.(p) = [(N—1)6<——9) S }1 0, 2 +2(N 1)'2 B2+

1-6 20 —
) 6>(N — 1)* + 60 — D5, |>.
+ o luzv,_ TIes )<< ) +6 = Dls,|

So we state the

Lemma 3.2, When 6 > % one has the property

(3.51) Ly(p) = —k|v,|%.

In the sequel we shall use (3.43) and (3.14) together when 6 < 0 (6
satisfying the conditions of Lemma 3.1) and (3.15), (3.51) together when 6 > 0
(infact 0 > 0” > 3,6 # 1).
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3.4. Taking account of the risk factor.
The risk factor will imply a perturbation of the Lagrangian, namely L, (p)
has to be replaced for

: )
(3.52) M,(p) = Lv(p) + §|pv12-

The property (3.43) is clearly unchanged

1-20 4
(3.53) M, (p) s( = +§>1pu12.

The property (3.14) is improved, since
‘ 8
(3.54) 2 Mu(p) =) Lu(p) + 5IpP

and if (3.14) holds, a fortiori

(3.55) > My(p) = colpl*.

Since the risk factor here helps, it modifies the discussion on 6. From formula
(3.13), what matters now is to have

8 2 2 243
(3.56) F;0) = 5(1 —-0)(1+(N=16)— (N -1+

02 1 3N
+(N2—3N+1)—é-+9—§-(N—1)‘(—-§——-2)02—‘(N~3)9—1 > 0.

Define

(3.57) Fi5(0) = Fi(8) + —2—(1 ~ 61+ (N — DBY?,
(3.58) F5(0) = F2(0) + g(l —0)2(1 + (N = 1)§)%
We have

(3.59) Fs(0) = F5(6) if0 <6yorf > 9! ,
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The function F5(0) is easy to compute (using (3.24))

12
(3.60) Fr5(9) = © 21) [S(N—1)292+2(N—1)9(8—(N—1))—2N+1+8]

hence the two roots not equal to 1 are

8 8 8 §
] — 2~ — 1—[—(—1\7?)29_, 1—m+ l-i—mj—l—)i

(3.61) 05 = = 5

and 6 < 5. Therefore

Fos(0) >0 if 6 <fs or 6 >0, 0+#1,
(3.62) 25(0) Fo <6 i s #
Fs(0) =0 if 05 <6 <.
We need next to study Fy5(6). We assume N > 3. Note that
(3.63)  F[,(6) = F{(6) + 686 —1)(1 + (N — 1OY2O(N — 1) — (N —2)).
For 6 < — 515, we have F{;(0) < F/(6). Hence

F{;(0) <0 for 0 < 6.
N=2

Noting that 6 < 53=5 < g, we have also

N -2

F{5(9) <0 for mf@f 1.
Similarly, since 6 < — X+, one has also
Fl.@)>0 £ L o<y
or — .
16 No1=0=6

Furthermore F[;(0) > 0 for 6 sufficiently larger > 1. Therefore F|5(0) has
necessarily three roots, which we denote 65, 615, 01s. We can also assert that

(3.64) N
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Moreover as § — 0,05 — 61,05 — 0, 05 = 400, and as § — 00,

015 — —N T 015 — 2(]XI_~21)’ 05 — 1. Hence Fi5(6) has two local minima, 65

and 6/}, and one local maximum 6;. Note the following properties

Fi5(0) >0, 6< @’ and 9’ <6 <6"”,
(3.65) Fis(1) = Fi(1) = =N?+ N <0,
Fi5(—00) = Fi5(+00) =

Therefore the value at the local minimum 6y is strictly negative, and thus Fi;
has two positive roots 15, 655. Necessarily, since Fi5(6") > 0, we have

(3.66) 9/// Q”’ < 1 8///

~The value at the local minimum 65 is not necessarily negative. It is so if § is
sufficiently small, since 65 is close to 6y, and Fi5(615) ~ Fi(6;) < 0. In that
case there will be two negative roots of Fy5(9), denoted by 65, 6, and from

(3.65) necessarily one has

(3.67) 0" < 05 < 615 < 05 < 6"

So

(3.68) Fi; > 0 for 0 € (—00,6;), 0 € (0,60), 6 > 03,

and the interval 65, 65’ may be void.

For 8 = 0, we have 6} = 6, 6 = 6", 05 = 0", 635 = +o0 and 05 = 6,
0; = +o0o. We recover the situation of paragraph 3.2. For § = +o00, the
numbers 655 05’ do not exist and 65 = 65 = 1, hence Fw(G) > 0,VY6,60 # 1.
Also 05 = 05 = ———, and F5(0) > 0, VO # 1,0 # —
We shall also use the property

(3.69) If ; <@, then 6] < 6/; (equality only when 8 = 6;)
' If 4] > 6} then 6 > 6};.

Indeed, in the first case we have by definition of ;, F(8;) > 0, hence
Fi5(6)) = Fys(8y) = 0. Now, if 65 < 6, we have Fi5(f;) < 0, which leads to
a contradiction.

The second case is proven in a similar way.
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Collecting results, thanks to (3.62), (3.68) and the definition (3.59) as well
as (3.69) we get
(3.70) )

F5(0) > 0for 6 € (—o00,65), (65,05), (65,613, (03,00), if 6 < 6},

F5(0) > 0for 6 € (—o0, 65), (65, 05), (635,00), if b5 > 6.

For § = 0 this yields F5(8) > 0, for & < 0, and if § = 400, we get
Fs(0) >0V60,0 #£1,0 £ -—ﬁ. Finally in the case N = 2, we have

0+ 1 _
Fu@ = C35 D150 0y 412 20)
0+ 1
Fis(9) = < 2040?20 -3
hence
9'=9§'=—1,
w L+ =TF38 N N RSV
618= ’ 928=—_—'_
s B
- 1=8-V1T=8 . 1-6++/1%0
hp=—— ", G=—TN T
s 8
We now examine how to assert
(3.71) > My (p) < —cilpl?
and
(3.72) M,(p) = —k|5, %,

where MV (p) is defined analogously to f,u( p), see (3.45). Here the risk factor
is not helping, so & cannot be too large. A
Let us investigate the conditions on 8. We must obtain F5(0) < 0, with

Fis(0) if 6y <6 <6

(3.73) F5(0) = {an(g) if 0 <6yorf > 6.

We may assert, using (3.62), (3.68), (3.69), and the definition (3.73), that

(3.74) ﬁ’a (6) >0, VO, when 6?—5 < 6, so there is no validity interval
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(3.75) F3(0) < 0if 6 (6]3,8}), when 8] > 6] .

For 6 = 0, we get (6", 00). For § = o0, there is no validity interval.
Let us now check (3.72). A tedious but easy calculation leads to the

formula

(3.76) (N=181p, P~y Ipul*= |vv:2{—-i—+e(e DEN-1)- N+3)}
WAy :

DIZ Bl = 0 =12 15,2 —20(1 - 0)3, Y 9,

w#EV H#EV HF#Y
therefore
~ 1 11-6
(3.77) M,(p) = wv|2{(N - 1)9(5 — 9) + SN 1 +
8
+2fo@ - DO -1 - N+3 + —1-—1]] +
,Zy,;év ﬁlll 1 _ _
+ G (=048 + (1= 05— -89)vvl§vu+
1 8 2 = 12
* (‘(9~'2—> —3@-D )Z’”Ml :
n#v
Assume that
(3.78) 9~%-§(@—1)2>0
and using (3.48) we get finally the estimate
L~ | 11-6
(3.79) M,(p) = 'ﬁu|2{(N - 1)9(5 - 9) + N1 +
48 1
[9(9 ~DOW -1~ N +3)+ -N—l]] +
1 - -1
+(1—9)(——1—69>va1)“+ (2(N ))IZ B2
Uty

and if we also assume
(3.80)» 1-860-1)>0

we deduce from (3.79) the estimate (3.72).
Collecting results we can state the
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Lemma 3.3. If 6 belongs to the validity intervals defined in (3.70), then we

have (3.53), (3.55). On the other hand, if 6 < 0} and 6 € (0}, 0}) and satisfies
the properties (3.78), (3.80), then (3.71), (3.72) are satisfied.

4. Nonlinear system of partial differential equations.

4.1. Setting of the problem.
. Here we consider the following system of equations:

1
@1 - EAu” = H,(x, Du)

Uy lBO =0.
Firstly, the functions H, (x, p) satisfy
4.2) H,(x, p) are Caratheodory functions.

We shall make an important use of linear manipulations on the equations (4.1).
Consider an N x N matrix I", which is invertible, and define

(4.3) H"(x,p) =TH(x,I'"'p),
where H (x, p)‘ represents the vector H,(x, p). Setting
4.4) z=Tu,

then we see that z is the solution of

1
—~ =Az, = H ' (x,D
(4.5) 5 A% = H, (x, D7)

Zvlao = 0.

So our original problem (4.1) is imbedded in a family of equivalent problems,
indexed by the transformation I'. All matrices I" to be considered will be
invertible, so we shall not mention it explicitly.

A matrix I' satisfies the maximum principle if

(4.6) FTu>0=u>0.
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We begin by starting two alternative sets of assumptions:

4.7) Y Hi(x, p) = -2

There exists a matrix I which satisfies the
(4.8) maximum principle and
Hf(x, p) <A, + Aglpvlz, Ay, AS not too large

or
(4.9) D Hy(x,p) <A.

There exists a matrix I" which satisfies the
(4.10) maximum principle and

HI (x,p) = =4 — A%py?, Ay, A% not too large.

‘We furthermore assume

There exists a matrix I" such that

(4.11)
H) (x,p) = Q(x, p) - p, + H(x, p)

with

4.12) 1Q(x, p)| < k+ K|pl,

(4.13) |H) e, ) < hy + K Y pul®

W=y

Remark 4.1. If we pick v = N in (4.13) we obtain
|Hy(x, p)| <k + Kylpl?

which is a general quadratic growth assumption. So if H(x, p) has a gen-
eral quadratic growth, it is sufficient to check (4.11), (4.12), (4.13) for v =
I,..., N — 1. We may define

(4.14) Hy(x, p) = Hy(x, p) = Q(x, p) - pu

and (4.11), (4.13) will be satisfied automatically.
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Our objective is to prove the

Theorem 4.1. We assume that the functions H,(x, p) satisfy (4.2), (4.11),
(4.12), (4.13) and one or the other of the two sets of assumptions (4.7), (4.8)
or (4.9), (4.10). Then there exists a solution of (4.1) which is in W?5(O), Vs
such that 2 < s < o0.

The proof will be done by explaining how to obtain an a priori estimates
first, then an approximation argument will be used. We shall consider the Green
function associated with any point & € @, corresponding to the operator — ~A
called G¢. It is the solution of the equation (written formally)

~LlaGE =5t —2)
(4.15) 2
G a0 = 0.

The Green function is positive and satisfies the following estimates

| | "
(4.16) 1G N0 <€, V&, 1sq<—

@.17) 168 o) < €0 V&, 1<r<—

We shall denote by [|G|| 14, ||G||w:.- the bounds on the right-hand side of (4.16),
“.17).

4.2. L a priori estimate.

We assume (4.3), (4.4). We shall indicate briefly the changes which are
necessary when (4.5), (4.6) apply. Summing up the equations (4.1) yields

-—.—21-A}:uv = > H,(x, Du) > —x.
v v

We test with ()", u,)” G*, hence we get

[omna(e) o)z (50) o

v

hence as easily seen

%LD((Zv:uv>_)2DG5dx+%—/@‘D(Z}:uv>_‘2gﬁdxS
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5A[9<Zuv)_05dx.

v

From the definition of the Green function we obtain
1 -\ : -
= u (S)) Sk/ u,) G¥dx.
() (Zw)

Suppose £ is a point where (ZU uv) ~ reaches a positive maximum (necessarily
in O), then we get

()] =2 [ensc

Therefore we have proven the first L™ estimate
4.18) 3wy = —c.
v
We consider now the matrix I" intervening in the assumption (4.8) and set
u="ru.

From (4.5) we know that

4.19) “-%Aﬁv = H, (x, Dii)
Uylao =0
- Let us set
(4.20) E, =exp 2A8[¢U ,
then

1 i N
—FAE, = —E,[209?|Diiy |* + A0Ad, ]

and from (4.19) and the property (4.8) this yields

1
—5AE, < 20,AE,.
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Using E,G¢ as a test function we get

1 ' 1
-f |DEVIZG5dx+—-f D(E? - 1)DG* dx <
2 Jo 4 Jo

< 22,10 / E’G* dx
o
hence (noting that E2 — 1 vanishes on 90)

1
5(}«:3(5) - < 21@8/055(;5 dx

4.21) EX(E) < 1+4r,20 f EXG* dx .
. O

If & is chosen to be the maximum of i, , assumed to be positive, hence & € 90,
we deduce from (4.21)
IE oo < 14+ 401 E llool| Gl

and using the assumption (4.8), provided that A,A? is sufficiently small so that

(4.22) A Gl < 1
we obtain
(4.23) 1B oo < :
1 —4x,A G|l
hence also
© (4.24) u, <C.

Since I' satisfies the maximum principle, we get also for the original functions
u,

(4.25) Uy < ¢
which together with (4.18) implies

(4.26) lupllze <c.
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Let us indicate the changes to be performed when (4.9), (4.10) apply. We test
with (), uv)+G5 to obtain first, thanks to (4.9)

4.27) Y u <e.

Introduce again the functions
u=Tu

where I refers to the matrix intervening (4.10).
We set this time

(4.28) E, = exp(—2)0ii,)

and perform computation similar to those for obtaining (4.21). Making use of
(4.22), thanks to assumption (4.10) we deduce

IE oo <
hence
(4.29) Uy, > —c
and since I satisfies the maximum principle, this implies
(4.30) u, >c
which together with (4.27) means again

(4.31) luvlloo < c.

4.3. H{ estimate.

To obtain the HO1 estimate, we shall make use of the special structure
(4.11), (4.12), (4.13). We omit this notation I', to simplify the writing and
by virtue of the L* estimate, we have

(4.32) luy ()| < p.
To obtain an a priori estimate for Hj}, one uses a specific test function. Set

Bis)=e" —s5—1
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and

N
F = [Texp(B(ruu,))
v=1

where y is a positive constant to be defined later. We have

N
DF=F Z Yo' (vouy) Dy .

v=1

We test (4.1) with Fy,B8'(y,u,), which vanishes on the boundary, integrate by
parts and add up. We get

1 [, 2 1 [ |DFJ?
;Efoyv]Duuiey Fdx+-2-f0 ——dx =

=/ Q.DFdx+/ZvaS(Du)F(er“v—l)dx
0 0

hence also

1 1
(4.33) Z 5/ yfIDuV|2eyuqu dx < 5/ FQ -Qdx+
> o : o

+ / > v HY(Du)F (e — 1) dx .
0 v

In order to get comparable terms on both sides, we introduce the function

N
(4.34) X = [T(exp Bruus) + exp B(=y,u1,)

v=1
and the related quantities

X, = Xey""“ exp B(yvity) + e~ exp B(—y,uy)
’ exp B(yyity) + exp B(—yity) ’

g =y — DexpB(ruy) — (7" — 1) exp f(=yviu,)
’ exp B(uity) + exp B(—yyu,) '
We have the inequalities

2V <X <X, < Xer!,
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X, < X,.

Applying the relations‘(4.33) with y, changed one By one into —y,, and
summing up the 2" relations obtained in this way, we get the inequality

EELVVIDM\A XudXSEAXQde+
—I—/ZVUH,?(Du)f(,,dx
0 v

hence

1 2 2 1 .
EZ:AyUIDMuI deXSE/;XQde—f'\/(;;yule(Du)IdexS

;/XQ de+/2yv(k + K, |Du, 1) X, dx +

/ZlDu Y vuKuX,dx <

w>v

_<_/k2de+KZZ/XVIDuvlzdx—l—Zy\,/(ku+KVIDuv12)Xde+
o L Jo » 0 :

/ZIDuv[ > vuKuX, dx.

w>v

We obtain

1
>[50 - k- k] ar < [ @x+ Ynkxdr +
v YO ) 0 v
+Z/!Duvl S VKX, dx

U>v

Finally

1 .
Z/@ X|Duvf2[§y3 ~K - pk, =Y yMKMe"V“] dx <

w>v
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< [ X062+ Y nkerr)dz
(9 v

with p = |lu||e. Therefore if we choose the constants y, so that

1 ,
(4.35) Eyf — K> = pKy = ) yuet >0
w>v
we get
(4.36) / |Du)?dx < Ko(p) .
¢}

It is possible to choose the constants y, in order to fulfill (4.35). This can be
done backwards, starting with yy.

4.4. C® and WHP estimates.

The special structure permits to obtain additional estimates in C° and
WhP, p > 2. We perform first a calculation similar to that leading to the
HO1 estimate. To u, we associate a constant ¢, which is arbitrary except

and set now

N
F=]]expBrn(u, —c)).

v=1

Let also ¢ be a function such that

(4.38) ¥ >0, ¥ €CYO), ¥lpo =0 if and only if
one of the constants ¢, # 0.

We test (4.1) with F'y,B'(y, (u, — ¢,))¥, which vanishes on the boundary of .
We obtain instead of (4.33)

1 1
(4.39) § :5/ y2 Du,|?e?” =) Far dx + Ef DF - Dy dx <
v o V]

= %f FQ'QM’“L/ > W H)(Du)F (=) — Dy dx
O 05
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Introduce now
N

@40) X =] [texpBr(uy — ) + exp Bl=v, (uy — c),
v=1

x = x & exp By — ¢)) + e O exp B(—y, (1, - c,)
' exp B(vy(uy — ¢y)) + exp B(—vy (u, — v))

’

% oy D exp Blyy(uy—cn)) = (e U — 1) exp B(—y, (4, —c,)
- exp B(vu(uy — ¢,)) + exp B(—y, (i, — cy))

and note that

(4.41) DX =) "y,X,Du,.

So writing (4.39) for all combinations of y, and —v, and adding up yields

(4.42) IZ/ 2|D 1*x z,bdx-%—l/DX Dyrdx < I/XQQI//d +
. - uy|° X, - . = x
24 0" 2 Jo " 2Jo
—}-Z/y,,H,?(Du)XVz//dx.
~Jo

Picking the constants y, so that (4.35) holds we deduce that there exists two
positive constants kg, Ky, so that

(4.43) kO/ iDulzlﬁdx+/DX~D1ﬂdx SKO/ Vdx.
O [¢] [¢]

We first apply (4.43) as follows: Let Bg(xg), xo € R", be the ball of center X0
and radius R. Let 7 be a cut off function such that

. _[1on B0
~ | 0 outside B,(0)

and 0 <t <1,1eC®. We denote

R(x) = t(x ;x()) .
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We define the constants ¢, as follows:

1 ~
u,dx if Bop C O
(4.44) ¢y =c® = { 1Barl /b, 2
0 if Bop N(R" — O) # 0,
and we take
(4.45) V= 71%

so (4.38) is verified. We extend u by 0 outside ¢, and we note that
1X,| < Cluy, — k|,

|IDX| < Clu — c®||Dul,

where ¢® represents the vector c®. Therefore we deduce from (4.43)

2 |u — CRl n
(4.46) |Dul*dx <c |Du| dx 4+ cR".
BR B2R
Such a property implies that
(4.47) u, € Wy (0), 2<p<2+e.

It is a consequence of results of Gehring and Giaquinta-Modica. Indeed, from
Holder’s inequality and Poincaré’s inequality, we have

ntl n—=1

__CR » ' ., 2n . S
/ IDu||u IdXSi / [Dulnzﬁdx / lu—-cR|nledx
Bag . R R Bag Bar

ntl
C _ZL‘ n
< —= |Du|»1 dx .
R Ber

Setting z = |Du|#T, we have the inequality

n+tl

(4.48) fzﬂ?—'dxg ?{ zdx| e,
By Bsr

where 5£BR = El; fBR'
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This is the reverse Holder’s inequality, which implies Gehring’s result,
namely z%l“ is integrable for some positive ¢, hence (4.47), see [71, [8].
The obtaining of C?® is more delicate: The idea is to estimate the Morrey

norm, that is to say to check that

(4.49) / |Dul>dx < KR"**® VR, Vxo.
Br(xo)
This implies C°. Indeed one relies on Morrey’s result

X0,

() = u| _
SRR T

x#y

sug fBR(xo) |Du|?>dx\ 12
(4.50) C( >

Rn—2+25

To check (4.49) we shall prove the inequality

(4.51) |Dul?|x — xol* " dx < c/ |Dul?|x — x0|> " dx + CR?,
Bg Byr—Bg

where ¢ > 2, 8 > 0. One then relies on the hole filling technique of Widman
[13], to assert that (4.49) holds for some & such that 26 < B. Indead (4.51)

. implies

(4.52) f |Dul?|x — xo|* " dx < ef |Dul?|x — xo|> " dx + CR*?
Br Bor

with # < 1, and setting

@(R) = R™% | |Dul?x — xo|* " dx
Bg

with 28 < B, u = 00% < 1, we deduce
@(R) = pp(cR) +C for R < Ry
which implies ¢(R) < C, provided ¢(Rp) < 00.
Proof of (4.51). We consider the Green function G = G™, solution of
1
—~2-AGX°=5(X—X()), XOEQ,
Glag =0,
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where QO D . We know that (see (4.16), (4.17))

@53)  GReLiQ)NWMQ), l<g<——\ 1<n<
n—2 n—1

and also
(4.54) colx — x0[*™ < G* < ¢f|x — x|

in a neighborhood of xp strictly included in Q. So this estimate will be valid on
Q. We apply (4.43) with

(4.55) ¥ = G¥1}
and
! d if Bor C O
—— u, dx
(4.56) ¢, =c® =1 |Bor — Br Bar—Brp o
0 if Byg N (R" — O) # 0.

Consider the various terms in (4.43). We first have

" (4.57) kO/ |Dul*G*t2dx > c | |Dullx —xo)* " dx.
O By

We next have

(4.58) / G*tldx <CRV =CR?, f<2.
¢
Next
Dy = DGt} +2Gtr D1y .

Consider

I = /DXDtRGrR dx

[¢]
and using
(4.59) |[dX| < Clu — c®||Dul,
we have R
=G e <

i 5/ |Dul
Byr—Bpg
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2 2-n |u — c®? 2-n
<c [Dul|x — x| "dx + ¢ ——lx — x| " dx.
Byr—Bg (Bag—Br)NO R

But

Ri2

u—=C C

/ el 3 N — u—cR2dx <
Bu-Bpno R R" J(Byp—Brin@

<= lu —c®Pdx,
T R J(Byr—Br)n0

and by Poincaré’s inequality

/ |u—cR|25CR2/ |Duldx, o >2,
(Bar—Bgr;2)NO Bor—Br)2

hence collecting results, one has

(4.60) Ij<cC / |Dul? |x — xo|* " dx .
Byr—Bgp2

The other term
(4.61) II:/DXDthedx,
O

which involves DG, is more complicated to estimate. We have to change X
into X —2V:

11=/ DG-D((X—zN)T,%)dx—zf DGDtr(X —2M)tgdx.
(Y] )

Without loss of generality we can assume that B, C Q, hence using X > 2V,
we have from the definition of the Green function

___Ry2
> —c/ Pre i R
(B,R—BR)NO R

where we have used the property

(4.62) XN —2N| < Clu = R 2.
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We estimate /I from below as follows:

_ .Rj2
1> —c/ GL”-é—L dx—c/ G DG ju—ckPe2 dx
(Bar—Br)NO R (B,R—B)NO

The first term in the right-hand side is estimated by the right-hand side of (4.60).
We need thus to estimate the term

II] = / GYDG |u — c® Pt} dx
(ByR—-Br)NO

To estimate this quantity, we introduce a new cut off function satisfying

£ = 0 for |x|§%
t for|x| >1,
and we set
X — X
() = §(——)
Thus

§r = tg On By — Bg.

From the Green function equation we deduce, by testing w1th G Yu —cR? SR,
which vanishes in xg, and on the boundary of @

(4.63) i/@ IDGI*G™ % |u — CRF;:Q,% dx = /@ D(lu — c®|’€2) . DGG™ % dx.
On the other hand
/@(—%Au,))(u,) - ;f)G%g,i dx = %LIDuUsz%§§ dx +
+ é—/@ DEXu — cRPHDGG 1 dx +
+ /@ Du, DEgg(uy — cR)G? dx —

1
_ Z/ DérDGlu — R PG 38x dx,
V]

SO

1
§/ D(E2|u — R DGG™1 dx 5va(uv—c§)G%§,§dx—
[¢] [¢]
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1 ,
- / Du, Dégég(u, — c®)G? dx + 2/ DErDGlu — R PG e dx
[ o

and from the quadratic growth of H,

1 2—n .
—/ D(E3lu — *HDGG Hdx < CRY"%) 4 CR% \Dul? dx +
8 Jo Bar—Bgrp2
o _ AR32 1
+CR¥ I—”—f—'dw—/ DérDGlu — c* PG~ dx
(Bar—Bgp2)NO R 4 O
Furthermore

/ DérDGlu — cR2G 12 dx < ca/ IDGI*G™*|u — cRPE2 dx +
[¢] O .

C 2 lu— CR?
+ SRE B
3 (B2g—Bg2)NO R

Collecting results and choosing § sufficiently small, we have
f IDGIPG™2|u — Rk dx < CR""%) +
)

2-n |L£ "‘CRIZ

+ CR™ dx + CR™ |Dul?dx

2
(B2r—Bg2)NO R Bar—Bgp2

and from Poincaré’s inequality it follows

/ IDGPPG™|u — R P2 dx < CR™"%) + CR% / |Dul*dx .
¢] B,

sR—BRr)2

Going back to the definition of 777 and recalling that £, = tz on Byz — Br we
get

111 <CR% / G 3 DG|? |u — cR|PE2 dx |
)
and from the previous estimate

111 < CRH/ |Dul?dx + CR"% <
Byr~Bgrp

< c/ [Du)? |x — xo|> " dx + CR' 37 |
Bor—~Bgrp2
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Therefore we can state the following inequality:
111 > —/ IDul? |x — xo|* " dx — CR" "% |
Byr—Bgrp2 :

and from (4.43) we immediately get (4.51) with 8 = ?, since ? <1+ 2’—;,.
To apply the Hole filling technique it remains to verify

(4.64) / [Dul? |x = xo|* " dx < C.
)
For that we use again (4.43) with ¢, = 0 and ¢ = G. Since
/ DX -DGdx >0,
o .

the result (4.65) is obvious.

4.5. W23 -estimates.

From the linear theory and W', C? estimates, for some p > 2, 8 > 0
we can derive W>*-estimates for any s. This is thanks to an interpolation result
and a boot strap argument. Indeed, if u’ € Wh# N C%, py > 2, 8 > 0, then
Au’ € L. Therefore u’ € W2 % from linear regularity theory. It follows from
Miranda-Nirenberg’s interpolation theorem, see [12], that

1
wewh?l  with — = — — —

provided pg < —25"—, and thus p; > bo. After a finite number of steps we get

p1 = 2, and it follows that

u”eWOl’p(O), p >2n,
and from the linear theory again

u’ e W (0), s>n.

From Sobolev’s imbedding theorem, u¥ € W'*, ¥n, and from the linear theory
again u’ € W29, Vs.
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4.6. The case of a positive 0-order term.
As a preliminary to problem (4.1) we consider the problem

1
— —Au, +au, = H,(x, Du
(4.65) 2 . (x, Du)
uv'B@ =0

with @ > 0. For such a problem we can weaken the assumptions (4.7), (4.8)
and (4.9), (4.10) as follows:

(4.66) Y HGp)=-2—=AY plf, X120, 120.

There exists a matrix I" which satisfies the maximum principle and

(4.67) Hy(x,p) <& +A0pu?, 2,202 0,

(4.68) 2 Hp) i+ MY pl, Xz0, 420,
v v

There exists a matrix I" which satisfies the maximum principle and
(4.69) Hy (e, p) = —h = MIpl?, Ay, A9 20.

Theorem 4.2. We assume that the functions H,(x, p) satisfy (4.2), (4.11),
(4.12), (4.13) and one or the other of the two sets of assumptions (4.66), (4.67)
or (4.68), (4.69). Then for a > O there exists a solution of (4.65) which is in
W2 (9), Vs, such that 2 < 5 < o0.

If one considers the developments of Sections 4.2, 4.3, 4.4. 4.5, the only
thing which fails is the treatment of the L*-estimate. But to recover the L®-
estimate in the present framework is very easy since we can rely on maximum
principle arguments. Indeed, assuming first (4.66), (4.67), then we have

_%AZ):MU +Ol(;uu) > =X _MDZU:L‘v,z’

and if § is a point of negative minimum of _ u,, necessarily D Yo, un(€) =0,

A" uy(§) > 0, hence
A
Y ouE) ==,
. o
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Therefore

A
(4.70) Zuv(x) > -

Next considering
(4.71) i=Tu,
we get the system
1 -
— 5 Ally + ol = H"(x, D),

hence from the assumption (4.67), it follows
Lo 0 i 1?2
_’Z'Auv +au, < A'v + A*ul uvl s
and if &, is a point of positive maximum, necessarily

i) < 22
o

Therefore

4.72) i,(x) <

’

~ Ay

o

and since I" satisfies the maximum principle, we get
1

(4.73) uy(x) < — Zuj(r“wu,

which combined with (4.70) yields the result.
The case of the assumptions (4.68), (4.69) is treated in a similar way.

Once we know L*-estimates on «u,, then this term can be incorporated
in the Lagrangian and the developments of Sections 4.3, 4.4, 4.5 can be made.
Of course all the estimates on the functions u, depend on «.

Proof of Theorem 4.2. One considers an approximation as follows:

1 H,(x,D
— =Au, +ou, = (x. Du) = H;(x, Du)
(4.74) 2 1+ ¢e|H(x, Du)l

Uylago =0,
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where H(x, p) represents the vector H,(x, p). Clearly the right-hand side is
bounded in L* by a constant depending on €.

To show that (4.74) has a solution in W2*(©9) N Wol’s((9), V2 <5 < o0,
one relies on Schauder’s fixed point Theorem. Indeed consider the set, for s

arbitrary
(4.75) K. = {ze WO el oo = €},

which is compact in (W&’S ()Y, Consider next the map from (WOI’S)N into
itself, T°¢ = z, by solving

1
- isz +az, = H(x, D§)

vy Iac) =0.
By choosing conveniently the constant C in the definition of K, one can check
that 7° maps K, into itself. Moreover, from (4.2), T°¢ is continuous. Hence the
fixed point property applies. Now it is easy to check that H¢ satisfies all the
assumptions of A, with the same constants, hence independent of ¢. Hence the
solution u® of (4.74) remains bounded in (W?*(©))" norm, independently of
¢. Hence letting ¢ tend to 0, one obtains a solution of (4.65). O

Proof of Theorem 4.1. We can proceed on the solution u#® of (4.65) in W2
which has been obtained with the development of Sections 4.2, 4.3, 4.4, 4.5.
Thanks to the assumptions of Theorem 4.1 we can obtain estimates in W2*,
which are independent of «. We can then let & tend to O to complete the proof.

O

5. Hamiltonians arising from games.

5.1. Set up: case (4.7), (4.8).
We define here the Hamiltonians H,(x, p) as follows:

)
(5.1) H,(x, p) =fu<x>+g.pu+Lv<p)+Elpm,

where L,(p) has been defined by (3.8) and f, and g are the functions which
arise in (2.10), (2.16). We first check (4.7), (4.8) with ' = I. Using (3.53),
(3.70) and formula (5.1), we obtain (4.8) with

1-20 6 ¢
20 = -4 =
Y 262 +2+2’

1
A=A+ legllz-

(5.2)
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Using (3.55) we have

i N e F©)lpP

we obtain (4.7) with
_ N
(5.3) A= Z foll+ 5 llgl

provided 6 belongs to the validity intervals defined in (3.70). If the product
AUAS satisfies the condition (4.22), then the properties (4.7), (4.8) are satisfied.
Recalling that F3(0) > F(6), we may pick 6 < 6’ orf” <0 < 6, and we
get a condition of smallness on § (note that 6 < 0), from (4.22).
Let us verify (4.11), (4.12), (4.13).. We define the matrix I as follows:

Typ=8y ifv=1,....N, p=1,...,N—1,
Frv=—-1ifv=1,...,N—1,
Fyn =1,

hence setting p = I'p, we have
Hy (x,p) = Hy(x, p) — Hy(x,p),  Yv<N,
Hy(x, ) = Hy(x, p).
Using (3.12) it follows, after easy computations,
Hy (x, ) = Q(p)pv + H)(x, p),

with

. 2 — 1 i 1 —26
0(p) = (1_6)2(1+(N_1)9)2M:Pu+(~——(1_9)2+8+N—1)pN,

0 - o 1-20\
Hu(st):fv*fN+g'Pv+§ 8+(1_9)2 Ip\)l 7V<N’

Hy(x, p) = Hy(x, p) — Q(p) pn
and the assumptions (4.11), (4.12), (4.13) are easily verified.
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5.2. Set up: Case (4.9), (4.10).
We are going to check satisfying (4.9), (4.10) with the following I":

(5.4) Fp=WN-16, T, =-1 ifpu#v.

This matrix satisfies the maximum principle, provided 8 > 1. Indeed its inverse

is
(N—-16—~(N-2)

N-1DO-D((N-1Do+1"°
1
(N=DO-DWN-Do+1)"
which are positive, under the assumption on 6. This guarantees the maximum

principle. We set

(F—l)vv =

mFEV,

T h,, =

p=Tp,
and we have (see (3.45), (3.70))

ML (p) =M, (p).

According to formula (3.79) and recalling (3.44), we get

(5.5) M} (P) > —kolp,|?
with

_ 1 (1—6)2(1 = 86(N — 1))?
SR G )1 oy v 1)9)2[ (N=D6( =56 — 1)

+
+ (N —1)8(26 — 1)2—__11- —a(e(e —DOWN ~1) -~ N +3)+ FI—T)}

provided we assume

18 )
(5.7) 6= 5-50-17>0
(5.8) 1-86—1)>0.

Next,

Hy (x, p) = (N = DOf,(x) = Y fu(x) + g - py + ME () =
AV
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> —hy = MBI
with
1
b = NN =D6fs = 3 full + 5-lgll®

(5.9) A

&
A8=k0+5’

and (4.10) is satisfied, provided )»,,)»9 verifies (4.22).
Next we have ‘

N o & F50)|pP
;Hv(x,p)sllzv:fvlwzellgll 3PP T T (T

and we obtain (4.9) provided the conditions of Lemma 3.3 are fulfilled, namely
9_(’) < 65 and 0 € (e’L’g, 6;). Since 6 > 1, and thanks to (3.66), this reduces to
05 > 1, and 0 € (1, 05). Considering (3.61), this means

1+2N(N —-1)
< —m—m—,
N2

1 5 146
5.11 1<6<-(1- / .
(51D < <.a< N-1" (N—1)2>

Summing up we can assert the

(5.10)

Proposition 5.1. For the Hamiltonians (5.1), the assumptions (4.11), (4.12),
(4.13) are satisfied. The conditions (4.7), (4.8) are verified with AS, Ay given by
(5.2). A given by (5.3) with I = I, provided 6 belongs to the validity intervals
defined in (3.70) and Avkg verifies the condition (4.22). On the other hand,
the conditions (4.9), (4.10) are satisfied with /\8, Ay given by (5.9), A given by
(5.3), with T defined by (5.4), provided 6 > 1 and § verify (5.7), (5.8), (5.10),
(5.11), A%, verifies the condition (4.22).
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6. Solution of the stochastic game problem.

6.1. Bellman system.
We relate to problem (2.17) the system of Bellman equations

1 8
- =Auy, = f, *Du, + L, (D =|D u2
6.1 SAuy = fu+ 8- Duy + L u) + 51 Duy|

MUIB(‘? = 03

and we assume that all conditions of Proposition 5.1 are satisfied. Therefore, ac-
cording to Theorem 4.1, there exists a solution in (W2*(Q)NW,*(O)Y, V1 <
§ < 0o. We define the feedbacks

(6.2) Dy (x) = vy (Du(x)),

where v,(p) are given by (3.6). These functions are bounded and continuous.
To such a feedback we associate the stochastic processes

(6.3) U, (1) = 0, (x(2)),

where x(t) is the process defined by (2.4). Our objective is to check that such
a vector process (¢) is the Nash point of the functionals J, (x v(.)) defined by
(2.16), in the sense of (2.17). We state then

Theorem 6.1. We assume all the conditions of Proposition 5.1, so that there
exists a solution of the system (6.1) in the space (W?*(9) N Wl S(O))N. Then
the control defined by (6.3), corresponding to the feedback deﬁned by (6.2) isa

Nash point of the functionals J,(x, v(.)) defined by (2.16) in the sense of 2.17).
Moreover one has

(6.4) u,(x) = J,(x,0()).

6.2. Proof of Theorem 6.1.
Note that from the Defintion (6.2) we have

6.5) L,(Du) = %lﬁv(Du)lz +69,(Du) - 3, (Du) <

l l +9Uu"av(Du), V)C, VUU.

k\.)l»—-A
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Applying this inequality to x = x(¢), yields, from (6.3)

6.6) Ly(Dux() = 518,00 +08,0) - ) =

v, (£) 2 + O, (£) - (1),

N =

<
for any control v,,.
" Consider the probability P, ; defined by (2.8), where ©0(.) is the process

defined by (6.3). Note that for the system (2, A, F', P, ;, wy ;) we have (see
(2.10))

67 dx=(gc(®) + Y 8u(0))dt +dw,5(1), x(0) =x.
m

From Ito’s formula we have

i, (x(0) = (D, (r(0) - (8 (1) + Y 0, (0) +
W

+ %Auv(x(t))) dt + Du,y (x(1)) dws.5(¢)

and from the Bellman equation (6.1) we deduce
L, . =
(6.8) duy (x(0)) = = fu(x(D) = S BB = 0D, () - D(1)

- nguu(x(l‘))l2 + Duy(x(2)) - dwy,5(2) .

Integrating between 0 and t, yields

Tx 1 _
69w = [ [AGE)+ 30,08 +08,0 5.0 d -
0

T

_ / " Duy (e dws (1) + 2 / | Duy () 2 dt
0 2 Jo

hence

610)  epd [ [£G0) + 108 +60,0)-5,0]ar =
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Tx

= exp Su, (x) exp <v/.§n 8Du, (x(t))dw, 5(t) — %/0 I(SDuU(x(t))lzdt) .

Since
exp( / § Dity (x(s))dw, 5(s) — ;21- / I5Duv(x(S))|2dS>
0 0

is an ¥, P, ; martingale, and 7, is a stopping time, we deduce the formula

1

(6.11) expdu,(x) = Ey 5 expa/“ [fv(x(z)) 5 10.0F +60,) -5(:)] dt
0

hence (6.4) is demonstrated. ,
Next considering an arbitrary control v(.), we manufacture the control
(v,(.), ¥(.)), in which we take for all components i # v the control 0, ()
defined by (6.3), and for the component v the control v, (.). Performing similar
calculations as above and taking account this time of the inequality (6.6) we can
check that
uy(x) < Jy(x, vy, 0y),

which establishes the inequality (2.17).
The proof has been completed. O

Appendix 1.

Discussion on the smallness of AUAS.

First we argue that a smallness condition on LAY (see (4.8) and (4.10))
cannot avoided. Consider indeed the case of N = 1, and in dimension one the
equation

1 " 0,2
——u' =A+A

2u +Au

u(@ =u(l)=1.

For A% < 0 it is easy to check that there exists a unique bounded solution. For
A% > 0 the unique possible solution is

1 log | €% VAOL(2x — 1)
229 cos +/A0%

u(x) =

>

which is bounded if and only if A% < Z*.
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Let us compare with the limitation obtained in (4.22). In the present
example, the Green function G# (x) is given by

g, _ 21 —8)x if0<x=<§
G<x)‘{2§(1~x) ife<x<l

and

1
/ GF(x)dx = E(1— ) <~
0 4

Therefore, condition (4.22) means here A’ < 1. So we do not get the optimum
limitation by this method, as can be expected.

So the issue of the improvement of the limitation on A0) is an interesting
question, We shall check in the following result that an improvement can arise
from the presence of an adequate drift g. This is reminiscent of what occurs in
the finite horizon problem (see [6]).

A variant of Theorem 4.1.
We consider here the problem

1
) ——iAuv—g-Duvsz(x,Du)

uylao =0,

which, compared to (4.1), has a linear first order term —g - Du,. Of course,
the usual treatment would be to incorporate it in the Hamiltonian H,, but as
far as condition (4.8) is concerned, this implies a deterioration of the smallness
condition on )».,kg. In fact, we shall see here that this term can relax to a large
extent the limitation on A, A%, provided div g > 0.

We proceed as follows: Considering the function E, in (4.20), we can
check that

1
) ~3AE —gDE, < 20,A0E, .

Since everything relates to the v equation, we shall drop the symbol v in the
sequel. So, also

1
3 -EA(E—U—g-D(E—1)52M°(E—1)+2M0
(E—Dlso =0.
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We first check that under some smallness conditions we can obtain an estimate
on E — 1 in L%(0O9). Indeed, testing (3) with (E — DT yields

| 7 di
—f |D(E—1)+l2dx-|-/ e
7/, 5 2

< ZMO/ [(E - 1)*] dx +202° / (E—-D*dx.
o o

[(E - D*dx <

From Poincaré’s inequality we get

/O(ko—}—divg)[(E— 1)+]2dx < 4M°/{9 [(E—1)+]2dx 44110 /<9(E—1)+dx ,
and if the smallness condition

“) 4200 < ko + infdiv g

is satisfied, then clearly

) [@E=1ra<io + [ [E-nTaxse,
¢} O
hence also
(6) / E*dx <c.
[¢]

From that knowledge, we are going to check that E is bounded in L, without
using any more any smallness condition. We test (3) with E G*, using again
the Green function (4.15) (although the Green function related to the operator
—1A — g D is also possible). We obtain

] 1
(7) —/ |DElzG"5dx+—/ D(E* - )DG* dx <
2 © 4 O

1
< / E*G* <2MO - —divg) dx —
o 2

1. £ 1 & d;
— | ZE?g-gradG® dx + = | (G®divg + g - gradG*) dx ,
02 2 Jo
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and from the definition of the Green function we deduce

(8)  E*¢) < 1+/ E*G* (4000 — divg) dx —f E’grad G¢ dx +
’ (¢ ’ [¢]

+ f (G*divg + g - gradG*) dx .
[¢]

We now make use of (6). Consider the set {x : E(x) > L}, where L is large
> 1. We split the integrals on the right-hand side of (8) into the integral on this
set and on its complement. Assuming & is chosen to be the maximum of E,
supposed to be larger that 1 (otherwise the L bound is obvious), we can then
deduce from (8) the inequality

(9) IE?|Lo < 14 L2410 + ||dive|) /@ Gt dx +

+ L?||g] f |DG*|dx + || E? [l oo (4210 + || divgl)) G¢dx +
] {E>L)

+1E?o lg] IDG¢|dx + C.
{E>L}

Now from (6) we have

C
(10) Meas {E > L} < 2

and from the estimates (4.16), (4.17) we can assert, thanks to Holder’s inequal-
ity,

1
(11) / Gt dx < C|IGE 10—,
(E>L) L%
1
(12) / IDGE|dx < cuaéuyﬁ.
{E>L}

By picking L sufficiently large, the coefficient in front of | E?||s in the right-
hand side of (9) can be made as small as we wish, hence strictly smaller than 1.
Then (9) yields an estimate on the L* norm of E.
The rest of the proof of Theorem 4.1 is unchanged.

Considering the limitation (4), it can be very good if inf div g is very large.
However this estimate, which can be also used when g =0, is not very good in
that case. For example in our one dimensional example, the Poincaré constant

ko =1, hence A\ < %, which is much worse than 1 obtained from (4.22).
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Appendix 2.

Global smallness condition.
If we consider (4.7) and (4.8) with I' = I, we get the property

(1) —h =D hu= Y Mpul® < Ho(x, p) < A+ Ap, )7,
WY WAV

and A,A% not too large. This is reminiscent, although not equivalent to a global
smallness assumption on k, K, where

2) |H(x, p)| < klpl* +K.

In that case things simplify greatly (see [9]). 1
For the sake of completeness we sketch the main arguments in the case of
a global small assumption. First to obtain L* estimates, we test the equation

1
3) —EAuv = H,(x, Du)
with G%u,, which yields
1
/D;u12DG5dx+—f G¢|Du)? dx =/G€1u1|H(x,Du)|dx

) 2Jo 0

hence if & is a point where [u| reaches its maximum, we have
1
lulZ, + Ef G*|Duf dx < “u“oo/ G*(K + k|Du|*) dx
o O .

thus if we have
4) 2k|lulloo < 1,

then it follows
MM<K/GWL
¢

so it is sufficient to assume

(5) 2kK||Gllp < 1.
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The H| estimate follows, since testing (3) with u, yields

1
—f Dufdx < nunoof Hidx <
2 Jo )

< Ilulloo</ k|Dul*dx + K Meas @) ,
O

and we make use of (4) to derive the H, estimate.
To obtain the C? and W'P estimate, 2 < p < 2 + &, we test with
(uy — c®)r3, where 1z, c® have been defined in (4.44), (4.45). We obtain

1
-—f lDuIztﬁaIx%—/(uU ——cf)Du\,DrRthx <
2Jo 0

< |lu -cR1|oo/(klpu|2+K)r,§dx 52||uuoof<k|1)u12+1<)r,§ dx,
o [¢]

so if we assume a more stringent assumption that (5), namely

(6) 4kK||Gllp < 1,
which implies
dklulleo < 1,
then we get
5 lu — k| "
7 o |Dul“dx < C |Dul| dx + CR",
Bg Bar R

which is the condition (4.46).
Similarly we can obtain (4.51) by testing with (u, — ¢X)G* 13, where G*
has been defined in (4.53). We get this time

1 _
5/ |Du|*G*13 dx +/(uv ~ c®YDu, DrpTrG™ dx <
o O
< 2ulee [ (IDUP + K)G¥Thd,
O
and by virtue of (6),

cof |Du|2Gx0r,%dx5/ Iu—cRHDullDrerRG"de—JrC/G"Or,%dx.
[¢] O O
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Then making use of the properties of the Green function (see (4.54)), using
Holder’s inequality, then Poincaré’s inequality, we derive (4.51) easily.

It is also possible to get rid of the more stringent assumption (6) and to

assume only (5), see [9].
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