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The existence of solutions of the Cauchy problem for (overdetermined)
systems of linear partial differential operators with constant coefficients in
some classes of functions or distributions is equivalent to the validity of
related Phragmén-Lindel6f-type principles for holomorphic functions on the
associated (complex) characteristic variety. Here we prove the equivalence
of these Phragmén-Lindelof principles for holomorphic functions with the
analogous ones for plurisubharmonic functions, which are easier to handle in
the applications.

Introduction.

Many properties of constant coefficients linear partial differential operators
are related to the validity of different kinds of Phragmén-Lindeldf principles
(see, for instance, [10], [15], [7], [13], [16], [4], [5], [6]). In [4], [5], [6] we
related evolution of (overdetermined) systems of linear p.d.e’s to Phragmen-
Lindel6f principles of the form
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(Ph—L) YaeN3BeN, ¢c>0 such that
if f € O(V) satisfies, for some constants oy € N and ¢y > 0:

[f()] <e?® VYieV

1F @] < cre?®@ VeV,
then it also satisfies:
()] <ce?r® VieV,

where V C CV is an irreducible affine algebraic variety, O(V) is the space of

holomorphic functions on V, and {@, }een, {¥u)een are sequences of plurisub-
harmonic functions related to the spaces of functions or distributions in which
we want to establish evolution (i.e. existence of solutions) of the given system.
For a convex locally closed subset K of RV, and an increasing sequence

{Ky}aen of compact convex subsets of K with K, contained in the relative
interior of K,,; and UZO:O K, = K, denoting by Hg,(y) = sup,g, (x, y) the
supporting function of K,, we considered, for example, ¢, (and analogously
) defined, for ¢ = (z,7) e Ck x C! =~ CY, by:
(0.1) o ¢, (¢) = alog(l + |¢]) + Hg,(Im¢)

in the case of C* functions (cf. [4]);
0.2) & a(§) = clt|" +alt' +alog(l + |t]) + Hk,(Im¢)

for 1 <r <+400,1 <5 < +o0 (with 1/r = 0 when r = +00),

in the case of (small) Gevrey functions, with possibly different

scales of regularity in the time-variables ¢ associated to t and in

the spaces-variables x associated to ¢ (cf. [5]);

(0.3) @ ¢,(§) = alog(l +[¢]) + ap(Im¢)
for a convex function ¢ with suitable properties, in the case
of C* functions satisfying certain growth conditions at infini-

ty (cf. [6]).

We prove here the equivalence of the above Phragmén-Lindelof principle
(Ph-L), formulated in terms of holomorphic functions, with the analogous one
for weakly plurisubharmonic functions on V, for a general class of sequences
{@a}aen (and {¥4}aen) Which includes, as special cases, the ¢,’s defined in
(0.1), (0.2) and (0.3). Our result extends the corresponding one proved in [14]
and [8], is suggested by the treatment of analytic convexity in [10] and [1], and
is useful in the applications (see, for instance, [4], [3], [5], [6]).
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1. Admissible sequences and main result.

Let V C CV be an irreducible affine algebraic variety of positive dimen-
sion. We denote by P (V) the space of weakly plurisubharmonic functions on
V (see [9]). The elements u of P(V) are functions u : V — [—00, +00][,
plurisubharmonic on the complement of the singular set S(V) of V, and satis-
fying

u(¢) =limsupu(z) VeceV.
=>4
Definition 1.1. An increasing sequence {@y}aen of real valued functions on V
is called admissible if the following conditions are satisfied:
(i) for every integer o > 0 the function ¢, is the restriction to V of a
plurisubharmonic function ¢, in CV;
(ii) for every non-negative integer o and for every constant ¢ > 0 there are an
integer B > 0 and a constant ¢’ > 0 such that

(L.1) Go(Q) +clogle+1¢)) < @)+ YeeCV,

(iii) for every non-negative integer « there are positive constants dy, by and
Cy Such that

ez + ) = ulO) S cu iz, £ €CY and 2] < ag(1+ [2]) ™ ;

(iv) @, is bounded from below on every compact subset of V.

Note that, in particular, (i) and (ii) imply that

YaeN 3peN st lim P @)=9 &) —

1¢]~>+00
whereas (iii) implies that ¢, has polynomial growth:
1Pa(O)] < c(L+ g vreCN

for some constant ¢ > 0.

In the following, while considering admissible sequences {@q }yen, We will
think the functions ¢, as given, and write for simplicity ¢, instead of @, .

Note that the sequences {¢,}qen defined by (0.1), (0.2), (0.3) are all
admissible sequences, under suitable conditions on the convex function .

We will prove the following:
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Theorem 1.2. Let {¢,}4en and {Yry)gen be two admissible sequences defined
on an irreducible affine algebraic variety V C CV.

Then the following Phragmén-Lindeldf conditions (Ph-L) and (Ph-L)" are
equivalent:

(Ph-L) VaeN3IBeN, ¢ > 0 such that
if fe€O(V) satisfies, for some constants ar €Nand cy > 0:

[f(O)] <e® vrev
1)) <cre?® vrev,

then it also satisfies:
If(O] S ce?® Viey,;

(Ph-L) VaeN3IBeN, ¢ > 0 such that
if u€ P(V) satisfies, for some constants o, €N and ¢, > 0:

u@) <Ya(g) YteV
u(l@) <@, (&) +cu VeV,

then it also satisfies:
u@) =ep§)+c VeeV.

Note that the implication (Ph-L)" = (Ph-L) is trivial since log | f|is weakly
plurisubharmonic on V for every f € O(V).

2. Proof of Theorem 1.2.

In this section we prove the implication (Ph-L) => (Ph-L)’ following the
general pattern of [10] and [1] for the discussion of analytic convexity. In fact
our technique is closely related to that of [14] and [8].

We will borrow some preliminary lemmas from [14] and [8]. For general
results on plurisubharmonic functions we refer to [1 1] and [12].

Let p1(¢), ..., pr(¢) € Py = C[¢!, ..., "] be a finite set of generators
of the prime ideal g of polynomials vanishing on V.
We set

PO =) Ip@)P.
Jj=1

If n is the dimension of V, by a real linear change of coordinates (cf. [ 1]) we
can assume that:

M VClt=0cweCxC": [z <1+uw));
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(2) the projection map
T:Va(z,w)—»>welC"

is finite and surjective;

(3) the ring Py, is integral over C[w!, ..., w"];

(4) foreach j = 1,...,k there is a polynomial P; € p N Clz/, w!, ..., w"]
which is monic with respect to z/;

(5) the quotient field of $y/, contains the field C(w', ..., w") of rational
functions of the variables w!, ..., w”" and is generated over it by the image
of z!;

(6) if A(w) is the discriminant of P; with respect to z!, there are polynomials
o eClzl, wl, ..., w"]forj=2,... k such that

AWz —ajZ, wyep forj=2,... k.

Assume that the minimal polynomial

Pz, w) = &)+ Bw)@)" T+ 4 B ()2 + B (w)
of z! over C(w!, ..., w") has degree m in z'; then each B € Clw!, ...,
w"] has degree < j and the projection 7 : V — C” defines an m-sheeted
covering over the set {w € C" : A(w) % 0}, i.e. all points of V are of the form
(¥j(w), w) for j €1,...,m, where the different branches (w), ..., O (w)

of the algebraic function (z', ..., z*) on V are all distinct when A (w) #0.
Therefore the set of singular points of V lies inside the set

So = 5,(6,0) = {2 w) €CY ; |A@w)| < 8(1 + [w])~)

for every choice of positive constants & and c.
Given positive constants A and B we define the function

X(z,w; A, B) =log|p({)| + A{Blog(e + |¢]) — log |A(w)]}

which is defined and plurisubharmonic in {¢ = (z, w) € CV : A(w) # 0},
Let

QAB) =1{ =z w)eC": Aw) #0, x(z,w; 4, B) <0}

Then the following lemma holds true (s‘ee [14], Proposition 4.1):
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Lemma 2.1. We can choose the constants §,c, A, B in such a way that the
following properties are valid:

(i) the set Q(A, B) is a domain of holomorphy in CN containing VN {A(w) #
0},

(ii) for each point ¢, = (z,, w,) € QL(A, B) there is a unique j, € {1, ..., m}
such that

|20 — U, (o) = min{lz, — Fj(wo)| + j=1,....m};

(iii) the map p : Q(A, B) — V associating to the point (z,, w,) the point
(%, (w,), w,) € V closest to (z,, w,), as in (ii), is a holomorphic retrac-
tion,; )

(iv) if u is a weakly plurisubharmonic function defined on a neighbourhood of
S, (8, ¢), then we have

u(go) <max{u(t) : £ €V\S(,0), 1§ =0l <1} VE,eVNS,0,¢);

(v) there are positive constants €, and c such that for every ¢, = (9;(w,),
w,) € V\S,(8, ), setting £(&,) = e(w,) = &1(14+|w,|)™, the connected
component of &, in VN {neC" 1 |n— w,| < 8e(&,)} is the graph of a
holomorphic function ¥;(w, + 1) defined in the disc {|t| < 8¢({,)} C C,
(jell,...,m}), and:

neCY: |n—¢(v)] < 8e(L)) C A, B) for|t| < 8e(%)
I;(t)_golf 1 f0r|t| <88(§n) y

(vi) there-are positive constants ¢, and c3 such that the function
¢(¢) = ¢(w) = co{log |A(w)| + c3log(e + [w))}

is non-negative if § = (z, w) € V' \ $,(3, ¢) and |{ — {(w)| < e(w), where
e(w) and ¢ (w) are defined as in (v);
(vii) if f is a holomorphic function on Q2(A, B) which satiesfies

[ $(1) = (0j(wo + 1), wo +7) €Q(A, B)  for|r] < 8e(&)
2.1

/ | F(0)Pe 2P0 g < 4o
Q(A,B)

for a locally bounded function u on 2(A, B), then there is an entire
function F in CN such that F(¢) = f(&) for ¢t € VN Q(A, B) and
F()=00nVN{A(w) =0}

Moreover, any choice of a smaller § and larger ¢, A, B makes the statements
(i),...,(vii) still true for different constants ¢y, ¢y, ¢z, C3.
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Let us now set, for w € C" such that ¢ = (% (w), w) e V\ S,(, ),
B =B(0,e(w)) ={neC": |n| <e(w)}.

Then we prove the following lemma (following [8]):

Lemma 2.2. There exists a positive constant ca, depending on V,8,c, A, B,
€1, C1, €2, €3, such that, for every weakly plurisubharmonic function u on V

satisfying
(@) < p(L+1¢D* YeeV

Sor some positive constants p and k, and for every ¢, = (W (w,), w,) €
V\ So(8, ¢), there exists a subset E of B = B(0, e(w,)) C C" with

(@) |E| < |Blmax(1, p)(1 + [5,)) ™

such that for all v € B \ E there exists an entire function f, on CV satisfying:
(ii) log | fz(£(2))] = u(5(7)) — calogle + (¢ (7))

for ¢(t) asin (2.1);

(i) loglfe (O] < max{u(t): ¢'eV, |{ = ¢'| <1} + calogle + 1¢])
forallt eV,

For the proof of Lemma 2.2 we need the following two lemmas (for the
proof of which we refer to [8], Propositions 3 and 4, and to [11]):

Lemma 2.3. Let Q2 be a domain of holomorphy in CV, and let W be a plurisub-
harmonic function on Q2. Then there exists a constant C > 0, depending only
on the dimension N, such that, for every ¢, € Q2 and & > 0 with B({,, &) CC
and ¢ < %(1 + 1801), there exists a function f € O(2) satisfying:

~1/2
1
2.2 o =A 0 = — —2‘11(4‘)(11 ,
22)  f(&) = A, &) 8[13@0,8» s c}
|f(Q)Pe™2Y® )
(2.3) medffc )
and
(2.4) IOl = Ce™A+ 1t Hexp(TU(L, 8)}),  on Q,

where Qe = (¢ € CY : B(£,¢) C Q) and U(¢, &) = max{W( +¢') 1 |¢'] < e}.
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Lemma 2.4. There exist positive constants A and C’, depending only on the
dimension N, such that,-for every ¢ € CN and every non-negative plurisubhar-
monic function WV on {|¢ — ¢'| < 8} satisfying

1

- W(eHdr <)+ A,
B@ )| Joes (¢Hds =W ()

we also have

1

|B(¢,78/2)
B(,r8/2)

/ e 2V gr < Cexp{C'r- sup |W()]}e VO
l¢'—¢1=8/2

forall0 <r < 1/2.
We can now prove Lemma 2.2 (cf. also [8], [14], [2]):

Proof of Lemma 2.2. We define the plurisubharmonic function ¥ on (A4, B)
by

(2.5) V() =W¥(z, w) =uop(z, w)+ cr{log |A(w)| + c3log(e + [w]},

where the constants ¢;, ¢3 and the map p are those of Lemma 2.1.

Let ¢, = (¥(w,), w,) € V \ S,(8, ¢) be arbitrarly given, with 0 < § <
e(&,) /4 for the e(¢o) of Lemma 2.1, and set r = %(2 + 12,1 7.

Let r € B and ¢ () = (¢;(w, + 1), w, + 1) satisfy (2.1). We denote by f;
the holomorphic function on Q(A, B), given by Lemma 2.3 for the W defined
by (2.5), and ¢, substituted by ¢(z) and ¢ by r8/2 in (2.2):

8
f@) = A(((t), r§> :

Then condition (iii) of Lemma 2.2 is satisfied, because of estimate (2.4) and the
definition of W,

Moreover, because of the definition of ¥ and the L*-estimate for f, given
by (2.3), point (vii) of Lemma 2.1 implies that f; extends from V to an entire
function on C¥.

Let A > O be the constant of Lemma 2.4 and let us set, for L eQ(A, B),

Ws(¢) = w(gHhds".

|B(Z, &)l /s

We consider the set:

E={reB: Vs((r)) > V() + A}.
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If T € B\ E, with the constant C’ of Lemma 2.4, we have:

(2.6) log | £ (£ ()] = log A(¢(7), 76/2) =

s 1 L, Cr , '
>log ——=logC' —~ — sup W +Y( (D).
2 2 2 —ro)i=s/2

In order to estimate SUPr_p(oy=sy2 [W(E)], let us fix ¢ = (z/, w') € CV with
[£" = ¢(v)] = 68/2 and let t" = w’ — w,. Then

8(50) <26(8,).

é
[Tl <lel+1e =l e(q) + 5 =e) +

Moreover, by (v) and (vi) of Lemma 2.1, we have:

IWEDN < |uo p(E)] + callog |A(W)| + c3log(e + [w'])] <
= (@D + p'logle + [w']) <
= p(L+ 5@ + p'logle + [w']) <
= P+ 18I+ [5(T) = 6D + pe = 1+ ¢ (D) + [ — ¢ (D)) <
< P2+ 15D".

By the definition of r this implies that

) /0/,
re osup W < =,
18 =¢(r)=8/2 “

and hence, by (2.6), the definition of ¥ and (vi) of Lemma 2.1:

6 1"
QT BN 2 VG @) +log oy — 2

)
= e s ey

forevery t € B\ E.
Next we estimate the measure of E. Note that Ys > W since W is
plurisubharmonic, and

(2.8) AlE] S/H {(Ws (£ () = W(c(r)}dr .
T|<e(&)

Since W, and therefore also Wy, only depend on w, we can find a positive
function ®;(n) on C* with compact support in |n| < 28 and f Ps(n)dn =1,
such that

Ws(¢(1) = / Y (E (T —m)Ds(n)dn .
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Indeed, denoting by Bk(io, r) the ball with center z, and radius r in Ck, for
¢ =(¢,7)and § = (z, w) in (A, B) we have:

1
Ws(¢) = Ws(v) = = V() dE =
’ N =B @ O Jsuen
1 /
= W, (w), w)dé =
2282 Jpyc.o) !
L f {/ W (5, (w) )d]d
= p(w), w Z w =
aN&2N Jp w.6) UJByowt' /=t —wh) Jo
N! nN*n
— * W (9 , 52 _ _ 2 N-—nd —
NN(gZNv/Bn(r’a) (&, (w) w)__—(N —n)!( [t —wl) w
N!
= W@ (t—n),t—-nN@E*—nH¥ " dn =
ﬂn(N_n)ggzN/B(oa) 0, (x —m), T —n)( i) n

N! /5{/ WO, (=T —1)
- (T —=m, T =
(N =) Jo | Lanopy !

@ = PN )| d,

where d H?"~! denotes the (2n — 1)-dimensional Hausdorff measure.
Then, writing w, for the measure of the unit sphere in C" and M (-, p) for
the mean value of W (%%, (-), -) on 3B,(0, p), we have:

Ws(¢) = f 9B, (0, p)]-

n(N )162N

' ——“—l‘_' : — — 2 |n2\N-n 2n—1 _
[laBn(O, p)|aB[ | V(@ (t—n,7 (6 nl9) dH‘ (77)] dp =

n (U, 0

N s, )
T (N —n)v(SzN/O 00N = 1PN T M (T — -, p) dp .

Thus we found that, for

G
(N — n)162N

xs(&) = xs(I§) =

il

we have s
Ws(¢) = fo Mt ~ -, p)onp™  x5(0) dp
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and 5
f 15 (E)dE = / onp™ x5 (0) dp = 1
B(0,%) 0

since the mean value 15 of 1is 1.
Then we construct a non-negative radial function x5(&) on C" by:

0 for |£] < 6/2

- _ ) xs(§) ford/2 <&l <6
X)) =1 GoE) ford <|E| <640

0 for || > 8+ 0o
with 0 < 0 < § and G5(&) = Gs(|&]) = 0 such that

8/2 . S+o
/ wnp® " x5 (p) dp =f w.0*" 1G5 (p) dp,
0 )
so that we still have
28
/ Xs(§)dé =f w0 Xs(p)dp = 1.
B(0,268) 0

Now, since W is plurisubharmonic, the mean value M(-, p) is an increasing
function of p, and hence:

8
W5(¢) =/0 M(t =, p)w. 0™ x5(p) dp =

5/2

= M@—-,pw.p” ' xs(p)dp +
0
)

+ | M-, p)w.p™ xs(p) dp <

8/2
82
) 2n—1
SM(T_"E) wpp”" " xs(p)dp +
0
8
+ | M@ —-, pwp™  %s5(0)do =
§/2
5 8+o 5 .
= M(r -, 5)/ w0*" " %5 (0) dp +
)
)
+ [ M@=, pw.p™  %s5(0) dp <
8/2
§+o
< M(t — -, p)w.p® ' %s(p) dp +

)
8
+ | M(t—-, p)wp™  fs(p)dp <
52
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< | M@—-, pw.p™ s(0)dp =
28 .
= f { / Wy, (=, T = dH () | (o) dp =
0 88,(0,p)

=/ WD, (x =), T — m)isCn) dn.
B, (0,28)

Finally we choose
G5(n) = x8,0,20MXs(M)

where xp,0,25)(n) is the characteristic function of B, (0, 28) in C", and we have
that

s >0, fd)a(n)dn:I, supp @5 CC B, (0, 28)

and

Ws(£(0)) < f W (r — ) s dn .

Therefore, denoting by xp the characteristic function of B = B(0, £(¢,)) we
have:

f (W50 (1)) - W(e ()} dr <
|T]<e(g,)
< / / W ()5 (& — ) dd — W) dE =
l&l<e(t,) |&1<e(t,)
= [ [ m@veanee - naras - [wevee)d =
=// Xa (W () Dy (t — £) dE dr —

- / s OV E)) / ng) drdt =

=f‘l’(§(5)){/><3(f)[<ba(f—é)— Xf;‘ﬂdr]ds -

- / W ())hs (&) dE

with
_ xs(&)
ha(é)—/)(a(f)[%(r—é)— o Jar.
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In particular —1 < hs < 1 and h; has support in the ring £(¢,) — 28 < |&] <
£(¢,) + 26. This ring has volume

%[(8(50) +28)2" — (8(2,) — 28)%"] < Ce(c,)™ s .

Therefore, if we set
M= M(E) = sup(W(E () : [t] <26} ,

from (2.8) we obtain that

)

|E| < 5"3'8(;)

M(Z,) .

By the definition of W and (2.1) we have that
M(£o) < p(1+15D" + Clog(e + [£,]) -

We finally choose a positive constant C’ such that, taking

_ (&)
C/(1 + [¢,]) %

we have
|E| < max(1, p)|B|(1 + &) 7,

which is estimate (i) of Lemma 2.2.

Finally, the value of § in (2.7), together with (2.1), give estimate (ii) of
Lemma 2.2.

This completes the proof. (]

We are now ready to prove Theorem 1.2 (cf. also [14], [8], [2]).

Proof of Theorem 1.2. As we already noted in the previous section, the impli-
cation (Ph-L)" = (Ph-L) is trivial.

Let us turn to the proof of the opposite inclusion (Ph-L) = (Ph-L)’.

Let u be a weakly plurisubharmonic function on V which satisfies the
first two inequalities of (Ph-L)’, and let us show that it also satisfies the third
inequality of (Ph-L)’.

We know, by (Ph-L), that this last inequality is satisfied if u is of the form
log | f| with f € O(V).
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By (iv) of Lemma 2.1, for every ¢ € V N S,(6, ¢) we have that
u(¢) <max{u(¢): ¢'eV\S@,0), 1§ —¢'1 <1},
and hence it is sufficient to prove the third inequality of (Ph-L)" for ¢ =
@ (w), w) e V\ S,(, ¢).
For these points, by the mean value theorem for plurisubharmonic func-
tions, using the polynomial growth of v, and Lemma 2.2, we have:

1
29) u() < — / u( (w)) dw =
A

1 1
- /E @) dw -+ [ w5

|B\ E]|

B sup {u(¢(w)) :weB\E} <

1
< E%T/E‘/’“(“w”dw +

E
< %paa gDk + sup {u(¢(w)) s we B\ E} <

< p2+sup{u(C(w)) :weB\E}.
By Lemmia 2.2 for each w € B \ E there is an entire function f,, such that
log| fu(¢)] < max{u(¢’) : ¢'eV, [t =¢'| < 1} +cqlogle + ] .

From the first two inequalities of (Ph-L)" and property (1.1) of {¢4}ysen and
{¥a}aen we thus deduce that there are constants o', o, € N and A’, A, > 0

such that
{log [fo S VYur (@) +A VeV
log | fu@) S eu Q)+ A, YieV.

Therefore, by (Ph-L) there are constants B, € N and B, > 0 such that

log [ fw(O)| < ¢p,(§) + By VeV
Using again Lemma 2.2 we thus obtain, forall we B \ E:

u(¢(w)) — calogle + [ (w)) = log | fiu (¢ (w)] < ¢p, (¢(w)) + B,
and hence, by (1.1),
u(G(w) < g, (E(w)) + B, YweB\E.
Substituting this last inequality in (2.9) we finally have:
u@) < g (5)+ By YLeV\S,

and hence the thesis. |
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