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A simple exit time problem with degenerate cost is here considered. Us-
ing a new technique for constructing admissible trajectories, a semiconcavity
result for the value function v is obtained. Such a property of v is then applied
to obtain optimality conditions.

1. Introduction.

Optimal exit time problems are usually formulated in the closure Q of an
open domain of R", giving a state equation of the form
(1.1 () = f(y(_t), a(t)), t>0
' y0)=xe.

Here f is a vector field and « is a control — i.e. a measurable function taking
values in a given closed set B (the control space). Under standard conditions
the above Cauchy problem can be uniquely solved; we will denote by y®(¢) the
solution of (1.1), and say that y¢(¢) is the trajectory starting at x with control
. Moreover, we will denote by 7(x, &) the time, even infinite, at which y%(¢)
reaches the boundary of .
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The optimal exit time problem we are interested in, consists in minimizing,
over all controls, the cost functional

T(x,a)
12 Jxa) = / e M LG, al) dt + g (2 (x, @),
0

Here L : Q X B — Rand g : @ — R are given functions, called running cost
and terminal cost respectively, A > 0 is a given number, called discount factor.
A well studied example of this class of problems is the minimum time problem,
for which one takes A =0, g =0and L = 1.

The Dynamic Programming approach to the above minimization problem
is based on the properties of the value function v defined as

(1.3) v(x) = inf J (x, @) x €Q.

In fact, useful optimality conditions can be formulated in terms of the value
function and of its gradients. ‘
Moreover, the value function can be characterized as the unique viscosity
solution of the boundary value problem
(1.4) {Av(x) + F(x,Dv(x))=0 in
’ v=2g on 9%

where
F(x, p) = sup[— f(x,a) - p — L(x,a)].

This means, since v is a nonsmooth function, that suitable inequalities hold for
the super- and sub-differential of v at any point of Q (see [14], [5], [4]).

The above considerations motivate our interest in those regularity proper-
ties of v that hold for general optimal exit time problems. Among these prop-
erties, a special role is reserved for semiconcavity. This is, in fact, the maximal
regularity one can expect the solutions of (1.4) to possess when the data are
smooth.

We recall that, roughly speaking, a semiconcave function is a function
that can be locally represented as the sum of a concave function plus a smooth
one. Therefore, semiconcave functions share many differentiability properties
of concave functions. For example, they are twice differentiable almost every-
where and possess a nonempty superdifferential at any point. Moreover, sharp
Hausdorff estimates from above and below are available for the singular set of
a semiconcave function, see [2], [1]. '
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A semiconcavity result for the value function of optimal exit time problems
has been obtained in [8], assuming a nondegeneracy condition of the form

(1.5) L(x,a) 2 c>0

for any x € Q and any control . Such an assumption is fundamental for the
method of [8]: (1.5) allows to bound the exit time 7 (x, @) with the minimum
time function, 7'(x), in such a way that the regularity properties of 7 (x),
formerly derived in [9], can be used to obtain the semiconcavity of v. Therefore,
the approach of [8] cannot be extended to problems with a degenerate running
cost.

In this paper we propose a new method to obtain semiconcavity estimates
for the value function of optimal exit time problems with degenerate cost. We
will consider a simplified model assuming that the control space B is the closed
unit ball of R”, that

fx,a) =a, A >0, g=0
and that L(x, ¢) = L(x) with

(1.6) Lix)>0 VxeQ,
‘ Lx)=0 VxedQ.

Then, our optimal exit time problem is equivalent to a constrained optimal
control problem in the sense that

+00
(1.7) v(x) = inf/ e ML(y*(t))dt,

C!EeA}_,, 0
where the set of admissible controls is defined as follows
Ay ={a:y*(t)eQ, V>0 VYxeQ.

The above observation is crucial for various reasons. First, thanks to the
representation formula (1.7) we can construct admissible trajectories to prove
the semiconcavity of v. Second, this approach gives an insight into another
difficult problem of this theory, namely finding reasonable conditions to ensure
the semiconcavity of the value function of optimal control problems with state
constraints. For these problems, counterexamples to semiconcavity are known
as well as a positive result in the one-dimensional case, see [7].



74 PIERMARCO CANNARSA - CRISTINA PIGNOTTI

Once we have proved that the value function is semiconcave, we can apply
the properties of this class of functions to derive optimality conditions for our
optimal exit time problem. Moreover, using the Hamilton-Jacobi equation (1.4)
and the theory of [1], we obtain a propagation result for the singular set of v. In
particular, we classify the isolated singularities of the value function and show
that nonisolated singularities propagate along Lipschitz arcs.

The outline of the paper is the following. In Section 2 we recall the
definition and some properties of semiconcave functions. In Sections 3 and
4 we prove the Holder continuity and the semiconcavity of the value function.
Finally, in Section 5, we give applications to optimality conditions and to the
analysis of the singular set of v.

2. Preliminaries.

Let xo € R", r > 0. As usual, we define
B(xg,r) ={xeR" : |x — x| <r}.

We denote by (p, g) or p - g the usual scalar product of two vectors p, g € R".
Let A C R" and u : A — R. We recall that u is said to be Holder
continuous of exponent 6 € (0, 1], if there exists a positive constant C such that

(2.1) lu(x) —u(y)] < Clx — y|?,

for every x, y € A. In particular, if 6 = 1, we say that u is Lipschitz continuous.
We call modulus a nondecreasing upper semicontinuous function o
[0, +c0) — [0, +00) such that lim, g+ o (r) = 0.
We say that u : A — R is semiconcave if, for some modulus w, u satisfies

(22) su(x)+ (1 —s)u(y) —u(sx + (1 —5)y) <s(1 —s)|x — ylo(x — y|),

for any pair x, y € A such that the segment [x, y] is contained in A and for any
s € [0, 1]. In this case, w is said to be a semiconcavity modulus for u in A.

Suppose now that # : A — R is a continuous function satisfying, for some
modulus @,

XYY o=yl
) = F a0 -,

for any x, y such that the segment [x, y] is contained in A. Then, one can show
that u is semiconcave in A with semiconcavity modulus

o) = iw(%—) r > 0)

i=0

(2.3) w(x) + u(y) — 2u(
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provided that the right-hand side above is finite. In particular, this occurs if &(r)
is given by a constant times a positive power of . In the present paper, we will
always prove semiconcavity through property (2.3).

First of all we recall some definitions and some properties of semiconcave
functions. We recall that if u : A — R and x € A, the subdifferential and the
superdifferential of u at x are, respectively, the sets

(%

Viu(x) = {pGR" fiminf ) TH@ =P & = X) O},
a ly — x|

IA

Viulx) = {p'e R”* : lim sup uy) mux) = p- = ») O}.
y—>x D’ - .X'|
If u is a locally Lipschitz function, then V- u(x) and V*tu(x) are compact
convex sets. They are both nonempty if and only if « is differentiable at x
and, in this case they both contain only the gradient of «. For a locally Lipschitz
function u : A — R, we also define the set of limiting gradients

Viu(x) ={p:3{x} CA suchthat x — x,
u is differentiable at x;, p = klim Vu(x)},

where Vu denotes the usual gradient of «. This set is nonempty as a corollary
of the Rademacher’s theorem. In the case of a semiconcave function we have

the following result (see [11]).

Theorem 2.1. Let u : A — R be semiconcave. Then u is locally Lipschitz in
A, and

2.4 Vtu(x) = coV*u(x), VxeA.

Therefore the superdifferential V't u is nonempty at each point. In addition, u is
differentiable at x if and only if V*u(x) is a singleton.

If u: A — R is a semiconcave function, we say that x € A is a singular
point for u if u is not differentiable at x. We call singular arc an arc consisting
of singular points. The following result is proved in [1].

Theorem 2.2. Let u : A — R a semiconcave function with a linear modulus.
Suppose that 3V u(x)\ V*u(x) # (. Then there exists a Lipschitz singular arc
X [0, 0] — R such that ¥(0) = x and X(s) # x, Ys € (0, o).

The following lemma generalizes a result of [15], where the special case
B =1and p =1 is obtained.
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Lemha 2.3. Let w be a modulus and let B > 0. If there exist v, A, p > 0 such
that

w(R) < CRP +yw(AR) VRe|0, o]
y<1, yAP <1, p<lI,

then there exists a constant C' = C'(y, p, A, C) > 0 such that w(R) < C'RP,
forall R €[0, p].

Proof.  Suppose first that A > 1. Taking R = p/A, our assumption implies
that

a)(z) < C;}% +yw(p).

Similarly, for R = p/A?,

P 1 P 1 2 —
w(Z?) C——l—yw(A) 5 +C—A§+y w(p) =

Azﬁ 5 (L +v4P) +y2w(p),

In general, taking R = p/A" for any n > 1, we have that

_B__ B Byn—1 n
o(4r) = Anﬂu yAP ok (AP 4y (o) <
C
<—-——a——-———-————
ArB 1 — y AP

Now, let 0 < R < p and fix n € N so that p/A"*! < R < p/A". Then, by our
assumption y < 1/A?, we conclude that

+y"w(p).

a)(R)<w<:n>§

P0o) + g T = 2 (w(e) + )
I T par = am\C Pt T ) =

AP C AP C
- Z_R8 - ' RB
= AnBiP (w(p)+ Aﬁ) 7 R (w(p)+ yAﬂ) < C'R”,
where C/ = 27[@ (p) + m]. The lemma is thus proved in the case of

A>1.
To complete the proof it remains to observe that, if A < 1, then w(AR) <
w(R) as w is nondecreasing. So, the conclusion is trivial. (]
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3. Holder continuity of the value function.

Let €2 C R" be a bounded open set with smooth boundary I". We denote

by € its closure.
We consider the distance from I

3.1 dist(x,I") = inf{|x — y| : yeT'}, x e R",
and we denote by d the signed distance

| dist(x, ), x ¢ Q,
(3:2) dx) = { _dist(r, ),  xeQ.

Letusset, for p > 0,I", = {x e R" : |d(x)] < p}.
Through the paper we assume that

(3.3) Jpo€(0,1) suchthat deChI(T,),

that is d is of class C!(I',,) and its gradient Vd is Lipschitz continuous. In
particular this occurs if the boundary I' of Q2 is of class C2, and, more precisely,
if there exists o > 0 such that

(3.4) Vx eI' 3 adiffeomorphism ¢ : B, C R" — B(x, ry)NQ, ¢ e C*(B,),

where
B, = B(0,1) N (R x [0, +00)).

Let L : & — R be a Lipschitz continuous function satisfying (1.6), then the
value function v of our problem,

+00
(3.5) v(x) = inf{/ e ML(y@)dt: y(1)eQ
0
Ve 0] < Lae, y(0) = x],

is Holder continuous in 2.
More precisely we have the following theorem. We recall that po is the
positive number introduced in (3.3) and A is a fixed positive number.

Theorem 3.1. If Cy is a Lipschitz constant for Vd in Uy, then v is Holder
continuous in 2 of any exponent 0 < 0 < 1 such that

(3.6) | 9((:l + -12—02) <

In particular, for any A > C‘I + In2/py the value function v is Lipschitz
continuous.
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The Lipschitz continuity of the value function of optimal control problems
with state constraints has been proved for more general systems than the one
we consider in this paper, see [15], [13], [3]. However, we prefer to give a new,
self-contained proof of this result since the technique is similar to the method we
will use in the next section to prove semiconcavity. Our proof of Theorem 3.1
is based on a careful use of trajectories of the differential inclusion

y(t) €ap(t) = H(d(y(®)){ao(t), Vd(y(1)))+ Vd(y(1)),
3.7 fora.e.t > 0,
y(0) =x,

where o is a piecewise continuous control and H is the set valued map
H:R— P[R)

{1}, 0<s <po,
(3.8) H()=431[0,1], s=0,5 = pg,
{0}, s<0, s>pp.

In problem (3.7) and in the sequel, (p,q)+ = max{(p, q), 0} denotes the
positive part of (p, q), for any p, g € R".
For the proof of Theorem 3.1 we need the following preliminary result.

Lemma 3.2. Let xg € Q, let ap € Ay, be a piecewise continuous control, and
set yo = y3°. Then, for any x € 2, problem (3.7) admits a solution y such that

(i) Iyl <1lfora e t=0;
(ii) y(t) € Q forevery t [0, pol.
Moreover, if x € QN B(xg, p) with p € (0, po), then

(3.9) ly(2) — yo(t)] < 2e“|x — xo|, Y2 €10, po — p],

where C| is a Lipschitz constant for Vd in T .

Proof Denoting by {t' : i € N} the discontinuity points of «y, let us set, for
t >0,

3.10 Ay = Loo®  t#LieN,
G40 ® BO,1) t=tieN.

Let us consider the set valued map G : [0, +00) x R" — P (R") defined by

G(t,w) = {veR" 1 v=a—hb, Vd(w)),Vd(w),a,be A(t), h € H(d(w))},
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for any (z, w) € [0, +00) x R". Notice that, in light of (3.8), H(d(w)) vanishes
on the region where Vd may not be defined. Therefore, it is easy to check that
G is upper semicontinuous, and that G (¢, w) is a nonempty compact convex set
for every (t, w) € [0, +00) x R". Hence the existence of a solution, y, to the

problem
[}"(t) €G(t,y(1), t =0
y0)=x

follows from a well known result, see e.g. [12]. Moreover, by the definition of
A1),
y(®) €ao(t) = Hd(y(O)){o (), Vd(y(£))) 4+ Vd(y(t)) forae.t >0,

and so |y(t)] < 1 for ae. ¢t > 0. Furthermore, a measurable selection
h(t) € H(d(y(t))) exists such that

GBI Y0 = ap(t) = h(t) (@0 (®), Vd(y(t))) Vd(y(1)) , fora. e. t > 0.

Now, in order to prove (ii), we consider the Lipschitz function §(¢) = d(y(1)),
t > 0. We want to show that §(t) < 0 for any ¢ € [0, pp]. Arguing by
contradiction, let us suppose that #y € (0, po) exists such that & (to) > 0. Let

us set
f=inf{0 <t <#:5(s) >0,Vselr o]}

Then, §(¢;) = 0 and
§'(O=(Vd(y(1)), a0 (1) ~h(d (YD) e (t), YAy (1)) 4 < 0, for acet € [1y, 1o].

So, t
5(10) = 8(10) ~ 8(11) =/ 5y dt <0,

7

which contradicts our previous assumption. _
Next, let us fix p € (0, po) and suppose that x € 2N B(xp, p). From (3.11)
it follows that

(.12)  yo(®) = y(®) = x0 — x + /0 h(s){ao(s), Vd(y(s))) 4 Vd(y(s)) ds.

Fix t < py — p and define

S={sel0,1]:y(s)el).
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If § = @, then h(s) = 0, for any s € [0, ¢], and so

Yolt) — y(t) = %o — x.
If S # @, define sy = inf S, s; = sup S. We claim that
(3.13) yo(s), y(s)eTy, Vs €lso,s1].

Indeed, d(y(so)) = 0 and so [d(y(s))] < s ~s50 <t < po — p for any
s € §. Moreover, |d(yo(so))| < lyo(so) — y(s0)| < |x — xo| < p, and so
ld(yo(s)| < p+s5s—s50=<p+1t=poforanyses.

Now, in view of(3.13) and (3.11), we can compute the derivative

[d (o)) —d ) =(wo(t), Vd (o)) = Vd(y(t))) +ht) (o), VA(y(t))) .
Hence, recalling that d(yo(s1)) < 0 and d(y(s1)) = 0, we obtain

/ h(s){ao(s), Vd(y(s)))+ ds =/ h(s){o(s), Vd(y(s)))+ ds =
0 K

= / [d(yo(s)) — d(y(s)] ds — / (ao(s), Vd(yo(s)) — Vd(y(s))) ds =

= d(yo(s1)) — d(y(s1)) — d(yo(s0)) + d(y(s0)) —

- /  (aos), Vd(yo(s)) — Vd(y(s))) ds <

S0

t
< |x — xol +/ Cilyo(s) — y(s)lds,
0
where Cy is a Lipschitz constant for Vd. In any case, we conclude that
t
[yo(t) — y(OI = 2lxo — x| + €4 f lyo(s) — y()lds, 0=t =< pp— p;
0
and (3.9) easily follows using the Gronwall Lemma. O
Remark 3.3. We observe that (3.11) also yields
1d
§E}y°(t) — yO1? = h(dyO))(Vd(y(®)), ao(®)) (VA (D)), yo(t) — y(1)).

Now, if € is convex, then the right-hand side of the above identity is negative
or 0, for a.e. t > 0. So, |yo(#) — y(¢)| is non-increasing and we have that

[yo(t) =yl < |xo — x|, Vi=0.
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Remark 3.4. We note that the solution y of inclusion (3.7) given by Lemma
3.2 is an admissible trajectory for our control system at x. In fact, in view of (i)
in the previous lemma, it suffices to take the trivial control «(¢) = y(¢).

Proof of Theorem 3.1. To begin, let us fix 6 € (0, 1] so that condition (3.6) is
satisfied. We define the continuity modulus of v

oy(R) = sup{lv(x) —v(Y)| :x,y€R, |x — y| < R},

for any number R > 0. Let us fix a number p € (0, py), and consider two
arbitrary points xp, x; € Q such that |xyg — x;| < p. In order to estimate
lv(x1) — v(xp)| we can assume, without loss of generality, that v(x;) > v(xg).
Let ag € Ay, be a piecewise continuous control such that

Po—p
v(x0) > / M L(yo()dt + e Pu(30(00 — p)) — b1 — xo”
0

where yo = y;°. Let y;(¢), t > 0O, be the solution of

{ y(1) € ap(t) — H(d(y())) (), VA(y(1)))+ Vd(y(t))
y(0) = x

given by Lemma 3.2. Then y;(¢) is an admissible trajectory for our control
system and

(3.14) V1) = yo ()] < 29 |x; — xo], Y1 €[0, po — pl.

By the dynamic programming principle we have that

po—p
v(r) — v(xo) < J1 ~ xol” + /0 ML) - L)) dt +

+ e 2P [y (y1(po — ) — v(Volpo — p))] <
9 Po—p
< lx1 = x| + CL/ e Myi(t) — yo(t)| dt +
0

+ e Mgy (1y1(p0 — p) = yolpo — P)I),

where C, is a Lipschitz constant for L in Q. Now, let 0 < R < p. Then, by the
above inequality and (3.14) we have that, for some constant C > 0,

v(x;) —vix)| < CR? + e‘K(Po—p)av(zecx(Po—p)R)’



82 PIERMARCO CANNARSA - CRISTINA PIGNOTTI

for all pairs xo, x; €  satisfying [xy — x;| < R. Hence, taking the supremum
over all such pairs, we obtain

(3.15) 0y(R) < CRY 4 ¢ 2P0=Plg (25 (0=P Ry - VR €0, p].

If 6 verifies (3.6) there exists p < pg such that 20e=*(P=PfCilm—p) ~ 1,
Then, applying Lemma 2.3 to (3.15) we conclude that

0,(R) < CR?, VYRe(0,p],

for some positive constant C and the Holder continuity of v easily follows from
such an estimate. If A > C; + In2/p, the value function v is Hélder continuous
of exponent 6 = 1, that is v is Lipschitz continuous. (]

Remark 3.5. If 2 is convex, then the value function v is Lipschitz continuous
for any A > 0. To show this fact it suffices to repeat the above proof recalling

Remark 3.3.

Remark 3.6. The regularity results proved in this section make no use of
hypothesis (1.6), as the proof clearly shows. Without this assumption, however,
our constrained optimal control problem is no longer equivalent to an optimal
exit time problem.

4. Semiconcavity of the value function.

In this section we prove the semiconcavity of the value function v under
stronger assumptions on the running cost L. More precisely, we shall prove the
following result. We recall that py was introduced in (3.3) as the radius of a
tubular neighborhood of I", ", , such that d € C""!(T",,).

Also, A is a fixed positive number.

Theorem 4.1. Let C| be a Lipschitz constant for Vd in T',, and let L be
a Lipschitz continuous function satisfying (1.6). Moreover, assume that L is
semiconcave with linear semiconcavity modulus, that is

X-+y

“.1) L)+ L(y) = 2L(—=2) < Colx — yP2

Jor any x,y such that the segment [x,y] is contained in Q, where Cs is
a positive constant. Then the value function v is semiconcave on 2 with
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semiconcavity modulus w(r) = cr®, for some positive constant ¢ depending
on A and any exponent 6 € (0, 1] satisfying

4.2) 1+ 9)(01 + %g%) <A

In particular, v is semiconcave with linear modulus if

4.3) A>2C+4In2/pyg=: 1.

~ As in the previous section we begin with a lemma for a suitable system of
differential inclusions.

Lemma 4.2. Let xo,x; € S be such that d*(xo) + d*(x;) > 0, and let
% = (xo + x1)/2 € Q. Let a € Ay be a piecewise constant control and set
Y = y5. Then, fixed p € (0, po), there exist 0 < T < (pg — p)/2 and a solution
(zo(®), z1(t)), t € [0, T, of the problem

([ 20(t) € a(t) — H(d(zo(1)))(a(t), Vd(z0(1)))+Vd(z0(2)) +
+ H(d(z1(1)) (), Vd(z1(1)))+ Vd(z1(2)),
44) | Zi(t) ea(t) + H(d(zo()))(a(t), Vd(z0(1))+ Vd(zo(t)) —

' — H(d(z1(t)))(a(t), Vd(z1(2)))+ Vd(z1(1)),
20(0) = xo,
21000 = xyp,

such that

(i) zo(t), z1(¢) €Q and dz(zb(t)) +d*(z;(1)) >0 Ytel0, T);
(i5) if T < (po — p)/2 then zo(T), z1(T) €T and

T =inf{s >0 : zo(s) e, z1(s) €eT'};
(iii) zo(t) +z1(t) =2y(t) =0, Vtel[0, T}
Moreover, if xy, X1 € QN B(x, p/2), then
(4.5) l20(t) — 21 (1) < 26 |xg — x|, Yt e[0, T,

where Cy is a Lipschitz constant for Vd in T',,).
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Proof. Let H be as in (3.8) and A(z) be as in (3.10). Let us consider the
set valued map G : [0, +00) x R" x R" — P(R" x R") defined as follows:
(v1, v2) € G(¢, wy, wy) if and only if

vr =a — h(b, Vd(w1))1+Vd(wi) + k{c, Vd(w;))+Vd(wy),
v = a+hib, Vd(w))4 Vd(w) — k{c, Vd(wy))+Vd(wy),

for some a, b, c € A(t), h € H(d(w1)), k € H(d(wy)).
Then the existence of a solution (zo(z), z;(¢)) to the problem

{ (20(2), 21 (1)) € G(t, 2o(), 1 (1)),
(20(0), 21(0)) = (x0, x1),

follows arguing as in the proof of Lemma 3.2. Moreover, by the definition of
A(t) the solution (zo(t), z1(¢)) satisfies system (4.4) for a.e. t > 0.
Furthermore, two measurable selections %, #; of H exist such that:

(4.6)

20(t) = a(t) — ho(t) (e (1), Vd(z0(1)))+ Vd(z0(2)) +
+ R () {(a(t), Vd(z1(1)))+ Vd(z1(t)),

21(t) = () + ho(t){a(t), Vd(z0(1))+ Vd (20(2)) —
= hi()((®), Vd(z1(1)))4 Vd(z1 (1)),

for ae. t > 0. Suppose that a time # € (0, (o9 — p)/2) exists at which
d(zo(ty)) > 0 and define

t1 = inf{t > 0 : d(zo(t)) > 0).

Obviously d(zo(t;1)) = 0. If z;(#;) € £, then there exists § > 0 such that zo(¢)
verifies for ¢ € [t1, t; + 8]

20(1) = a(t) — ho(t){a(t), Vd(z0(1)))+ Vd(z0(2)).

Iherefore, arguing as in Lemma 3.2, we can prove that zo(¢) remains 9
2, Yt €[t,t; + 6], in contradiction with the definition of #;. If z;(#) ¢ Q

let
t, =inf{t > 0:d(z;(¢)) > 0}.

We have that d(z;(5;)) = 0 and #, < 11, then zo(t,) € Q. If zo(f,) € T' we fix
T =1, then (i) and (ii) hold. Otherwise, if zo(t,) € 2, then there exists §' > 0
such that V¢ € [t, t, + 8'], z; (¢) verifies

21(1) = a(t) = hi(®){a(t), Vd(z1(1)))+ Vd(z1(1)).
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Therefore, Lemma 3.2 ensures that z;(¢) remains in Q, V¢ € [1,, 7, + §'], in
contradiction with the definition of #,. This implies that z;(#;) € I" and then we

obtain (i) and (ii) taking 7 = #,.
We note that

1d _ . . _ —
EZIZo(t)wLm(t)—Zy(t)[2 = (20®) +21() =2Y(1), 20(t) + 21 (1) = 23 (1)) = 0.
We have thus proved assertion (iii). Furthermore, the above identity yields
4.7 lzo(t) = V()| = |z1(t) = ¥(t)|, forae. t>0.
To prove (4.5), fix t < (py — p)/2 and define
Sjp=1{s€l0,1) :zj(s)eTl}, j=0,1.

If Sor U 81, = @, then ho(s) = hi(s) = O for any s € [0,7) and so
zo(2) — z1(2) = xp — x1.

On other hand, let 0; = inf Sy, U S} ; and &, = sup So,r U S1,¢. Arguing as
in proof of Lemma 3.2 we see that

(4.8) ¥(8), 20(8), z1(s) €Ty, , Vs €lor,T7].

We observe that

Y@) —z0(t) =% — xo +/O ho(s){a(s), Vd(zo(s5)))+Vd(zo(s)) ds —

- /0 hi(s){@(s), Vd(21 ()4 Vd(21(5)) ds.

Then

4.9) 31 — 20| = X — xo +/ r[ho(S)<01(S), Vd(z0(8)))+ +

+hi()(@(s), Vd(z1(s)))4 ] ds .

We want to prove that

(4.10) / IUlo(S)(Ol(S), Vd(zo())+ + hi(){a(s), Vd(z1(s)))1]ds <
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oy

< |f*xo|+C1/ [Y(s) — zo(s)| ds.

Or

We recall that the control « is piecewise constant. Consider an interval
la, b], b < t, such that ¢ is constant in (a, b). Note that the set

U {sela,b]:zj(s) €T, {als), Vd(z;(s))) = 0}

j=0,1

is closed. So, its complementary set is open in [a, b] and it can be viewed as a
countable ubion of disjoint intervals. Repeating this argument for any interval
in wich « is constant, we obtain that the set

W, ={s€l0,) : 20(5) €, z1(s) e}
(U fs€i0.0:56) €T, (@), Vs <0})

j=0,1

is a countable union of disjoint intervals for any ¢t < T'.
We can estimate

/ r[ho(S)(Ol(S), Vd(z0(s)))+ + hi(s)(a(s), Vd(z1(s)))+1ds =

=/[ _]\W[ho(S)(a(S),Vd(Zo(S)))+h1(S)(a(S),Vd(Zl(S)))]dS =

=< / (a(s), w(s))ds
[(T,*E,]\W,

where w(s) = Vd(zo(s)) if ho(s) # 0, w(s) = Vd(z1(s)) if h(s) # 0. Then,
recalling (4.7),

/ ’[ho(s)(a(s), Vd(z20(5)))+ + hi(s){a(s), Vd(z1(s)))+1ds <

@.11) < / (e(s), w(s) = VAF(s) ds +
[6,—-5—,]\W,

+ / (ae(s), Vd(¥(s))) ds <
[0y =0 \W;
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5 —2@lds+ [ [an] ds -

lo:~51]

~ / _ [aGen] as.
WNloy—a,]

4.12) < C1/

lor—a: \W,

We know that
Wt ﬂ[O’, —Et] = UIJ
jeN

where I, j € N, are intervals such that, denoted by a; and b, the endpoints,
zo(a;j) €T or zy(a;) €' and zo(b;) € I or z;(b;) € I". Moreover, in I? we have
zo = a and 21 = . Fix I; and suppose zo(b;) € I'. Then,

0= [ a6 ds— [ [an] as

J Ij

- /1 [dG(s)] ds - /I (V) ~ Vd(zo(s)), als)) ds —

J J

—/(Vd(zO(S)),a(S))ds <
[.

J

< / [dGs)] ds + €, /1 [565) — z0(s)] ds — f [d(zo(s))] ds <

i I

=< f [d@ ()] ds + € /1 [Y(s) — z0(s)| ds — d(z0(by)) + d(z0(a))).

Jj

Since d(zo(b;)) = 0 and d(zo(a;)) < 0, we obtain
- /1 (G ds < ¢, /1 136) = 209 s
and, summing for j € N,
@y - eolas [ 56w,
W;N[o,—o,] W,N[o,—a,]

Using (4.13) we can obtain from (4.12)

/ ’[ho(S)<a(S), Vd(z0(s)))+ + hi(s)(a(s), Vd(z1(5)))+1ds <
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sa/'mm—mmw+/UWWmhhs

1

o8}
= [ 156) - ws)ids - dGE.
Therefore, if zo(0;) € I', we have

/ I[ho(S)(Ot(S), Vd(zo(s))+ + hi(s){a(s), Vd(z1(5))) 4 ]ds <

=< C1/ ' [Y(s) — zo(s) ds + d(z0(07)) — d(F(0y))

from which follows (4.10). Analogously we can proceed if z;(o;) € I". Now,
we can use estimate (4.10) to bound the right-hand side of (4.9). So,

t
O = 2001 < 2% =0l +C1 [ 56) —z(olds, 01T,
0
Then, by the Gronwall Lemma,
[Y(t) = 20(0)| < 2¢ X —x0|, 0<t<T.
Estimate (4.5) easily follows from the above inequality and (4.7). J
Remark 4.3. Note that from (4.10) and (4.5) immediately follows

/0 [ho(s)(@(s), Vd(20()))+ + hi(s){e(s), V(21 ()4 1ds = O(Ixo — xy]).

Remark 4.4. We observe that

1d

EZ;IZo(t) — 2O = —2ho(t) (e (), Vd(zo()))+(Vd(z0(t)), 20(t) — 21 () +
+ 2k () (t), Vd(z1(1))) +(Vd(21 (1)), 20(t) — 21 (2)).

If ©2 is convex, then
(Vd(zo(1)), 21(t) — 20(t)) <0 for ae. t€[0,T],

and .
(Vd(z1(2)), z0(t) — z1(2)) <0 for ae. te [0, T].

So,

(4.14) [20(2) — z1(®)| < |xo — x|, YVt €[0, T].

Notice that, for convex €2, (4.14) holds without any Lipschitz assumption
for Vd. Moreover, time T above is subject to no restriction whatsoever and
therefore instead of (po— p)/2 we can consider in the lemma above a time large
as we want.
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Let po be asin (3.3) and let p € (0, py). Then we have the following result.

Lemma 4.5. Let X € Q and let o € Az be a piecewise constant control with
le(®)| = 1 ora(t) =0, Yt > 0. Then, for any pair xq, x; € 2 N B(X, 0/2),
satisfying ¥ = (xo + x1)/2 and d*(xo) + d*(x)) > 0, there exist numbers
0<T <(po—p)/2, To, Ty = 0, two non-decreasing Lipschitz functions

@' [0, 71— [0,T}], j=0,1,

and two trajectories yo, y; admissible at xy, x, respectively, such that:

(i) ¢°0) +¢'(t) = 2, Y1 €[0, T;

(ii) l¢’(t) —tl = O(hl), j=0,1;
(iii) yo(@°(®) + y1(@' (1) = 25(t) = 0, ¥t €[0, T], where 5 = y2;
() [yo(@°(1) = y1( ()] < 26 |xo — x|, V1 €[0, T;

(v) yj is differentiable on [0, T;] with | =lala e, j=0,1;
where Cy is a Lipschitz constant for Vd in T, .

Proof. Let T be defined as in Lemma 4.2 and (z4(¢), z; (), t € [0, T], be a
solution of (4.4). Let us set, for t € [0, T] and j = 0, 1,

1 if «a@) =0
(4.15) ‘”’(”“{lz,-a); it () #0
and define
(4.16) goj(t)zf vi(s)ds, t€[0,T], j=0,1.
. 0

Then, ¢/ : [0,T] — [0, T;] are Lipschitz continuous and non-decreasing.
Moreover, Vt € [0, T],

00 + 9\ (1) — 2 =/0 [WO(s) + ¥ (s) — 2] ds =

- / (20()| + 21(5)] — 2lee(s)]) ds >
[0,:]\a~1{0} .

2/ (I12o(s) + 21()] = 2]a(s)]) ds = 0.
[0.]\a~! {0)
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Hence, (i) holds. Now, define
“4.17) S;={tel0,T) : z;(t)eTl'}, j=0,1
Obviously, Sy N S| = @. If Sy U S, = @, then ho(t) = h(t) =0,V €0, T]
and so
o’ =o' (t) = 1.

If, on the contrary, SoU S; # @, set 0 = inf Sy U Sy and & = sup Sy U S;. From
(4.8) we have that

(4.18) Y(s), zo(s), z1(s) €'y, Vs €lo, 7.

Therefore, recalling Remark 4.3, V¢ [0, T],

t
() — 1] = / Wi(s) — ) ds| < / 15(5) — a(s)|ds| <
0 [0,¢]N[o,7]
< f ho(s) (@ (s), Vd(z0(s))) 4 ds +
[o,01NS,
+f hi(s){e(s), Vd(z,(s)) 1 ds < c|h|, c>0, j=0,1.
[o,01NS;

'We have thus proved (ii). Next, since ¢; are continuous and non-decreasing,
(4.19) (@) s} ={r €0, T): ¢/ () =s}=la;(s), bj ()], s €[0, T}, j =0, 1,

where a;(s) = b;(s) whenever ¢/ () # 0 for some ¢ € [a; (s), b;(s)].
Let us define

(4.20) yi(s) = zj(a;(s)), s€l0,T;], j=0,1.
Then, o, y1, are Lipschitz continuous. Indeed for any pair s’, s” € [0, T;]

aj(x//) .
/ |z;(6)] dt
a;(s")

J

i () = ¥ (8] = 1zj(a;(s")) — z;(a; (s"))| <

aj(s”) '
/ @' (s)ds
aj(s’)

=

<

= 19/ (a;(s")) — ¢’ (a;(s"))| = |s' = "], j=0, 1.
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Now observe that, for any ¢ € [0, T'],
zj(t) = z;(a; (¢’ (1)), j =0, 1,
or .
yilp! (1) =z;t), t€[0,T], j=0,1.

So, points (iii) and (iv) of the conclusion follow from property (iii) of
Lemma 4.2 and from (4.5).
Finally, to prove (v) let us set

4.21) Hio=1{1e[0,T] : 3¢'(t) £0), j =0, 1.
Then
(4.22) m(e!(H)) =T, j =01,

where m denotes the Lebesgue measure in R. Thus y; is a. e. differentiable on
[0, T;], j =0, 1, and the identity |y;| = || a. e. on [0, T;], j = 0, 1, follows
from the definition of y;. U

Lemma 4.6. Let Q C R", T > 0 and x € Q. Suppose that L satisfies
assumption (1.6). Then, there exists an optimal trajectory at x, y(-), such that
Sfor any € > 0 a piecewice constant control «(-) exists with @ = 0 or || = 1,
and ’

(4.23) ly;"_(t) -y () <e, Vtel0,T]

Proof. By hypothesis (1.6) we can suppose that either yf(t) € §2 for any time
t €[0, T'] or there exists a time 7 < T such that y*(¢) € 3Q2. In the latter case,

x ~
we can take @(¢) = 0, V¢ € (f, T]. For fixed ¢ > 0, choose a time T < T such

that
(4.24) YT - y¥ @) <&, VielT, Tl

We can consider a subdivision of the inLerval [0, T] in smaller intervals [#;_1, #],
i =1,...,k, where tp = O and # = T. We define on every interval [#;_;, ;] a
trajectory y as follows:

YE(t) — y¥(timy)
Iya(t) — y¥(ti)|’

Y(t) = Y (tie1) + (t — 1)
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fort; | <t <ty + y2(tio1) — Y1),

V(1) = y¥(1),

for ;| + | yjf-(t,-_ ) — ng‘—(t,-)l <t < t;. Obviously we can take the intervals so
small that

(4.25) @) — )| <e, Yeelo, T.

Finally, set _
y@) = yi(T), tell,T].

It is easy to see that y exists a. e. and y=a, where « is a piecewise constant
control satisfying o = 0 or || = 1. So, (4.23) immediately follows from

(4.24) and (4.25). O

Proof of Theorem 4.1.  Let X € Q and let py be as in (3.3). Let xo,x; €
QN B(x, p/2) for a positive number p < po, with ¥ = (xp + x1)/2, and take
h = (x1 —x0)/2. Let @(t), t > 0, an optimal control for X. Fix 6 € (0, 1] so
that condition (4.2) is satisfied. We define a modulus

(4.26) o,(R) = sup{u(x + h) +u(x — h) — 2u(x) :
x€Q, 21 <R,x+heQ}, R>0.

If xg, x; €T, then from (1.6) it follows that
4.27) v(xo) + v(x)) — 20(x) = —2v(x) < 0.

Otherwise, from Lemma 4.6 it follows that we can consider a piecewise constant
control « € #x such that

N
(4.28) v(f).>/ eMLE®) dt + e u(F(S) — ',
0

where § = (pg —p)/2 and y = y- Further, we can assume o = O or |a| = 1
forallt < S.

We know that there exists 77 < S and there exist trajectories yy, Vi,
admissible at xy and at x; on [0, T3] and on [0, 7] respectively, that verify
the relations of Lemma 4.2 and Lemma 4.5. Moreover, if T < S then yo(To)

and y;(77) belong to I'.
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Let T be as in Lemma 4.2. Then, we claim that
T
(4.29) v(x) > / e ML) dt + e v(F(T)) — c|h]'Ho,
0
for some constant ¢ > 0. Indeed, by (1.6),

T S
/ ML) dr < / ML) d,
0 0

and, recalling Theorem 3.1, from the definition of T,
eI < eSuFS) +clhl™*, ¢ > 0,

So, (4.29) immediately follows from (4.28).
Now, from the dynamic programming principle

v(xo) + v(x1) — 2v(X) <

T

To T
< / M Lyo(t)) di + / M L(y () dt — 2 f MLF@) dt +
0 0

0
+ e v (0(T) + e O (T) — 26 v(F(T)) + |1+,

Recalling (4.22) we can write
v(xo) + v(x1) —2v(X) <
T
< / e ML(yo(1) dt + / e ML (y (1)) dt —2 / e MLY®)) dt +
70 ' (Hy) 0

+ e o (y(T0) + e (31 (1) = 26T u(F(T)) + clh|™,
where H;, j = 0, 1, are defined in (4.21). Then

v(xo) + v(x1) — 2u(¥) <

< / M L(yo(8)) dt + / M L(yo()) dt +
©O(HyNH,) @O (Ho\ Hy)

+f e ML(y (1)) dt +/ e ML(yi (1) dt —
@' (HoNH,) @' (H |\ Hp)
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—2/ e—“L@(z))dz~2/ ~e—“L(y(t))dt—2f e ML) dt +
HyNH, Ho\H, Hi\Hp

+ e Moy (yn(T)) + e Mo (1) = 267 TuFT) + clh]'*,

that we rewrite as
(4.30) v(xg) + vix;) — 2v(x) §clh|1+9+l—|-[o+ll + E,
where
I = f e ML (yo(t)) dt +/ e ML(y (1)) dt —
@O (HyNHy) o' (HoNHy)
-2 f e ML) dt,
HyNH,
Io = f e L(yo(0)) df —2 / ML) d1,
@°(Ho\H})

Ho\H,

I

I

/ MLy (6)) di —2 f ML) di,
@ (H\Hp) Hi\Hy

E = e y(yo(Tp)) + e oy (T1) — 2T v(F(T)).

Using the change of variable ¢ = @°(s) and t = @'(s) respectively in the first
and in the second integral in / we obtain

I = / 0¥ (e OL(y (")) dt +
H()nHl

- / o' (e OL(y (' () dt —2 / e ML) dt,
HyNH, HoNH,

that we can rewrite as

@3 1= [ M [Lone ) + Lonw ) = 2LG0)]di +
HyNH,

[ [0 - Lo dr +
HyNH,

+ f (¢ e O — e L0 @) d.
HoNH,
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Since L is semiconcave with a linear semiconcavity modulus we have

(4.32) e [L(yo(wo(l))) + L' @) - 2L@<r>)} dt < colh)?,
H()mHJ

for some constant ¢y > 0. Now, recalling definition (4.17),

(4.33) f [0 — Lot @y e +
HyNH,

[ o' 00 —eF Lot ar =
HyNH,;

[ o' @er e [Lone! o) - Lootgon ] ar +

HyNH NSy

- / [ 0670 1 7 (00 — 2L (301 it +
HoNH NSy

[ e - e [Loue ) — Linte @] ar +
HoNH NS,

+ / (07 OO 1 67 060 — 2L (340 (01 it +
HoyNH NS,

N [0 = e [0 o) - L(o(e (1)) dr +
(HoNHD\(SoUS))

+ / (670 4670 2L o200
(HoNHD\(SoUS1)
where we used thatin (Hp N Hy) \ (Sp U ;) we have
o) =0"(1) = 1.

We observe that

(4.34) [¢" @O — L' ) — Loot @) | ar =
HoNH NSy )

= [ e oo AL on) - Lo ] i +
HoNH NSy

w0 -1 O Lot on - L") ] dr < crlnl?,
HyNH NSy
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—At

for some constant ¢; > 0; where we used that L and e~ are Lipschitz

continuous and that
lp!(t) — t| = O(lh)),

and, from Remark 4.3,

[ (o-as]  gao-wo)d s
HoNH NSy HoNH NSy

0

S/ |21 () —a(2)] dt S/ ho()(a(t), Vd(zo(2)))+ dt = O(|h)).
HoNH\NSp HoNH\NSp :

Analogously

(4.35) [ e — e [ Lo @) = Lot (0] dt <
HyNH NS,

<alkl?, >0

Recalling that L{ = 0 we have

(4.36) [ @60 + 67 0O — 26 [ Ly @) di = 0
HoNH\ NSy

and

(4.37) [goo’(t)e—*‘ﬂ"(” ol (e 'O _ 2e~“]L(y1(<p‘(r))) dt = 0.
HoNH, NS

Using the regularity propefties of L and e we obtain

(4.38) [0 — ] [LOnt! ) = Lo ) ] dr <
(HoNH)\(SoUS1)

<alhl?, >0,

and

(439) [H s [e—}\(po(f) + e—)dpl(t) _ 2€—AI:|L(yO(¢O(t))) dt <
0 1 0 1

<cylhl?, ¢4 > 0.

In (4.39) we used also that ¢°(¢) + @' (¢) > 2t.
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Using (4.34)—(4.39) in (4.33) we have

[ [ 0e e e Lo @ +
HoNH,;

[ o' 0e O —e M Lo o dr < esliP,
HoNH,
for some positive constant ¢s. This estimate, together with (4.32), implies
(4.40) 1 <Cih)*, C;>0.

Now we seek to estimate I and ;. Using one of the above changes of variable,
we obtain

I = / o (e L (yo(@*(1))) dt — 2 f ML) dt =
Hyo\H, Ho\H

—2 f [0 — e Lot @) d -
Ho\H,

—2f e Lem) - Louw o] dr
Ho\H,

Then, using the Lipschitz continuity of L and e,

(4.41) Iy < cem(Hy \ Hy)|h|.

We observe that, in view of Remark 4.3,

(4.42) m(Ho\Hy) = f ()] dt <

Ho\H,

=< /Sl hi@)(a (), Vd(y (9 (0)))+ dt = O(k)).
Thus, by (4.41),
(4.43) Iy < dylh|?, dy > 0.
Analogously,

(4.44) L <d|h? dy >0.



98 PIERMARCO CANNARSA - CRISTINA PIGNOTTI

Substituting (4.40), (4.43), (4.44) in (4.30) we have

(4.45) v(xg) + v(x)) —20(X) < Clh|'" + E, C > 0.

If T < S, then, by (ii) of Lemma 4.2 and hypothesis (1.6),
E==2""Tym(T)) <0.

Therefore

(4.46) v(xg) + v(xy) — 2v(X) < ClhI'™?, C > 0.

If T =S, then, using Theorem 3.1 and the regularity properties of e, we can

rewrite E as
(4.47) E = e w(o(T) + v(yi(T1)) — 2u(F(T))] +

n [e—m _ e_kTJ[U(yO(TO)) —v(yi(T))] +

[ 4 e = 207 [y (T3) < ey (265 g — 3, ) + CII,

for some positive constant C. Now, in view of (4.27), (4.46) and (4.47) we
have
v(x0) + v(x1) — 20(F) < CR™ + ¢7*56/(2¢5R),
for any pair xy, x; such that [xo — x;| < R, with R € [0, el
Taking the supremum over all such pairs, x;, x;, we conclude that

o, (R) < CR™ 4 ¢S5/ (2¢“5R), YR €[0, p].

v

If 0 verifies (4.2), then there exists p < pg such that 21+0e=*So(1+0)CiS _ 1

So, we can apply Lemma 2.3 to obtain
*

C
(4.48) ol(R) < 7R1+9,

for some positive constant C* depending on A. The above inequality shows that
the value function v is semiconcave with a modulus

@&(R) = C*RY,
where @ is as in (2.3). In particular if A > 2Cy + 4 In 2/pg, then v is
semiconcave with a linear semiconcavity modulus. 0

Remark 4.7. If Q is convex, then from Remark 4.4 it follows that for every
A > 0 the value function v is semiconcave with a linear semiconcavity modulus.
Indeed, in the previous argument, we can take an arbitrary large time S.

Remark 4.8. If Q is unbounded then to obtain the same results we need that
the running cost L is bounded in a tubular neighborhood of the boundary TI'.
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5. Some applications.

Throughout this section we assume that the running cost L is C'in Q and
semiconcave with a linear modulus. Moreover, as in the previous sections, we
assume that hypothesis (1.6) is verified and that the boundary I" of €2 is of class
C?.

As well known the value function v is a viscosity solution of the Hamilton-
Jacobi equation

5.1 Av(x) + F(x, Vu(x)) =0,
where, in our particular case, the Hamiltonian F is
(5.2) F(x,p) =|p|—L(x), xeQ, peR"

In this section we give some applications of the semiconcavity of the value
function v, proving necessary optimality conditions of the same kind as the
ones obtained in [6], [10], [8] for different optimal control problems.

First, we can give a simple application of semiconcavity.

Theorem 5.1. Let y(-) = y2(-) be an optimal trajectory for x € S2. Then
the value function v is continuously differentiable at y(t) for all times t €
0, t(x, @)).

Proof. "Lett € (0, t(x, «)). First, we claim that
(5.3) W)+ F®),q) =0, geViu(y@).

In fact, by the dynamic programming principle, for any h € (0, 7), we have that
t
64 P = [ eELOE)ds +e MO0,
t—h

Then,

0 = lim sup

{e_k(;_h) v(y(t — h)) —v(y()) +
h—0 ‘

h

M — 1

1
v(y() — 7

Hence, recalling the definition of F, the above identity yields

Fe M / e L(y(s))ds }

—h

0 < ke““v(y(t)) — e Mlim sup 711—_/ [— L(y(s)) — qa(s)] ds <
h—0 t—h

< e MF(), q) +  w(y@)],
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for any g € V*tu(y(t)). Therefore
M®) + F(y(t),q) 20, YgeVtu(y@®)).

On the other hand, since v is a viscosity solution of (5.1), also the reverse
inequality holds. This proves equality (5.3). Moreover such an equality, on
account of the special form (5.2) of the Hamiltonian F, also implies that
V*u(y(1)) is a singleton. Owing to the semiconcavity property of v, this
ensures that v is continuously differentiable at y(t). 0

Before proving the maximum principle we give a preliminary result.
Lemma 5.2. Let z € 0Q and let v(z) be the outer normal to Q at z. Let

o* € B be such that «* - v(z) > 0. Then t(x, a*) is finite for any x € Q in
a neighborhood of 7 and

T(x,a%) = O(Jx — z).

Proof. The proof is the same of the analogous Lemma in [8], but we write it
for the reader’s convenience.

Let us consider the signed distance d defined in (3.2). By our hypothesis
on the boundary of €2, d is differentiable near z and Vd(z) = v(z). Let us
define

P (x, 1) = d(yy (1)).
Then @ is differentiable for (x, ¢) near (z, 0) and satisfies
P(z,0) =0, @(z,0) =v(2)-a* #0.

By the implicit function theorem we can find a neighborhood O of z, a number
8 > 0 and a function s : @ — [—$6, §] such that, for all x € @ and ¢ € [-$, §],

dy¥ (1)) =0 &t = s(x).

In addition s(x) = 0 if and only if x € 9€2, and therefore s(x) has constant sign
in @ N Q. Moreover we have

D,(z,0)  v()

®,(z,0)  v(z)-a*

Vs(z) = —

which implies

Y@ x—2) :Z) +o(lx — z)).

s(x) =Vs(@) - (x-2)+o(lx —z|]) = ~
In particular, since we assumed o* - v(z) > 0, we have that s(x) > 0 for
X =z — ev with & > 0 sufficiently small. By the previous remarks we deduce
that s(x) is positive and coincides with T (x, a*), for every x € ON . This ends
the proof. O
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Theorem 5.3. Let y(-) = yf(-) be an optimal trajectory with exit time T =
T(x,a) <00.If p: [0, ] = R” solves the adjoint system

p(t) = —e VL)),
©-2) [p(r) =0,
then
(5.6) —p@)-o(t) > —p(t)-«, YaeB, rel0, 1] a. e..

(In the case of T = +00, p(t) has to be understood as lim,_, ;oo p(t).)

Proof. Let t € [0, ] be a Lebesgue point for @. We suppose for semplicity
t = 0, the computations in the general case being entirely analogous. Let us
define, for € € (0, 7), the perturbed control

a tel0,¢]
(5.7 ae(t)z{a tel0, 7]\ [0, €]

a* t>71

where «* € B is fixed so that o* - v(y(z)) > 0. Setting y.(t) = y%(¢),
7, = 7(x, ag), we have that

(5.8) 0<J(x,0,) — J(x,@) = / e ML(y.(t)) dt — / e ML(y(1)) dt.
0 0
It is easy to see that
(5.9 y.(t)—y(@) = /E(ag—a) ds = e(a—a(0))+o(¢e), € <t < min{r, 7,}.
0 ‘

Suppose that 7, > t for ¢ sufficiently small and let z = y(z). For ¢ € [z, t.],
we have

t
e =21 = [ laldi +0@) < (o= + 060,
T
then, by Lemma 5.2, |y, (s) — z] = O (s), Vit € [t, t.]. This implies that
(5.10) / e M L(ys(s)) ds = —-/ e ™L(z)ds + o(g) = o(s).
T T,

£

Therefore, by (5.8) and (5.10),

0= / e ML(ye (1)) — L(y(1))] dt +/ e M[L(y:(1)) — L(y())]dt + o(e).
0 &
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Dividing by ¢ and letting ¢ — 0 we obtain
(5.11) 0< / e MVL>y®)) - (@ —a(0))dt,
0
where we used (5.9). Now observe that, since p(t) solves (5.5),

p@t) = f ' e ™MVL(y(s))ds

and then, by (5.11) it follows that 0 < p(0) - (o« — @(0)), that is (5.6) holds for
t = 0. This completes the proof in the case that t, > t for small ¢.

Otherwise, there exists a sequence g; —> 0as j — oo, with Ty, < T, V.
In this case, we claim that, possibly taking a subsequence,

Ty, > T as j — o0.

If T < oo, then sequence {z;,}; is bounded. Hence, possibly taking a subse-
quence, {rsj }; converges to some limit T. Since Ye;(7e;) € I' and Ve (Te;) —
y(T) as j — oo, y(T) must belong to I". This implies T > 7. Therefore,
T, — . If T = oo, then sequence {t¢;}; is unbounded. Otherwise, again tak-
ing a subsequence, we would have that T,; = T < o0 with y(T) €T', in contrast
with the assumption that T = 0. So, our claim is proved.

By (5.8), we have

0= /O j e‘“[L(ye,- () — L(y())]dt +/ K e““[L(yej ) — L(y(t))] dt.

J
Dividing by ¢; and letting j — o0, as above we obtain the result. ]

We say that solution p(¢) of (5.5) is the dual arc associated to the
optimal trajectory y(z). We now prove that the dual arc is included in the
superdifferential of the value function:

Theorem 5.4. Let y(-) = yjf_(-) be an optimal trajectory and let p(-) the related
dual arc. Then

p(t) eVTu(y@®)), t €0, t(x,@)).
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Proof. 'We restrict ourselves to the case r = 0, since the computations in the
general case are entirely analogous. We want to show that

(5.12) v(x +h) <v(x) + p(0) - + o(|h]), heR”.

Lett =1(x,®), z = y(r) and let v(z) be the outer normal to 2 at z. We define
a control

(5.13) G = [a(t) tel0, 7]
. a* t>71
for some o* € B with o* - v(z) > 0. Let us set y,() = y§+h(,) and

T, =1(x + h,a). Then
v(x +h) —v(x) < /Orh e ML(y,(0)) dt — /0 e ML(y(1)) dt.
We observe that
(5.14) yu(t) —y(t)=h for te€[0, min{t, 73}].
Let us consider a sequence {4;}; convergent to 0 such that

515  limsup SEFM VD —pO) -k
| 0 ]

_ 1 v(x +h;) —v(x) — p(0) - h;
= lim .

Suppose that 7, > 7 for |h;| sufficiently small. In this case, by Lemma 5.2 it
follows that 7,, — v = O(|h;]), so

yhj(t) —Z= hj + O(Ihj|) for te(r, Th/.].

Then, recalling (5.14), we have

il

j=oo A1

im v(x +h;) —v(x) — p(0) - A, -

l T
< lim —{/0 e MLy, () = L(y(®)]dt — p(0) - h; "|‘0(|hj|)} =<
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< lim —1—{ /TG‘MVL()'U)) ~hjdt — p(0) - hj +o(lh;) ¢
0

j=0o |hj]
Thus, by definition of p(0) and by (5.15) immediately follows
. v(x +h) —v(x) — p(0) - h
lim sup =
h—0 Ihl

This completes the proof in the case that 7,, > ¢ for |h;| sufficiently small.
Otherwise, possibly taking a subsequence, Ty, < T forall j. Arguing as in the
previous theorem, we can suppose that {, }; converges to t. So, by

lim v(x + hj) —v(x) = p0) - h; -

jeo ;] =

0.

1 Thj
lim ——{ /O e-“[L(yh,'(r)—L(y(r))]dr——p<0>-hj},

=<
the result easily follows using (5.14). a

As an application of the semiconcavity of v we can characterize the dual
arc p(-) as follows.

Theorem 5.5. Let y(-) be an optimal trajectory with exit time t, and let p(-)
be its dual arc. Then p(t) = Vu(y(@)), t € (0, T) and p(0) € V*v(y(0)).

Proof. By Theorem 5.1 v is differentiable at all points y(¢) with ¢ € [0, 7).
Therefore at these points Vv contains only the gradient Vv(y(t)), and so by
the previous theorem we have that the dual arc p(-) coincides with Vu(y(-)).
Moreover, by the definition of V*v, it follows that p(0) € V*v(y(0)). O

Remark 5.6. If x € Q is such that Av(x) = L(x), then y(¢) = x, V¢ > 0, is
an optimal trajectory for x. Indeed,

/‘00 e ML(x)dt = L&) = v(x).
A y

This implies, recalling (5.2), that x is a differentiability point for v and
Vu(x) = 0. Obviously, x must be a local minimum point for the running cost
L.

Now, given an optimal trajectory y(-) = y)‘f_(-) we define the critical time
£(y) as

(5.16) 1(y) = inf{t : w(y(®)) = L(y(1))}.

Obviously, 7(y) = 0 if Av(x) = L(x) and 7(y) = t(x, &) if there are no times
lower than the exit time at which Av(y(¢)) = L(y(¢)).
We have the following result.
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Proposition 5.7. Let y(-) be an optimal trajectory and let p() be its dual arc.
Let t = t(y) be the critical time of y. Then p(7) = 0 and p(t) #0, Yt €0, 7).

Proof. 1ft <1, then Av(y(¢)) — L(y(¢)) # 0 and therefore p(t) = Vo(y(r)) #
0. If 7 is lower than the exit time 7, then Av(y(7)) = L(y()). So, by
Remark 5.6, p(t) = Vu(y(f)) = 0. If 7 = 7, p(r) = 0 by definition of
dual arc. O

Now we can formulate an immediate consequence of the maximum princi-
ple (5.6) and of Proposition 5.7.

Proposition 5.8. Let y(-) be an optimal trajectory with critical time T # 0, and
let p(-) be its dual arc. Then the pair (y, p) solves the system

o PO
YO = —rar

p(t) = —e MVL(y(1)),

(5.17)

forallt €[0,1).

Now we prove that there exists a correspondence between the optimal
trajectories starting at a point x € 2 and the elements of V*v(x).

Theorem 5.9. Let x € Q and let g € V*v(x). Consider the solution (v, p) of
(5.17) with initial conditions

y(0) = x,
5.18
G189 {mm=q
Then, the function
is an optimal trajectory at x and

5 — | PO =1,
(5.20) p@) = {0 £ > 7

is the associated dual arc. Conversely, if 3(-) is an optimal trajectory at x of
the form (5.19), then its dual arc p(-) has the form (5.20) and the pair (y, p)
solves (5.17) and (5.18) for a suitable choice of g € D*v(x).
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Proof.  Let us suppose first that v is differentiable at x, and let y(-) be an
optimal trajectory at x, p(-) being the associated dual arc. By Remark 5.6
we can suppose y(t) = y(f) and p(r) = O for t > 7. By Theorem 5.5
and Proposition 5.8, (y(-), p(+)) is a solution of (5.17) with initial conditions
y(0) = x, p(0) = Vu(x). This proves the assertion at all points x of
differentiability for v.

To treat the general case, let q € V*u(x). Then there exists a sequence
{xx}keny C €2 such that V is differentiable at x; and

X —=> x, Vo(xp) = g as k — oo.

We denote by (yx, px) the solution of (5.17) with initial conditions
y(0) = x,

5.21

21 {p(()) = Vulx).

By the first part of the proof y; is an optimal trajectory for x; and py is the
associated dual arc. In addition, (yx, px) converges to (y, p) locally uniformly.
Then y is an optimal trajectory and the pair (y, p) solves system (5.17) with
initial conditions (5.18). Moreover

p(t) = kl_i& pe(t) = klin;o Vu(ye (1)), t€l0,7).

Since
klirgo Vu(y(t)) € V¥o(y(1))

we have, by Theorem 5.5, that p(¢t) = Vu(y(t)), for every ¢ € (0, 7). Therefore
p is the dual arc associated with y. This proves that any solution to system
(5.17) with initial conditions (5.18) coincides with an optimal trajectory and its
associated dual arc.

Conversely, let y be an optimal trajectory at x of the form (5.19). By
Proposition 5.7 and Theorem 5.5, the associated dual arc p has the form (5.20)
and the pair (y, p) solves system (5.17) with initial conditions (5.18) for some
g € V*u(y(0)). U

Corollary 5.10. The value function v is differentiable at a point x € Q2 if and
only if one of the following facts occurs:

(1) Av(x) = L(x),

(ii) there exists a unique optimal trajectory y(t) at x, on the interval [0, (y)).
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Finally, we will use of the semiconcavity property to study the propagation
of singularities. Let us denote by X (v) the set of points at which v is not
differentiable. In order to apply Theorem 2.2 we need v to be semiconcave
with linear modulus. By Theorem 4.1 we know that this further regularity holds
if the discount factor A is sufficiently large.

Theorem 5.11. Let A > Ao where X is given by (4.3), and let x € X (v) be
such that dimV*vu(x) < n. Then, there exists o > 0 and a Lipschitz arc
X :[0,0] = X (v) with x(0) = x and X(s) # x for all s € (0, o).

Proof.  Since v satisfies the Hamilton-Jacobi equation (5.2) at all points of
differentiability, by definition of V*v,

Ax)+ F(x,p) =0, VpeV*u(x).

Moreover, since v is semiconcave, by Theorem 2.1 it follows that V*v(x) C
Vtu(x). If VTu(x) = V*vu(x), then since V*tu(x) it is a convex set, it is a
singleton. But, this contradlcts our assumptions. Therefore V*tv(x)\ V*v(x) #
@. Since dimV*v(x) < n, we also have that Vtu(x) = aV+Hu(x) and the result
follows applying Theorem 2.2. (]
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