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1. Introduction. Statement of the main result.

“Let 2 C R? be open, let 0 < T' < +o00 and set Q = 2 x (0, T). In Q we
consider the following system of nonlinear PDE’s:

(1.1) a—L;—Ddaf‘(x,t,Du)=b,-(x,t,u,Du) G=1,...,N), ()

where
w={u',...,u"} (N=2),

?
De=7— (x=12)

o

Du = {Dou'} (= matrix of spatial derivatives).

The conditions on the functions af 1 Q2% (0,T) x R*™ — R are as follows:

(1.2) X > ai (x,t,§) is measurable on Q V{t,€} € (0, T) x R?",

(1) With the exception of Section 2, throughout the paper, a repeated Greek (resp.
Latin) index implies summation over 1 and 2 (1, , N).
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la®(x,s,m) —af (x, 1, &) < w(s — DA+ Inl + 1§]) + coln — &1
VxeQ,V{s, 0} {t, £} €(0,T) x R*,
(1.3) where o : [0, +00) — (0, 400) is bounded, nondecreasing

with %m}) w(h) =0, and co = const;

(14) |a2(x,1,6) < (1 +IEDVix,1,6}€Q x (0,T) x R (¢; = const)

(e=1,2;i=1,...,N),and

(1.5) { (af (x,t,m) —ai (x, ¢, "3))(77& - é";) > voln — £

Yix,t}€Q x (0,T),Vn, & eR*™ (vy = const> 0).
The functions b; are assumed to satify the following conditions:

{x,t} — bi(x,t,u, &) is measurable on 2 x (0, T)
V{u, £} eRY x R?V;
{u, €} > bi(x,t,u, &) is continuous on RV x R?N
Vix,t}e x (0, T);

(1.6)

controlled growth:
(1.7) b (x, £, u, &) < a1+ [ul® + EPP) Vix, t,u, &} €
eQx (0, T) xRN xR?*™ (i=1,...,N;c, = const).

In the present paper; we consider weak solutions u to (1.1) regardless of
whether u satisfies any boundary and (or) initial conditions. Our goal is to study
the interior Holder continuity of these solutions.

To this end, define

WA RY) = fu e L2 BY)| - e LA(Qs RY)s o = 1,2),

ou
Wi RY) = {ue W00 RY)| - e LAQ: R | =
= W21 (Q:; R") (the usual Sobolev space on Q),

V00 RY) = {u e W(0; RN)i essosup/ (e, )2 dx < +oo}.
te(0,T)

‘We now introduce the notion of weak solution to (1.1).
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Definition. Let (1.2), (1.4) and (1.6), (1.7) be satisfied. The vector valued
Sunction u € VZI’O(Q; RY) is called weak solution to (1.1) if

90t ,
( —/ u‘ﬁ—dxdt +/ al(x,t, Du) Dy dxdt =
o Ot 0

(1.8) = f bi(x,t,u, Du)goi dxdt
0 ‘

forall ¢ € Wy (Q; RY) with supp(p) C Q.

The main result of our paper is following

Theorem. Let (1.2)-(1.5) and (1.6), (1.7) be satisfied. Then there exists
w € (0, 1) such that: for every weak solution u € VZI’O(Q; RM) to (1.1) there
holds

ueCHH2(Q;RY) ().

The interior Holder continuity of weak solution u € VZI’O(Q; RY) (n = 2)
to (1.1) has been proved in [2], Theorem 7.1, p. 112, under the following more
restrictive conditions: uniform continuity of the functions x ai(x,t, &), con-
tinuous differentability of the functions & af(x,t, &) and strictly controlled
growth on b;, i.e. ‘

bi(x, 1, u, €)] < c(L+ [ulf + 1)) V{x,1,u,£} €2 x (0,T) x RV x R,

where , 3
1<p<3, 15)’<§

(i =1,...,N; ¢ = const). Our above result thus sharpens [2], Theorem
7.1, p. 112, and moreover it can be viewed as the “parabolic analogue” of
the following well-known result: every weak solution to a nonlinear uniformly
elliptic system in two dimensions with measurable coefficients x al*(x, &) is
Holder continuous in the interior (°). This follows merely from the higher
integrability of the gradient of the weak solution under consideration and
Sobolev’s imbedding theorem (cf. [3], [4] for details).

(%) That s, for every bounded open set Q' such that Q" C Q, there holds |u(x,t) —
u(y, )| < c(lx = y|#* + |s — t[*/?) for all {x, s}, {y, 1} € Q’, where the constant ¢ may
depend on dist(Q’, 3 Q).

(®) Note that this result in fact holds for such systems with coefficients af (x, u, §).
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The interior Holder continuity of weak solutions to nonlinear parabolic
systems with coefficients af (§) and b; = 0 has been proved in [10], and with
coefficients af (x, ¢, u, ) in [5], [9] (b; = 0) and in [7] (b; = fi(x,1)).

The aim of the present paper is to simplify the discussion in [11]. In
comparison with [2], the novelty in [11] lies in the use of the interior -
differentiability of weak solutions to nonlinear parabolic systems and an in-
terpolation inequality. Our paper is organized as follows. In Section 2 we prove
the interior ¢-differentiability of weak solutions of a class of nonlinear parabolic
systems. Then we establish a fundamental inequality for weak solutions to these
systems. Section 3 is devoted to the proof of our main result. Here we make use
of a generalization of an existence result from [2].

2. Interior estimates on weak solutions to a class of nonlinear parabolic
systems. :

Let xo € R” (n > 1) and #; € R be arbitrary, but fixed. Given r > 0, define
B, = B,.(xp) = {x cR” | |x — x| < r},

0, = Q,(x0, t0) = B, (x0) x (to — %, 1o).

Let R > 0 be fixed. In the cylinder Qz = Qg(xo, o) we consider the
following system of PDE’s:
'

(2.1) —a-t—-—Daal‘?‘(x,Dv):O G=1,....,N)(H.

The conditions on the functions g are as follows:

(2.2) X a (x,kS) is measurable on By V& e R™Y,
(2.3) la%(x,£)| < co(1+ |£]) VxeBg, VEeR™ (co= const),
laf (x,n) —af (x, &)| < c1ln — &|

VxeBg, Vn,&ecR™ (c; = const)
(a=1,...,n;i=1,...,N),and '

{ (@ (x,m) — af(x, £))(nl, — £1) > voln — &7
Vx € Bg, V1, E € R™ (vg = const > 0).

(2.4) {

(2.5)

We introduce

(*) Unless otherwise stated, in the present section a repeated Greek index implies
summation over 1, ..., n.
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Definition 2.1. Let (2.2) and (2.3) be satisfied. The function veW, *(Qg; RY)

is called a weak solution to (2.1) if

ot
V(peWzl’l(QR;RN) with ¢ = 0a.e. on 3Qp.

90" .
—/ v ——dxdt + / a’(x, Dv)Dy¢' dxdt =0
(2.6) R Or

Without any further reference, conditions (2.2)—(2.5) are now assumed to
hold throughout the present section.

Interior differentiability of weak solutions to (2.1). The following result on the
interior ¢-differentiability may be of interest in its own right. Our method of
proof differs substantially from that of [2], Theorem 3.1, p. 100.

Theorem 2.2. Let v € WZI’O(QR; RYM) be a weak solution to (2.1). Then

2.7 ‘/ \avrdXd’< ‘ (1+ |Dv]?) dxdt
. - S — v xdat,
o, 101 T (R=n)?Jg,

3
2.8) er[EDu dxdi < o )4/ (1 + |DvP) dxdt,

forall 0 < r < R, where the constants ¢ depend neither on r nor on R.
Before turning to the proof we present two technical tools.
1) Let feLP(Q,) (1 < p < +00). Lett; € (tg— R?, tp). For L € (0, tg — t1),
define the Steklov mean
1 A
filx, 1) = X,/ f(x,s)ds forae. {x,t}€ Bg x (tp — R%, 1)).
t
Then

t
2.9) / f |fk|"dxdt§f |fIPdxdt YA€, tp— 1),
to—R? J By Or

(2.10) fi — f in LP(Bg x (to — R%, 1)) as A — 0

and

i

Do (ft 42— 1)

2.11)
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for a.e. {x,t} € Bg X (to — R*,#;) and all A € (0, 1o — #1).
Letve WZI’O(Q z; RY) be a weak solution to (2.1). Then there holds

oul . .
f D, i () dx + | (@@ (x, DO D (x) dx =0
B 01 Br

for a.e. 1€ (fo — R*, 1), forall A € (0, 1o — t1)

and all ¥ € W) (Bg; RY) with ¢/ = 0 a.e. on 3B

(2.12)

(cf. [8], [9D.

The integral identity in (2.12) forms the basis for deriving estimates on
t-differences of v and Dv. These estimates will provide (2.7) and (2.8).

2) We need the following technical

Lemma. Let o be a nonnegative bounded function on the interval [a, D]
(—o0 < a < b < +00). Assume that

A 1
<———+ B+ -0(R
o(r)_(R_r)9+ +2cr( )
forall r,R witha <r < R < b, where A, B and 0 are (fixed) nonnegative

constants.
Then there exists a constant C = C(0) such that

9+B) Ya<r <R<bh.

A
a(r) < C('(—Rtr—)—

A proof of this result may be found in [4]. O
Proof of Theorem 2.2. Define the ¢-difference of a function f = f(x,t) by

AnfGx,t) = fGx,t+h)— f(x, 1), h>0.

Let 0 < r < R. Let { € C®°(Bg) be a cut-off function such that (x) =1
forall x € B,, 0 < £(x) < 1 and |D¢(x)] < ch -
and let T € C*°(R) be a function satisfying 7(¢) = 0 for all 7 € (—00, fp — R?],
t(t) = 1forall t €[ty — 12, +00) and 0 < (1) < 1,0 < 7(¢) < (—R—i_or—)z for
allteR.

Let #; € (ty — 2, tp) be arbitrary. The function

for all x € By (cg = const),

Y(x) = (M) (x, 2@ (r), x€Bg, telio—R,n), he .0 —1)
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0
is admissible in (2.12) (with A = h). By (2.11) (with A = h), %(x, 1) =

1
Z(Ahv)(x, 1) fora.e. {x,t} € Bg x (to— R?, t;). Integrating the integral identity
(2.12) over the interval (o — R?, T}) and using (2.3) gives

/] [Apv(x, D202 (x) T2 (t) dxdt =

—R? J By
f _
= —h / ] @ Dv»h(r)[(AhDav’ (x, 2T +
to—R? J By
F2(A40 (x, t))g(x)Dag(x)rz(t)] dxdt <
san [ [ @106, s (184 Do, 100 +
to—R? J By
+ 1800, DIE@IDE@IT () ) dxdt.

Observing (2.9) and employing Young’s inequality we obtain for all € > 0

]
(2.13) f f |ApvPe 2t dxdt <
Io'—R2 Br

h
< sf / ([AhDv]2§4t4 + |Ahv|2|D{|2§2t4) dxdt +
to—R? J By

h
+ S| (1 + | Dv?) dxdr .
€ Jog

Here the constant c is independent of r, R, & and &.
Next, as above let h € (0,1 — ;). We consider the integral identity in
(2.12) for A € (0, ty — t; — h) and form the ¢-difference A therein. Observing

2
that A,v, = (A,v), and Ah—a%'\- = 5;<Ahv) we obtain

9 . : .
/B 'é?(Ahvl(X, M OY' (x) dx + i [Anas (x, DV () Do’ (x) dx = 0

for a.e. t € (fy — R%, 1;). Here we insert ¥ (x) = (Apv(x, ) ()% (x)T2(2),
where ¢ and 7 are cut-off functions as above. Since

0 . .
[ [t mo @@ meweods =
B 01
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1d . .
=57 /B R [(Apv(x, N lPe? ()T (1) dx —
— | 1A, NP2 )T ()T (1) dx

Br

for a.e. t € (tp — R?, 1), it follows by integration over the interval (z; — R, £;)
that

f [ 1Aa® (s D)L OB D (x, D (206072 E) ddt <
to—R? J By

52/ | / [Anaf (x, D) (A’ (x, )ag () Dag (x)72 (1) dxdt +
fo—R? J By

h .
s [0 [ ewiwomemeor o dxa
t()-—R2 Bg .
Letting tend A — O (cf. (2.10)) and using then (2.4) and (2.5) gives
t
(2.14) f [ARDv(x, 1)|*c%(x)7%(t) dxdt <
Iu—Rz Br

=< (;/1 / IAhU(x, t)|2(|D§(x)|21'(t) + ;2(X)T(I)‘L',(t)) dxdt <
10—R? J Bg

c h
= 2
(R - r) lo'—Rz Bg

the constant ¢ being independent of r, R and A.
We insert this estimate into the right hand side of (2.13) to obtain

13
/ / | A% dxdt <
to—r2 B,

] h2
S G 2/ AP dxde + <= | (1+|Dv?)dxdr
(R—r)? Ji—r2 /By €
R — 2

|Apv(x, 1)[* dxdt,

Or
(

Choosing & = and employing the above technical lemma with

2c

1]
a(r):/ f |Apv|>dxdt, 0 <r <R,
t()—)‘2 B,
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we find

]’12
(2.15) / f|A,,u|2dxa’r< . 2/ (1+ [Dv?) dxd
to—r? R—r) Or

for all h € (0, #p — #;). By a standard argument, (2.15) implies the existence of

av
the weak derlvate — e L? (B, X (ty — r* ,11); RY), which satisfies

A_,z/ l ’ dxdt = - (R— )2/ (1+,DU! )dxdt

Hence —a—— is defined a.e. on B, x (ty — r2, ty) and measurable. Taking into

account the monotone convergence theorem, we may let tend #; — 1 in the
latter inequality and obtain (2.7).
Finally, dividing (2.14) by 42 (where & € (0, tg — 11)) gives
1 2
AvDu| dxdr <

[ fnofams s |
—ADv‘dxts——/ / il
l‘()—r2 B, h ’ (R_r)z t()—R2 Bp h
c / ’BUZ
< —_ —
(R —r) 0r | Ot

It follows that Dv possesses the weak derivative

dxdt.

9
EDU € LA(B, x (tg — r2, 1;); R™Y).

As above, (2.8) is readily seen. O

Remark. A different method for proving the existence of weak z-derivative of
weak solutions to a class of nonlinear parabolic systems has been developed in

[6].
Local higher integrability of Dv. We have

Theorem 2.3. There exists a q > 2 such that: for every weak solution
ve W) °(Q; RY) to (2.1) there holds

|Dv| € LY(Q,(x,5)) Y0,(y,5) C Bg x (1o — R?, 1] ).

In particular, there holds

q/2
(2.16) (1+ |Dv|?) dxdt < cR"DU-4/2) f(1+|Dv|2)dxdt ,
Orp2 Qr

where the constant ¢ does not depend on R.

() Recall Q,(y,s) == By(y) x (s — p2, 5).
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The method of proving higher integrability of the gradient of weak so-
lutions to nonlinear elliptic systems has been developed by M. Giaquinta and
G. Modica. A proof of the analogous result for parabolic systems can be found
in [8]. Theorem 2.3 is a special case of the latter result.

Fundamental estimate. The following result is crucial for our proof of the
interior Holder continuity of weak solutions to (1.1).

Theorem 2.4. Let n = 2. There exists A € (0, 1) such that: for every weak
solution v € L*(Qg; RY) N W, °(Qg; RY) to (2.1), there holds

4 5 7\ 242X 4 2

@.17) | A+ |v[* + |Dv[?) dxdt gc(—) (1 4 |v|* + |DvP) dxdt
Qr R QR

forall r € (0, R], where the constant ¢ is independent of both r and R.

Proof. Tt suffices to prove (2.17) forall r € (O, g]
Let be g > 2 the power of integrability of |Dv| obtained in Theorem 2.3.
Define

8 1
pi= g , A=1——.
3g+2 p
It follows
1 1-6 06 1
2<p<qg, —=—+— with =—-,0<Ai>1
D 2 q 4

Employing Holder’s inequality, Theorem A.4 (with E = Bgp, a = 1o,
b =ty — R* r = £ there) and (2.8) (with r = % there) we obtain for all

re(0, &1

2/p
(2.18) /le|2dxdt§|Q,|1‘2/p<f |Dv]”dxdt) <
Qr - Qr

2/p
< cr?t? esssup / |Dv|? dxdt <
Bgrpa

(to—R?/4,10)

P 3/2

1/2 2 Do
ot

L2(t9—R?/4,10; L9 (BRs2))

< e (RIDv|

L2(tg—R?/4,10; L?(Bg/2))

+ L ypup2 | Dol <
R2 L2(to—R?/4,t9; L4 (Bgy2)) L2(to—R?/4,10;L*(Brp)) ] —
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2424
L (1+ Do) dxdr) 1 Dv)) 2
= TR2 0 L2(tg—R?/4,t0; L9(Bgp2))*

To estimate || Dvl|2(,—R2/4,10;19(Bg,2)) WE make use of Holder’s inequality and
(2.16) to obtain

) R2\1-2/¢ 2
1DV s < (3) ([ Dvlrdrdr) <
Orp2

< cR* 4D [ (14 |Dv|?) dxdt.
Qr

Inserting this estimate into (2.18) and observing that

1,2
—2+—(——1)=—2—2)\,
2\q

it follows

242\
(2.19) \Dv|?dxdt < c(i) (1 + |Dv|?) dxd:.
o, R J0x

It remains to estimate the integral f |v|* dxdt for r € (0, £]. We do this

for r € (0, £] (the desired estimate for r € (£, 27 is readily seen). Let A be as
above. By Holder’s inequality,

(1-1)/2
[v[*dxdt < cr*t? / ¥ gxdt <
[oR Qrya

(1-x)/2
< cerPRITM esssup / v | 1=P gx )
(to—R?/16,10)"\ v Bra

Next, by Sobolev’s imbedding theorem,

(1=-2)/2
f (e, 0D g <
Brya
2 2
<c R—““)/ lu(x, £)|* dx +RH/ |Dv(x, 1)|* dx
Bra BRrya
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fora.e. 1 € (f — %, o). Here the constant ¢ does not depent on R. This can be
established by a homothetical argument. It follows

: 2
2421
(2.20) w|*dxdr < c(—r—) ess sup / v?dx | +
R (fo—R2/16,1y) Brya

Qo
2
+ R* ess sup / |Dv|* dx .
(to—R2/16,1y) Bra )

L
We estimate the integrals on the right of (2.20). First, observing that _8——1‘: €
L*(Qrya; RY) (cf. Theorem 2.2), we find

' 1 v |2
/ (e, D dx < c —2/ !v|2dxds+R2/ -3’ dxds
Bgrya R Qrya Qr/4 ot

2 .
for all ¢ € [to — If—G, tOZI, where the constant ¢ dependes neither on ¢ nor on R.

Thus, by Holder’s inequality and (2.7) (with § in place of R and r = § there)

2.21) ess sup / v|?>dx <
(to—R?/16,10) Y Brya

2
56[/ |v|4dxdt+</ (1+|Dv|2)dxdt> ]
Or Qry2

d
Secondly, since aDv e L*(Qx /45 R?M) (cf. Theorem 2.2), we obtain by (2.8)

(with § in place of R and r = ;ii there)

2
(2.22) ess sup / |Dv|?dx | <
(to—R?/16,10) Brya

2
1 9 2
<c —2-/ |Dv|2dxdt+R2/ ’——Dv( dxdt) <
R Qrsa Or/4 at

2
C
< — (1 + |Dv|*) dxdt ] .
R4 </;R/2 )
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Inserting (2.21) and (2.22) into (2.20) gives

(2.23) lv|*dxdr <
o,

2
2420
§c<L) (1+|v|4)dxdt+/ \Dv|? dxdt
R Or Qrp2

forallr e [O, 5—].
To conclude the proof, we employ the Caccioppoli inequality for weak
solutions to (2.1) (cf. [2], [8]) and the Schwarz inequality. Thus

‘ 172
\Dvl*dxdt < — | |wPdxdr <c lwi*dxdt|
2
0 R* Jo, Or

R/2

Inserting this estimate into (2.23) and adding the resulting inequality to (2.19)
gives (2.17). t

3. Proof of the theorem.
We begin with noting the following technical

Lemma. Let o : (0, Ry] — [0, +00) be a nondecreasing function such that
o(r) < A[(%)’“ + (2A)2“/(ﬂ_“)]o(R) + BR®

Jorall 0 <r < R < Ry, where A, B and «a, B are (fixed) constants satisfying
A>1,B>0anda > g > 0. Then

o(r) < C(AR;" o (Ro) + B)rf  Vre (0, Ry,
where
= max y max sy 77 [ 7 Nax s TR AT ’
i T — 0P

170 1= (2A)Y -,
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A proof of this result can be found in [3]. O
Letue VZI’O(Q; R") be any weak solution to (1.1). We divide the proof of

the theorem into four steps.
1. Let Qg = Qgr(xo, to) = Br(xo) % (fo — R2, 1) be any cylinder such that

0rCQx(0,T].
The following existence result is a straightforward generalization of [2],

Lemma 2.XI, p. 98:

There exists exactly one w € W21’O(Q z: RN such that

1 .
—/ w’——q)— dxdt + / al (x, ty, Dw + Du)D,¢' dxdt =
Or ot R
(3.1 { = / ( — bi(x,t,u, Du)g' + a(x,t, Du)Dagoi> dxdt
Or
forall ¢ € WZI’I(QR; R with ¢ =0 a.e. on
(0Bg x (tg — R%, 19)) U (B x {fo}),

(3.2) w=0 ae on 3Bk x (to — R?, 1p).

Moreover, the function w possesses the following additional properties:

(3.3) ess sup / lw(x, )*dx < +o00,
Br

te(to—R2,ty)

1 ! ;
Gay [ jwe P ax +/ f a2 (x, 1y, Div + D) Dyw' dxds <
2 Bgr Br

IIQ—RZ

t
< / / (—b,-(x,s,u,Du)wi +aj(x,s, Du)Dcxwi) dxds
t()'---R2 BR

/

fora.e. t € (ty — R?, 1p).

Observing (3.2) and (3.3), we have the well-known estimate

1/2
(3.5) (/ '|w|4dxdt) <
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§C0< ess sup [w(x,t)]zdx—i—/

te(tg—R2,10) Y Br Or

|Dw|2dxdt),

where the constant Cy deos not depend on R.
To procede further, we note that (3.4) is equivalent to

1
—/ lw(x, 1)|*dx +
2 /5,

t
+/ / [af‘(x,to,Dw+Du)-—af‘(x,to,Du)]Dawi dxds <
to—-R2 BR
. t .
< —f f bi(x,s,u, Du)w' dxds +
IQ—RZ Br

t
+ / / [af‘(x, s, Du) — a (x, ty, Du)]Dawi dxds
to—R? J Bp

for a.e. t € (to — R?, ty). From this inequality we obtain by the aid of (1.3), (1.5)
and (1.7)

1 t
—f lw(x, )* dx + vo/ |Dw|*dxds <
2 Br Z()—R2 Bgr

5(:/ / w(|s — tp)(1 + |Dul)|Dw|dxds +
to—R? J By ’

t
+/ f (1 + |u)® + | Dw®)|w| dxds
to—R? J By

for a.e. t € (fy — R2, 1), and therefore with the help of (3.5) by a routine
argument

(3.6) /(|w14+|Dw|2)dxdt§X(R) (1 + |ul* + | Du|?) dxdt
Or Or

1/2
x(R) = cl:a)(R) + (/ 1+ Ju)* + |Du|2)dxdt> }
QOr

1/2
-{1+[w(k>+< (1+|u|4+|Du|2)dxdr) } (1+|u*+|Dul?) dxdr},
Or Or

with
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where the constant ¢ does not depend on R. Clearly, x(R) — 0 as R — 0.

2. Define v := u + w. Then v e V,"°(Qx; RY). By (3.1),
i 09! P i _
- v —dxdt + a; (x, ty, Dv)Dyo' dxdt =
R ot Or

0! 90!
:~/ u’idxdt—/ w’—gg—dxdz‘-k
R ot Oxr ot

+/ ai' (x, to, Du + Dw)Dy¢' dxdt = 0
Or

forall g € W' (Qr; R) with ¢ = 0 a.e. on (9Bg x (fg — R) U (Bp x {to}).
Here the functions af = af(x, y, &) satisfy conditions (2.2)-(2.5). Then v is
a weak solution to (2.1) (with af (x, f, &) in place of af (x, &) there). Thus the
fundamental estimate (2.17) holds.

3. Let0 < r < R. Observing that u = v — w, from (2.17) and (3.6) it
follows

/ (1 + Juf* + | DuP) dxds <
Q,
< c/ 1+ !v]4+|Dvlz)dxdt+c/ (1 + [w|* + |Dw|?) dxdt <
QI' Q’
< c<%)2fZA /QR(I + [ol* + | Dv)) dxdt +

+x(R) | (1 + |u*+ |Dul?)dxdt <
Or

r 2421 4 5
< c[(—) + x(R)]/ (1 + [u* + | Dul?) dxdt.

R Or
Since x(R) — 0as R — 0, foreach 0 < 1 < A there exists Ry > 0 such that
the above technical lemma applies (with A in place of « and M in place of B).
We obtain
7 \2

5 +2u
3.7) / (1+lu|4—|—[Du|)dxdt§c( ) f (1+ |u|* + | Du|?) dxdt
o, Ro o

forall0 <r < R,.
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4. 1In[8], the following Poincaré inequality has been established:

(3.8) / lu—up, *dxdt <cr®* | (1+ [ul* + |Dul?) dxdt,
Qr Q"

where u is any weak solution to (1.1) and

Ug, = u(y,s)dyds
“ 1o/,

(@, C € x (0, T], ¢ = const independent of r). Inserting (3.7) into (3.8) we
obtain

442
(3.9) / u—ug, | dxdt < c(i) “/ (1 + [u]* + | Dul?) dxdt
o, Ro s

for all 0 < r < Ry. Here the constants ¢ and R, are independent of r.
The constant ¢ depends only on the constants in (1.3), (1.4), (1.5) and (1.7),
while Ry depends on these constants and on ¢’ € (0, T) and dist(S?, 9Q2), too,
where ' C Q (both ¢ and R, are independent of {xg, 7} € Q' x (', T))
(0 < Ro < min{dist(2', 0Q2), /T — t'}).

From (3.9) it finally follows that u is H5lder continuous on any subcylinder
Q x @', T) (cf [1). O

4. Appendix.

For the reader’s convenience, we note some abstract results which have
been applied in Sect. 2. Their proofs may be found in [11].

Let X be a normed space with norm || - ||x. Leta,b € R,a < b. For
ue L (a, b; X), define

1 [
Uy,p = _/ u(g)dU, t()e(aab1]’ ,OE(O, tO_a)-
p to-p
Al. LetueL*a,b; X). Assume there exists 8 ¢ (0, 1) such that
to
| 10—, e = Ko+
to—p

forall tye (a,b] and all p € (0, ty — a) (Ky = const independent of both ty and
pP)-
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Then there exists a constant ¢ > 0 such that

lu(s) —u(t)llx
lull s qa,p ) 2= max [|u()]lx + sup —————— <cy/ Ko.
tela,b) s,rela,b) |s — ¢

st

A2. Letue L*(a,b; X) have the distributional derivative u’ € L*(a, b; X).

Then
Iy 4}
[ = e < 7 | Wi do
to—p lo_p
for all ty € (a,b) and all p € (0, 1y — a).
Next, let Y be a normed space with norm || - ||y. Suppose

X C Y continuously;

for every 6 € (0, 1) there is a normed space Xy with
norm || - ||x, such that X C Xy C Y and
lzllx, < cllzl§lzly™ YzeY (c = const).

A3. Let u € L%a, b; X) have the distributional derivative u’ € L*(a, b;Y).
Letay € (a,b), 0 €(0, 3).
Then there exists a constant ¢ > 0 such that

2 2(1-26 20 2(1-6)
ess sup ()%, < e 22Nl oo o 18 1 T2 iy +
to—r<,tp

¢ 20 2(1-6)
+ r_2- llul L2(tg—r?,10; X) l[u ||L2(to—r2,zo;Y)

for all ty € (a1, b) and all r € (0, /1y — ay).

The latter statement will be applied as follows. Let £ C IR” be measurable.
Letl < pyp < p; < +o0and 0 < 6 < 1. Define

1 1—-6 0
_ 4+,
p Po P1

By Holder’s inequality,
1 vy < NFNS e 1 f ey ¥ f € LP(E) N LI (E).

To be more specific, let | E| (=Lebesgue measure) < +00, and put pg = 2,
pr=¢q >2and 6 = %. Then from A3 we conclude
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Ad. Letue L*(a,b; LY(E)) have the distributional derivative
u € L*(a, b; L*(E)).

Let ay € (a, b).
Then there exists a constant ¢ > 0 such that

3/2

€ss Sup ”u(t)”LP(E) <cr ”uulz(to—-rz,to;L‘/(E)) “u ”Lz(t() 72 0, LZ(E)) +

(to—r2,19)

1/2 3/2
2 I ”L2(to—r2,to;L‘7(E)) Iz ”Lz(to—rz,to:Lz(E))

fofall toe(ay,b)andallr 0, /1y — ai).
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