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BOUNDARY REGULARITY RESULTS FOR
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Dedicated to Professor Sergio Campanato on his 70th birthday

Letue H2(B+(1), RY) (N integer > 1) be a solution to the following
problem
u=g on I,
{a(H(u)) =0 in BT(1),

where a(§) is a vector of RY | continuous onto IR"ZN, F'={xeR": x| <
L,xp, =0}, and BT(1) = {x e R" : ||x|| < 1,x, > 0}. We prove that, if
a(§) satisfies the conditions a(0) = 0 and (C) (see Section 1 below) while
g€ H3(BT (1), RY), then u € H3(B*(5), RV), forall o € (0, 1). Exploiting
it we next deduce the Holder-continuity of the vectors Du and u in Bt (o),
provided 2 < n < 4 o0or2 < n < 6, respectively. These results are basic
tools for studying the Holder-continuity in € of the solutions to the Dirichlet
problem

ue HX(Q,RV),

u=3g on 9%,

La(Hw)=0 in Q.

Key Words and Phrases: Nonlinear elliptic systems, OCZ')‘-theory‘
2000 AMS Subject Classification: 35155, 35J65.



110 MARIO MARINO - ANTONINO MAUGERI

1. Introduction.

Let © be a bounded open set in R*,n > 2, with generic point x =
(x1, %2, ..., %,). If u(x) is a vector 2 — RN, N integer > 1, we write

3
Diu = 53 Du = (Dyu, Dyu, . .., Dout),

Hu) = {D;Dju} = {Djju}, i,j=12,...,n;
obviously, Du and H (u) are elements of R™" and R™V, respectively.

Let a(£) be a vector of RY, continuous onto RN, satisfying the condi-
tions

(1.1) a(0) = 0;
(C) there exist three positive constants o, v, and 6, with y 4 8 < 1, such that
n n
1"t —elat + &) —a@® < ylel+81)_wl, Ve §eR™M.
i=1 i=1
These conditions are equivalent to the following “pseudo monotonicity condi-
tion” (1)
(C') there exist three positive constants M, v, and K, with 0 < v — K < 1;1_5
such that, V1,& € R"N | we have

la(r +§) —a@®| = Mzl

(a(r+&) —a@®1> w) = vl D wl® - Kzl

i=1 i=1

In particular, conditions ('1.1) and (C) imply

la@l < <2 e, veeR.

Moreover, if the matrix T € R’V is a solution to the system

a(t) =0,

(1) See, for instance, [8], Section 1, and [9], Lemma 3.1.1.
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then, using conditions (1.1) and (C) again, and assuming & = 0 we get.

(12) 1>l < =i,
i=1

where 1_Z'S < 1.
More generally, if £, T € R**N are such that
a(§) =a(r +§),

then estimate (1.2) holds.

Define
H(Q,RY) = H¥(Q,R") n H} (2, RY),

and pick g € H*(22, RY) ().
If 2 is of class C? and convex, the Dirichlet problem

{u —ge H(Q,RY),

1.3 a(H(u)) =0in Q,

has a unique solution. In fact, setting w = u — g, (1.3) is equivalent to

we H(Q,RY),
a(H(w)+ H(g)) =0in Q,

and, thanks to Theorem 2.1 in [7], the preceding problem has a unique solution.
Moreover, it is known that the solution u to (1.3) is Holder-¢ontinuous in 2 if
n<6 ().

Then, in order to obtain the Holder continuity of u in Q we clearly need to
establish “boundary regularity results”. In particular, if €2 is of class C2 and if
x% € 992, there exists an open neighborhood B of x° such that B is mapped,
by a mapping 7 of class C? together with its inverse, onto the ball B, 1) (M),
TQRNB)=B*(1),and TOQLNB) =T, where " = {xeB@©,1):x, =0}.
Then if u is the solution to Dirichlet problem (1.3), one has

(1.4)

ue H*(Q N B, RY),
(1.5) u=g on dQ N B,
a(Hw)) =0 in QN B.

(®) H¥Q,R") and HJ (22, RV) are the usual Sobolev spaces.

(3) See assertions (33) of [5], and [9], Theorem 3.2.26.

(4) If o is a positive real number, we denote by B(0, o) the open ball {x e R" : ||x]| <
o}, and by B* (o) the hemisphere {x € B(0, o) : x,, > 0}.
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Making use of the transformation of co-ordinates y = 7 (x), we infer that
W) = U®y) — GO = u@ ') — e@ '),y € BF(1), is a solution
to a problem of the type

W e H¥(B*(1),RM)
(1.6) W=0 onl"
A(y, DW + DG, H(W) + H(G)) =0 in BT(1).

So, it remains to establish L£>* - regularity results in Bt (o), with o € (0, 1),
for the solutions to problem (1.6). The aim of this work is to start such a study
by considering at first the case in which the operator A does not depend on y
and DU.

2. Differentiability near the boundary.

Let R be a positive real number. In the hemisphere B +(R ), let us consider
the problem

uGHz(B+(R),RN),
2.1 u=0 on I'g,
a(H(u) + H(g)) =0 in B¥(R),

where T = {x € B(O, R) : x, = 0}, g€ H*(BT(R),R"), and a(&) is a vector
of RN, continuous onto R"*V | satisfying conditions (1.1) and (C). -

We want to prove the following differentiability theorem (see [3], Section
4, for the case of nonlinear elliptic systems in divergence form)

Theorem 2.1. If u € H*(BT(R), RM) is a solution to problem (2.1), under
conditions (1.1) and (C), and if g € H3(B*(R),RN), then, for every r =
1,2,...,n—1,and Vo, oo € (0, R], with o < 0y, one has

2.2) D,(Hw)) € L*(B* (o), R"™"),

and the following estimate holds

1
(2.3) / | D, (H@@)|*dx < C["“—_4 | D,ull*dx +
B*+(0) (00 — 0)* JB+(ay)

1

(00 = 0)? JB+(0)

|HG)lPdx + f 1D, (H () Pdx},

B+ (00)
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where the constant ¢ does not depend on o and oy.
In particular, if 0 < o < R/2, it results

1
ed [ bR s o RS
B*(0) 0% JB*(20)

[ D)),
B*(20)

Proof.  Let 0,00 € (0, R], with 0 < 09, and let oy = 5%, For every

x€BY (o)), |h| < &%, andr =1,2,...,n — 1, we put

T pu(x) = u(x + he") — u(x),
where {e"},=1 ... 1 the canonic basis of R".
We proceed exactly as in the interior differentiability case (see [5]).
Let 9 (x) € Cg°(R") be a function fulfilling the conditions

0<® <1,9 =1in B(o),® =0inR"\ B(oy), |D*?| < c(og — o)™,

Yo :lal <2 ¢).
Set w = u + g. From system (2.1) we deduce that

tpa(HwW)) = a(H(w(x + he'))) —a(H(wx))) =0 in B¥ (o))
and hence
(2.5) a(H(t,pw) + Hw)) —a(H(w)) =0 1in Bt (oy).

By (2.5) estimate (1.2) holds for the matrix T = H (t,,,w). Consequently,
(2.6) 1P AT W)l < l_i_a‘”ﬁH(Tr,hw)” in B*(0y).

i .
Since {55 < 1, we get

19 AT i)l = 1P AR < 10 AT ) + 0 ATl <

() D¥ = D?‘Dgz... I o= (@, 0, ..., 0p), a] = apFoag ...+ oy,
integer > 0.
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< T_||19151(r,hu)|| + 10 H (t,18) |l

that is

2.7) ”ﬁA(Tr,hu)”‘ = I—%IIﬁH(fr,hu)H +2ltaH(®I in BF (o).

Now, setting
U =1 u, in Bt (o)),

we obtain U(x) = F(x)[ux + he") — ux)] = 0, Vx € Iy, (®), because
u=0onTIg, and

U e H* (BT (01), RY) N Hy (B (07), RY).

Moreover, we have

(2.8) AU = O A(Tpu) + Au),
(2.9) H(U) = 9 H (7 pu) + Bu),
where -

(2.10) A@w) = AV Tpu+2) Do Di(tru),

i=1

(2.11)  B(u) = {D;;V - v pu + D9 Dj (7 pu) + DO Di(trpu) }i j=1,2,...n-
From (2.7), (2.8), and (2.9) we obtain

AUl < l)/T(SHH(‘U)II +IIA@I + 1B + 2lT, H () in B (o).
Hence, given any ¢ > 0, we get
@12) AUl = (40 (75 IR + cUAwI +

HIB@I* + ltrH@l» i B (oy).

(®) Ty, ={x € B(0,01) : x, = 0}.
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Integrating on B™ (o) and using the Miranda-Talenti estimate (see, for instance,
[5], Lemma 1), besides (2.12) yields

14

2
[ e a+o(s) [ irawira
Bt(oy) - B*(o1)

+c(e) )(nA(u)nZ +IB@I* + It n H ()1 dx.
Bt (o

Since %5 < 1, for & € (0, (1—;—5)2 — 1) and by virtue of (2.9), we deduce

f s Hw)[* dx < c(y, ) A@IP+IB@)*+lTn H () dx.
Bt (o) B* (o)
From this, using a well-known lemma (see [2], Chap. I, Lemma 3.VI), it follows

(2.13) % H o) dx < ey, )] f (AN + 1B dx +
B*(0) B*(01)

i [ up.He)Iax),
B*(00)

We shall now evaluate the first integral in the right-hand side of (2.13).
Using Lemma 3.VI of Chap. Lin [2], we get

(2.14) / IA@)|I? dx < c(og —0)™* f It null® dx +
Bt(ay)

B*(a1)

+ c(00 — 0)2 / Vton Dul2dx < (oo — o) *{h]2-
Bt (o)

~ / | Dyul? dx + c(og — o) 2|k | D, (Du)|* dx.
Bt (0p) .

Bt(oo)

The integral of || B(u)||? is estimated in an analogous way, and we have

(2.15) / IB(w)|*dx < c(og— o) *|h)? | D,ull* dx +
Bt(oy) B*(00)

+ c(og — o) 2|k | D, (Du)||* dx.
: B™*(0p)
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Finally, (2.13), (2.14), and (2.15) lead to

f lees H@) |2 dx < el {(o - o) / 1Dl dx +
B*(0) B*(0y)

=0 [ ipuiar+ [ ip.ae)iar)
B*(0yp) B

*(00)

So, by virtue of Nirenberg’s Lemma (see, for instance, [6], Lemma 2.I), we can
conclude that there exists D,(H (u)) € L*(B* (o), R*N), r = 1,2,...,n — 1,
and

‘ 5 c 1 / 2
(2.16) /B o 1D (H )| dx < (00_0)2{ 00 =07 Jyven I1Drull” dx+

+ [ ipowia) e[ ip.eeniPar
B+ (09) B*(09)

Thus, (2.2) and (2.3) are proved.
Now,if 0 <o < %, estimate (2.16), written for oy = 20, gives

(2.17) / IIDr(H(u))IIdesca‘z{a‘z f I Dyl dx +
Bt(o) Bt(20)

+ [ ipowial+e [ ipHe)Rar
B*(20) B+ (20)

On the other hand, from the condition D,u = 0 on 'k, and taking into account
Poincare’s inequality, one has

(2.18) / IDulPdx < co? f 1D (D)2 dix
B+(20') B+(20)

Finally, estimate (2.4) is consequence of (2.17) and (2.18). O
In the case » = n the following result holds

Theorem 2.2. If u € H*(B*(R),R") is a solution to problem (2.1), under
conditions (1.1) and (C), and if g € H3(Bt(R), RM), then, Vo, oy € (0, R],
with0 < oy — o < 1, one has

(2.19) Dy, (Dyyu) € L*(B*(0), RY),
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and the following estimaie holds

- 1 .
(2.20) | (D) d < 7P| —— 3 / 1Dyull? dx +
| B+(0) (00 = 0)* = Jp+(ay)

| H )| dx +f

1|D<H(g)>uzdx},
B*(0o) :

1
.
(00 — 0)? Jp+(ay)

where the constant ¢ does not depend on o and oy, while ¥ is the constant that
arises from the application of Lemma 9.3 in [1].
In particular, if 0 < o < min(1, %), it results

- 1
ey [ o itax < el L [ el ax+
B+ (0) 0% JB+(20)

+ [ apaE)Pax).
B*(20)

Proof. Let 0,09 € (0, R], with 0 < 09 — 0 < 1, let 0; = 2+ and let
|h| < 252, Write w = u + g,7, 4B (0]) = (x e R" : x — he" ¢

B*(a1)}, 8% (01, —h) = B (01) N 1,4 Bt (0}). From system (2.1), we have
Tn,-na(H(w)) = a(H (w(x — he"))) — a(H (w(x))) = 0in B* (ay, —h).
Hence, foreveryv=1,2,...,N (V)

Tn,—na" (H(w)) = a"(H(w(x — he"))) — a”(H(w(x))) =

Z Z </ da'(H(w) + if"’“hH(w))dt>rn,_hDijw“ =0.

pu=11i,j=1 agij

From this it follows

(2.22) Z Aij(X) T _nDjjw'=0 in Bt (o1, —h),
i,j=1

(") Conditions (1 1) and (C) ensure that the function § — a(&) is differentiable almost
everywhere in R” N (see, in the case N = 1 and n = 2, [10], and, for the general case,
[9], Lemma 3.1.2).
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where A;j(x) is the N x N matrix defined by

1 v
@23 Ayl =] / 0a”(H (w) + 1,1 H () a ,
0 98+ v,u=1.2,...N
fori,j=1,2,...,n,and x € 8" (oy, —h).
Under the hypotheses made above, there exist two constants M and 7, M >
U > 0, such that, for almost all x € 8" (0, —h),Vn € RY, and VA € R, it
results (see [4], [9], and [10])

(2.24) D lA@IP < M2,
i,j=1
(2.25) Y Ak (A min) = BIAP I
i,j=1

In particular, by (2.25),
(Ana (X)nIm) = Dlinll?,

for almost all x'e B (o, —h), and Y € RV, so that

' N
detA,, #0 and ||An'n1 @ < £ Vx e Bt (oy, —h).

‘»} b
Now, using (2.22), yields

(2.26) T, n Dot = Ad [ = D7 A4 @)%, Diju =

ij=1
i+j<2n

n
= 3 Aym-aDyg| in B o1, —h).

i,j=1

On the other hand, for every ¢ € C3°(B*(01), RV), we have

/ (Duntt|Tn 1) dx = / (Dt (x — he")|p(x)) dx —
Bt(¢y)

Tn,—h B+ (Ul)

- / (Drmu(x)’(p(x)) dx =
Bt(o1)
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- / L (Duus = heMlp) d = / (Dt (1) 0(0)) dlx =
Bt(o1,—h)

B*(a1)

= / (Tn,——thnuI(p) dx —f (Dnnul(p) dx.
B+ (oy,—h) B*(o)\B*(01,~h)

If || is small enough, the last integral vanishes because ¢ has a compact support
in B*(0y). Then, taking into account (2.26) and (2.24), if |k| is small enough
we get (%)

e [ wutmiad] =] [ (=3 Ayem abgu -
Bt(o1) B*(o1,—h)

ij=1
i+j<2n

- Y 40Dtz ) ds] < e ( [ poean)’

Lo B+ (a1)
1

{2 [ mewnpara+ Y [ pnonysiar) <
B+ (01,—h) Bt(o1,—h)

ljl ljl

<@ 0I( [ lowitr)’
to

B> fm( DDy + Z/

ij=1 i,j=1
i+j<2n

On the other hand, by (2. 3) it follows, for every i, j = 1,2,...,n, with
i+j<2n

1Du(Dy)IP dx |

B*(ay)

| -
02 [ ipogotaxsel =3 [ ipuldr+
B*(0)) ! (00 —0)* Z‘% B+(00)

1 |
/B o IH@IPdx =+ [ iptePax) = cac

(09 — 0)? B+(0p)

where the constant ¢ does not depend on ¢ and oy.
From (2.27) and (2.28), we.deduce

1

[ Owstmapas] < cocini( [ ppwitar)’,
Bt (o) B*(o1)

() (A;h* is the adjoint of the matrix A
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while, dividing both sides by || and letting A — 0, we obtain, for every
¢ € C*(B*(01), RY)

e || ouppa]zeu( [ ewipar)
B*(oy) B*(a)

Now, through (2.29) and Lemma 9.3 in [1] (see also [3], Lemma 2.1II), we
achieve condition (2.19) and the following inequality

n—1
(2.30) 1D (D) II* dx < Vc{ M+ f 1Di (D) I dx +
=18

Bt (o) *(on)

[ ioguitax),
B*(01)

where the constant ¢ does not dependjon o and oy, while 7 is the constant that
arises from the application of Lemma 9.3 in [1]. '
From this, thanks to estimate (2.28) and the hypothesis oy — o < 1, inequality
(2.20) follows.

Now, if 0 < o < min(1, §), estimate (2.20), written for op = 20, gives

n—1
@30 [ ipDwoiar s 7efo= Y [ Ipuiar+
Bt(o) r=i B*+(20)

+o [ e+ [ ipe@)Pa).
B+(20) B*(20)

On the other hand, from the condition D,u =0onT'g,r =1,2,...,n—1, and
taking into account Poincarg’s inequality one has
@ [ ipupdrs e [ ipwaipax,

) B*(20) B*(20)

By (2.31) and (2.32), we obtain
n—1

/ | Da(Da) [ dx < 7Pefo ™2y / 1Dy (D) dx +
Bt(0) =1 Y Bt(20)

+a‘2/ HH(u)Ilzderf IID(H(g))Hde],
B+(20) Bt(20)

which leads to (2.21). O

Obviously, using Theorems 2.1 and 2.2 we can state the following differ-
entiability result
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Theorem 2.3. If u € H*(B*(R),RY) is a solution to problem (2.1), under
conditions (1.1) and (C), and if g € H3(B*(R), RY), then, forevery o € (0, R),
one has

H®u) e H'(B* (o), R™M).

3. Results on Holder continuity.

£** - regularity and hence Holder continuity results concerning the vec-
tors Du and u can be derived from Theorem 2.3. In fact, we have the following

Theorem 3.1. If u € H*(B*(R),RY) is a solution to problem (2.1), under
conditions (1.1) and (C), and if g € H*(BT(R),R"), then, for every o €
(0,R),Yq >2,andV A€ (n,n+2), one has

(3.1) H(u) e L**1(B*(0),R"™™), DueL>*5(B*(0), R™),
(3.2) ue L¥71 (B (0),RY), if n > 4,

(3.3) ueL>*(BT (), RY), if n=20rn=23.

Proof. Fixing o € (0, R), by virtue of Theorem 2.3, we get
Hw) e H' (B* (o), R™Y).
Thus, if n > 2, the Sobolev imbedding Theorem, provides

(3.4) H(u) e L¥ (B*(0), R™N),

where 51; = % — ;11-
Now, Vx° € B*(¢) and Vp € (0, R — o), set BF(x° p) = Bt(o) N B(xY, p)

(°). Thanks to condition (3.4) and Holder’s inequality, one has

2

(3.5) / I @I dx < oo f 1@ dx) .
B} (x0,p) B*(0)

(®) B0 p) ={xeR": |lx —x°) < p).
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If n = 2, by the Sobolev imbedding Theorem again, it follows
H(u) e L1(B*(0), R"™), ¥q > 2;
therefore, Vx° € B+(c), Ype (0, R — o), and Vg > 2, we get

_.4
(3.6) / 1H IR dx < o f I1H )9 dx)"
BS(x%,0) B*(0)
Clearly, if n > 2, by (3.5) and (3.6), one has

RN

37 fB NHG@Pdx < > M,

T (x0,0)

vx%e B*(0),¥p e (0, min (1, R — o)), and Yq > 2, where

2
(/ IHGIF dx)™, itn > 2,
Bt (o)

2
(/ IIH(u)qux)q, ifn =2.
B*(0)

Hence, the first assertion in (3.1) is true.
Finally, conditions

(3.8) Due £2*7(B*(0),R"™), Vg > 2,

(3.2), and (3.3) follow from the first assertion in (3.1) and Poincare’s inequality
(see [2], Chap. I, Theorem 3.IV). O

0,9 —

Results on the Holder continuity of the solutions to problem (2.1) and their
gradient in B*(0),0 < 0 < R, can be immediately obtained from Theorem
3.1. .

In fact, if 2 < n < 4, then there exists‘ q > 2 such that 4 — g > n, and hence, by
(3.8) and well-known properties of isomorphism between the spaces £** and
C%% one has

Du is Holder-continuous in Bt (o).
If 4 < n < 6, then there exists g > 2 such that 6 — § > n, and hence, by (3.2),
it follows

u is Holder-continuous in Bt (o).

Finally, if 2 < n < 3, (3.3) holds, and this ensures that u € CY*(B*(0), RM),
VYae(0,1).
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