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ON SOME REGULARITY AND NONREGULARITY
RESULTS FOR SOLUTIONS TO PARABOLIC SYSTEMS

JANA STARA - OLDRICH JOHN

Dedicated to Professor Sergio Campanato on his 70th birthday

A short survey of recent results on smoothness of weak solutions to
parabolic systems with nonsmooth coefficients in plane is given. Moreover,
for space dimension n > 3 and any closed subset F in R"” we construct a
linear parabolic system with bounded measurable coefficients and its solution
which is essentially discontinuous on F and essentially continuous on R" \ F.

In this paper, in addition to surveying of several recent results concerning
smoothness and discontinuities of weak solutions to parabolic systems, we
present a new example which indicates how large the singular set of a solution
can be.

Paper is organized as follows: In Section 1 a short comparison of results
about elliptic and parabolic systems is given. Some open problems are men-
tioned here as well. Because of the extensive quantity of the results in the field
we concentrate here on Holder continuity in plane case and integrability of the
time derivative, only. We apologize for being far from any kind of completeness
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of references. In Section 2 some known examples of parabolic systems with
nonsmooth solutions are listed and a new one is explained in details. Partial
positive results valid under additional assumptions on coefficients of the system
are in Section 3 while the last section deals with applications to fluid mechanics.

For the sake of simplicity we shall deal throughout the paper mostly with
the interior regularity.

1. Elliptic and parabolic systems: similarities and differences.

In elliptic case, we consider in general quasilinear elliptic systems of the
form

(1.1) Do(AY (x,u)Dgul) =0, i=1,...,N onQ.

(The summation convention is used throughout the paper.) Domain Q is
considered to be a nonempty open subset of R", A;’f G j =1,...,N,
o, B = 1,...,n) are uniformly bounded Carathéodory functions. Denoting by

(u, v) scalar product in any finite dimensional space R?, p €N, |u| = (u, u) %,
we suppose the ellipticity condition in the form

(1.2) 3 X0, 21 €(0,00), VEER™ VyuecRY, fora e xecR"
MlEPP < (AGx, wE, &) < A€

If AZ-ﬂ depend only on x and are continuous on their domain, then according
to classical results of C. B. Morrey [18], A. Douglis, L. Nirenberg [4] every
weak solution of (1.1) is locally Hélder continuous. The proof of Theorem 3.1
in [5] indicates that the continuity of coefficients in one point implies the Holder
continuity of any weak solution in a neighbourhood of this point.

On the other hand, for n > 3 it was proved by E. De Giorgi that the
discontinuity of coefficients in one point can cause the discontinuity (even
unboundedness) of a solution (see [2]). The counter example of J. Soudek
(see [24]) gives a solution of (1.1) which is discontinuous on a dense countable
subset. Moreover, for every set F C R” of the type F, there is a system (1.1)
and its solution u which is bounded, essentially discontinuous at all points of F
and essentially continuous at all points of R” \ F. (See [10].)

E. De Giorgi observed already in 1968 (see [2]) that each such solution
is the unique (non smooth) point of minimum of a quadratic functional with
nonsmooth coefficients. Smoothness of minimizers in the scalar case (N = 1)
was proved in the fundamental work of E. De Giorgi [3] and J. Nash [18],
however their method of proof cannot be used in vector case (N > 1). The first
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example of a nonsmooth minimizer for a smooth strongly convex functional
(depending only on Vu) was given by J. Nedas in higher dimensions (see
[22]). Later W. Hao, J. Necas and S. Leonardi [9] modified the construction
to work for any dimension n > 5. Recently V. Sverdk and X. Yan constructed
a nonsmooth minimizer of a smooth strongly convex functional of the same
type forn = 3, N = 5 (see [29]) or n = 4, N = 3 (see [30]). Minimizers
in [29], [30] have discontinuous or even unbounded first derivatives. As the
minimizers of functionals considered belong to leo’f (€2) for a p > 2 they are
Holder continuous on €2 for n = 3, 4. A

In any dimension # solutions of (1.1) belong to WILCP (£2) for some p > 2
(see e.g. [17], [5]). If n = 2, this estimate and embedding theorems guarantee
interior Holder continuity of any solution to (1.1).

In parabolic case we consider systems

(1.3) ui = Do(A{ (x,t,u)Dgu?), i=1,...,Non Q.

Here Q = Q x (0, T) fora positive T, A5 (i, j=1,...,N,a, B =1,...,n)
are uniformly bounded Carathéodory functions satisfying ellipticity condition

(1.4) I rg, A1 €(0,00), VEER™, VueRY,
for almost every x € R* and for almost every ¢ € (0, T)
MlEI” < (AGx, 1, 0§, &) < M€

In this case, too, if Agﬁ depend only on x and ¢, any weak solution ( i.e.,
any locally square integrable function with locally square integrable space
gradient) is Holder continuous on a neighbourhood of any point of continuity of
coefficients (see [6], [27]). '

Any weak solution of an elliptic system (1.1) can be considered as a sta-
tionary solution to a parabolic system (1.2). Thus elliptic examples can be inter-
preted as stationary parabolic problems on Q. It would indicate singularities of
solutions appearing on cylindrical subsets of R"*!. It is more interesting to ask
whether a weak solution of a parabolic system can develop a singularity in the
interior of space-time cylinder starting from smooth initial data. If n > 3 this
situation can occur (see [25], [28], and part 2 of this paper) eventhough less is
known about possible structure of a singular set. We give here a counterexample
of a solution having as its singular set an arbitrary closed subset in R”*! and it
remains open whether there can be solutions with an arbitrary set of the type F,
as their singular sets.

For parabolic systems L, estimates of space gradient for sufficiently small
p > 2 hold, too (see [1], [23], [12], part 3 of this paper), however even for
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n = 2 they do not imply Holder continuity of solutions. As far as we know,
the question whether any weak solution to a linear parabolic system with L,
coefficients in plane domain is locally Hélder continuous is open.

2. Examples.

Theorem 2.1. (see [25]). Letn > 3, k€ (0,2(n — 1)(n — 2)); forx € R t e

(=00, 1) put
X

uwn == O+ P

Then u is real analytic on R, x (—o0, 1) and solves a quasilinear parabolic
system

(2.1) up = Doy(Af W)Dpul), i=1,...,n

with coefficients A (u) which are real analytic on a neighbourhood of B(0, 1).

The coefficients are given by the formula

AT (W) = 051845 + AW Ajp (@)

with
(n—1—=0—uP( + 555518 + (1 + 6 + 5 )uu®
22) A(u) = 20 e 2D
\/n(n —1-6)—2rh—-1-06) + §}|u|2 — Olul*
For0e (0,n —2 — 2—(,11‘—-1)) the expression under the square root in the denom-

inator of (2.2) is positive on B(0, r) for a r > 1. The coefficients are then real
analytic on the same set and satisfy ellipticity condition

MlEP < (AWE, &) < Ayl€)?
where
(n—1%=0(n—2~- 555)

k
n—2—2—(n—:l—)—9

Let ® € C*°(R) be any function such that 0 < ® < 1 on R, ®(s) = 0 for
s =12 ®(s) =1 for |s| < L=, Put

=6, A =

~‘.x.ﬁ(u) _ 06i0ap + Cb(lulz)Am(u)Ajﬂ(u) for |u| <r
Y 95,‘j 8a/3 otherwise.
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Then A?f are infinitely differentiable on R”, system with these coefficients
satisfies ellipticity condition with the same A, A; and admits the same solution
u.

Inserting values of u in Agp (1) we see that u solves also a linear parabolic
system with coefficients which are bounded, real analytic on (R” \ {0}) x
(—00, 1) and can be extended by different ways on R**! as bounded and
measurable functions. Thus the discontinuity of a solution can disappear for
¢t > 1 or can survive for any time interval.

By analogous procedure as in the first quasilinear case we obtain examples
of Lo, blow up for linear parabolic system.

Theorem 2.2. (see [25]). Let n > 3, y € (0, min(va—1 — 1, 1)), k e

0,2(n — 1)(n =2 —=2y)); forx eR", t € (—00, 1) put
x

Ix7 k(I —1) + [x]*

Then u is Holder continuous on R* x (—o00, 1) and it is a weak solution of a
linear parabolic system

(2.3) u(x,t) =

24) ui = Do(Af (x,)Dpul), i=1,...,n,
with ASf € Loo(R" x (=00, 1)) satisfying uniform ellipticity condition

(2.5) 3 Ao, A1 € (0, 00) : VgeR"z, VxeR* Vie(—o0,1)
MIEP < (Alx, 0)E, E) < M|E%

Nevertheless,

(2.6) Jim fluCy Dl L@ = 00

The question of how “large” the sets of singular points of a solution to
nonsmooth parabolic system can be is not completely solved.

In what follows we shall describe the construction of a parabolic system
and its solution with a given closed singular set F'. During the construction we
work with the standard parabolic metric on R**! and a corresponding measure.

Step 1. Construction of a counterexample.

Let {z, = [x,, tp]};"=1 be a sequence of points in R**!. Denote

X —Xp

2.7 r,=r,(x) =|x—x,, v,=v,(x)= ,
p=Tp P P P X — x|
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=60 =—2— p=¢E). G,=G,0),
It—tp!

G n)° G /
f=f@= —p—(ﬁ%(&p), L =7@= i@w (p)8p,
Tp S
Gp(rp) sgn(r —1,) )
== —’;pigo 65— 8 =80 =G,
up = up(2) = vpr, ff.

In this notation

(2.8) Datty, = f{ (i — Vi) + (fF + g7)vi0e,

52 ) = —vpf‘f”“—(’z—_i)%;-so;sj =—@-D2y.
Define
29) By = fLn = Ddia + Vpvpl+ (fF + £ + 8p) (B1a — Vi),
An easy computation gives
(2.10) Dy (bl)p = (1)),
Fix now p, g € N and denote ©,, = (vp, vg). Then we have
(2.11) (Dup, Dug) = f, fj(n =2+ 02 ) +
A+ =6+ e +
+ (87 + 8P 1= 0, ) + (g + £ 8" + 87812,

(2.12) (bp, Dug) = f) fl(n*=3n+3 — ®2,) +

+ B IS+ D0 =24+00) + (ff + (1 - 02) +

+U e+ A" =2+ 05 + (LY + f1e + fig” +g"g")(1 - ©2,),

2.13) by, bg) = [, £ (0° —4n® +6n — 4+ @) + (fFLLf5 + i1+
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+Uf+ﬁ1ﬁx#—&Hﬂ—®;»+Uf+ﬁﬁ0§+ﬁxn—2+@;y+

+(ff 87+ flg" +(n* =3n+3-02) +
+ (U + K1+ 1 + {187 + e78)(n -2+ ©2).
In what follows we shall suppose

<ﬁ(§)=——§——

a>0,

(2.14) 1

1
Gp(r) = m,

It implies that g7 in (2.7) is negative and

(2.15) 0=<lg”l =zff,
while £ is nonnegative and

(2.16) 0<f < f}.

Eventhough‘the sign of f depends on the sign of ¢ — t,, We can sum

1 & sign(t — 1,) )

p )
78 =gy S )

wp > 0, 7€ (0, min{0.001, ——1}).
n —

For n > 2,a > 1 the expression in parenthesis is a decreasmg function of &,

sign(—r,)

attending its maximum value 1 at £ = 0 and tending to St for £, — oo.

It implies that

1
2.17) el SR s

Thus from (2.11) — (2.13) we get
Ll +1) = (Duy, Dug) > f7fi(n —2 — 47),
(2.18) (b,,,DiQ) > f, fj(n*=3n+2— 2—}—2@~ D7),
(bp, bg) < f, f, (0 = 2n* +n + 27)

for sufficiently small 7(t < 21_1)'
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From (2.18) it follows that

(bp, Dug) > A{(Du,, Duy),

(2.19) .
(bp, by) < u*(Duy, Dug)

with

220) A= n*=3n+2—55-2(n-1r R nd—2n?+n+2rt

n-+rt n—2—4t

Putting now

o0 o
(2.21) w=>y u,, b= (b9,
p=1 p=1

we obtain from (2.19) that
(2.22) (b, Du) > M(Du, Du), (b, b) < u*(Du, Du)

with the same constants A, @ as in (2.20).

The construction of coefficients A?}B in the system (2.4) satisfying bound-
edness and ellipticity conditions follows by the same procedure as in [10], [25].
Putting for 6 € (0, 1) and ¢ = Du

(2.23) A (2) = 08,j80p + (b — O, ¢) T BF — 0c)(BF — 0ch),

we obtain that u given by (2.21) is a solution to the system (2.4) with coefficients
given by (2.23) and the ellipticity condition (2.5) is satisfied with

W T
ho= =V =23, A==+ =0

Foreach R, T > 0, p e N we get
R 172
@24 1 la@ox-ry < (2Tan f G (r)r"—3dr) <
0

Rn—2(l+1’) 1/2
< a);’ (2T0’n —————————-—) .

(oy, stays. here for the (n — 1) dimensional measure of unit sphere in R".)
Hence if the sequence (a),,)g?__ | tends to infinity quickly enough, u and its space

gradient are locally square integrable on R"*!,
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Step 2. Essential continuity and discontinuity.

As it was established in [10], for any F, -set F can be constructed a linear
elliptic system with bounded measurable coefficients possessing a weak solution
whose singular set equals F. In the parabolic case we prove a weaker assertion.
Prescribing any closed set F C R"! we adjust the construction described in
Step 1 in such a way that the set F' will coincide with the singular set of the
solution u.

This fact has two interesting consequences :

Smooth initial (and/or boundary) data cannot guarantee continuity of solu-
tions to linear parabolic systems with nonsmooth coefficients in space dimen-
sion n > 3. '

No “partial regularity” results can be expected for such systems without
taking further in consideration either the smoothness of coefficients with respect
to x, ¢t or some structural conditions.

Since we are dealing with weakly differentiable functions, it is more
meaningful to speak in terms of essential continuity and discontinuity. A
measurable function u is said to be essentially continuous at a point zg € R*+!
if

oscessu(z) =0,

Z>20
where
oscess u(z) = inf inf sup u(zy) — u(zs|.
U 820 zermt! 7 7o eBs(z0)\Z

measZ=0

Points of essential continuity of u (u is defined up to a set of measure zero) are
exactly the points of continuity of essential limsup of u, which is a representa-
tive of u defined everywhere.

Let F be a closed subset in R**!. Find points Zp € R**1 (p € N) so that

the set {z,}pen is dense in F.
Further, find compact sets K,, p € N so that each K, has its Lebesgue

density at z,, equal 1 and

(2.25) K, N{z4;q9 # p} = 0.

We proceed by induction. Having already found the compact sets K, ..., K,
we define K,,; as follows: Choose As.; € (0,1/25t1) so small that the

closure of B = B(Zs41, Agy1) does not meet the sets K, oo K. Taking
d, < dist (zg, zs41) sufficiently small we can put

(2.26) Kot = B\ Ugpr1,z,e8B(2g: d2279).
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Constructing a function « and coefficients b according to (2.21) we have
(2.27) up (D] = 1,(2) f{ (2) = hp(rp(2), [t = 1,)
with

1 v

h,(v,w) = ,
P (I 4+ wpv)* Vw + a2

v, w € [0, 00).

Then
1) h is decreasing function of w,

L 1
v (1 +w) ™ (w+ a2v?)3/2
is positive for € [0, 7], w =67, v<§, S<l.

{w+ w,v[w(l — 1) — Ta*v?]} and it

From 1) and 2) we obtain the following: If v > §, then h,(v, w) <
hp(v,0) < h,(8,0). 0 < v < §,w > & then hy(v,w) < h,(5,w) <
hy(8,0).

Having in mind the formula (2.27) we can conclude that

(2.28) lup(2)| < m )

on the complement of the neighbourhood

B(zp,8) ={z =[xt} r,(2) <8, ]t —t,] < 82).

Thus, taking

27\t 1 2%\ ¢
(2.29) Sy=0,, wy> (}T> ™ (> (7) )
we have
(2.30) lup| <27

on the complement of B(z,, Ap).
As it follows from the construction of K,, (2.30) takes place in any

K, g <p.

Theorem 2.3. Let u = 3 > u,. Then u is a weak solution of a uniformly
parabolic system (2.4). It is essentially discontinuous at all points of F and
essentially continuous at all points of R**! \ F.
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Proof. The first part of the assertion follows from the preceeding construction.
So we have to prove essential discontinuity of u on F and essential continuity
of u on the complement of F.

Essential discontinuity of z on F.

Consider first zo = z,,. All functions u, with g # p are continuous on K,
and by (2.30) the sum converges uniformly on K »- The function u,, behaves on
parabolas r? = |t — 1,] near z, like

X —Xx, 1
X —=Xxp| 1+ a2

and thus
1

VT1¥a%

As Lebesgue density of K, at z, is 1 and the sum defining u converges
uniformly on K, we get that

oscessu,(z) >
72,

oscess u(z) >

1
Z>7Zp 1+ a? '

Last estimate is uniform on the set {z,} ,en and this set is dense in F. It implies
that

oscess u(z) >

1
22 V1+a?

for all zo € F. Hence u is essentially discontinuous at all points of F.

Essential continuity on R*+! \ F.
Choose ze R**1\ F and a positive § such that B(z, 28) does not meet F.
Then thanks to (2.28)
1

< _
lupl = a(l + w,8)*

on B(z, §), the sum defining # converges uniformly on B(z, §) and all functions
u, are continuous on B(z, §). Thus u is continuous on B(z, §).




156 JANA STARA - OLDRICH JOHN

3. Regularity.

In this part we concentrate mainly on two points, i.e., the existence of time
derivative and a Holder continuity of solutions.
J. Necas and V. Sverdk in [23] considered a nonlinear system

(3.1 Ul = Dy(af(Vu)), i=1,...,Non Q,

with contmuously differentiable coefficients a? and proved that u € C,OC Q) if

n—ZandueClof(Q) ifn <4.
In 1995 K. Groger and M. Rehberg (see [8]) considered the system

(3.2) — Dy, (A Px,t, u)Dﬂu’)—f’ i=1,...,N on Q.

They solved initial and boundary value problem for this system for sufficiently
small time 7 in a space, which is for n = 2 embedded in C%#*(Q). Coefficients
A}’;fg are supposed to be uniformly continuous in ¢ and bounded and measurable
‘in space variables. Under these assumptions the time derivative belongs to
L,((0, T); W=tP) fora p > 2.

In 1997, J. Naumann, J. Wolf and M. Wolff (see [20]) proved that if we
suppose coefficients in (3.2) to be u-Holder continuous with p > (sufﬁc1ently
near to 1) and n = 2, then u € C%*(Q) and there is a p > 2 such that
ur € Lp((0, T); La(£2)).

In 1996, the authors proved in [12] that if coefficients af are Lipschitz
continuous in ¢ and bounded and measurable in space variables and n = 2, then
all solutions of

(3.3) u' — Do(al(x,t,u,Vu)) = f', i=1,...,Non Q,

are Holder continuous and there is a p > 2 such that u, € Loo((0, T'); L,(2)).
If we drop the assumption n = 2 we get a result slightly generalizing [21]
in assumptions on f:

Theorem 3.1. (see [11]). Let f' € Lo(Q), coefficients af(x,t,u, p) be Ca-
rathéodory functions continuously differentiable in u, p and satisfy on their
domains

(i) growth conditions:

lai' (x, t,u, p)l < M(1 + lul + 1pD),
o

aaj(x tu, p)‘+

<M,
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(ii) ellipticity condition:

]

P

da¥

(x, 1, u, ELES = Mol

(iii) Holder continuity in t: for y € (%,.1]
lai' (x, t1, u, p) — aj' (x, t2, u, p)| < Lty — 1" (1 + |u| + |p).

Then for every weak solution u to (3.3) u, belongs to Ly 1,.(Q).

4. Higher integrability results.

Classical results guarantee that any weak solution of a linear parabolic
system with nonsmooth uniformly elliptic coefficients has its space gradient
integrable with a power p > 2. These estimates were proved by perturbation
methods (see e.g. [1]) or by Gehring’s reverse Holder inequality and used for
quasilinear parabolic systems in (see e.g. [1], [6], [27]).

Another kind of higher integrability results was proved in [23] and slightly
generalized in [12]. It states that under natural assumptions on the right hand
side there is an exponent p > 2 such that u € Lo,(0, T; L »(£2)); namely

Lemma 4.1. Let u be a weak solution of

@1 @) — Du(AT (@ Dpu! (2)) = f'(2) + Dagl(z), i=1,...,N,
on Q with A?jﬂ satisfying ellipticity condition

4.2) hol€” < (A5, §)

and the estiiﬁate

(4.3) 1A N <A, ij=1,...,N, aB=1,..n

Put py =2+ ﬁ i—‘: and sétppose

(4.4) fTeLy(Q). 8, €Ly(Q) for pel2, po).

Then u € Loooc(0, T Lp 10c(2)) and Vulu|5~' € L, 1,0(Q).
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For the proof see [12].

An analogous result is proved in [14] for evolution version of generalized
Stokes problem for n = 2 by the following procedure.

We start with the time dependent Stokes problem, i.e. we study existence
and qualitative properties of L-periodic functions v = (vy, v2) : R? x (0, T') —
R? and o : R? x (0, T) — R with zero mean value over Q = (0, L) x (0, L)
solving for a given G = (G;); ;. the system

v, — Av+ Vo = divG

4.5
(4.5) divv=20

on Q = 2 x (0, T) with zero initial conditions. By analogous procedure to [31]
where the existence and uniqueness result was proved for Dirichlet boundary
value problem, we can obtain L;-existence and uniqueness. The L ,-theory for
the Laplace equation and heat equation then implies better estimates of (v, o).

Lemma 4.2. If G € L,(Q), then there exists a uniquely defined weak solution
(v, o) to (4.5) such that

VE L0, T; Wia(R), v €Lo(0,T; Wih(R2), o €Lx(Q)
and
(4.6) VUl = 1G> Nl0llLa0) = CliG Ly 0)-
Moreover, if r > 2, G € L,.(Q), then there exists a constant K > 1 such that
velL,(0,T; W, ,(82), o€l (Q)
and

4.7) IVvliL < KNGl , lolLw < ClGlL -

Perturbation arguments enable us to generalize this result for an analogous
system with —A replaced by a general linear elliptic operator with nonsmooth

coefficients.
Consider coefficients A?f bounded and measurable, satisfying symmetry

conditions

(4.8) Al =AY, kD =1,2,



ON SOME REGULARITY AND NONREGULARITY.. .. 159

and ellipticity condition
(4.9) Vix, (1€ Q, V€S, yilsl® < (Ax,0E &) < mlgl,

where S stands for the space of symmetric 2 x 2 matrices.
We want to find L-periodic functions v, o with zero mean values over
solving generalized Stokes system with zero initial conditions

v — div (A(x,1)Dv) +Vo = F,

4.10
(+.10) divv=20

on Q. (Dv denotes the symmetrized gradient of v, i.e. Dijv = %(g% + %).)
j i

Combining Lemma 4.2 with the methods of the proof of Lemma 4.1 we
obtain

Lemma 4.3. Let r > 2 and let K be the constant Sfrom (4.7). Then if

Y1

(4.11) g <2(1-m[—22] 1“21()*1
Y2

(with y1, y» from (4.9)), there is a constant C > 0 such that for F €
L40,T; W_1,4(2)) the corresponding weak solution (v, o) of (4.10) satisfies

Ve L0, T; Wy 4(2),0 €L,(0),
C
(4.12) Vol < ;I”F”L,,(O,T;W_.,,,(Q)) )

V2
lolz, < C;llFlqu(o,T;W_.,(,(sz)) -

Moreover; for such q’s we have

1/q
2

IVl Leo0.7:L,02)) < 1E Nz, 07w, ) -
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For the proof see [14]. (Different stationary variants of Lemma 4.3 for
generalized Stokes problem under both Dirichlet and periodic boundary condi-
tions are given in [13], [14], [15], [16].)

These estimates allow to show the existence of a C!* solutions to the
following fluid model: .

Find u : R?2 x (0, T) = R?, 7 : R? — R which are L-periodic in each
space variable, have zero mean value over €2 and solve the equations

u, + diviu @ u) — div(7(Du)) + Vo = f

4.13
( ) divu=20

on 0, u(-,0) = 0 on R?. Here f : R? x (0, T) — R? is a given space periodic
vector field with zero mean value over 2. For simplicity reasons we suppose
dist (supp f; R? x {0}) > 0.
T is a stress tensor satisfying following conditions
1) T is a potential tensor field, i.e., there exists a nonnegative function
U e C%([0, 00)) so thatforalli, j = 1,2, n€S

aU (In|?)
anij

U (0) _
an;j

(4.14) Tij(m) = , U@ =0, 0.

2) U(|n}?) satisfies growth condition with some p € (0, 00), i.e.
97U (In]*)

b < G+ )T 15,
p—— §ijbu = C2(1+ n|") 7 |§]

@15 L+ T IER <

forall n, £ €8S.
These assumptions involve stress tensor forms used in various engineering
areas for modelling a flow of a class of non Newtonian fluids, so called fluids

with shear dependent viscosity.
We are going to formulate the main result of [14]:

Theorem 4.4. Let p > % and let (4.14), (4.15) be satisfied. Assume that
F€Lo(0,T; Ly(82), fi€La(0,T; Ly(82)) N Lg(0, T5 W_y7(€2))

with ¢ > 2 and q large enough, i.e. ¢ = p/(p — 1) for p e (1,2) and q > 2
for p > 2. Then there exists a > 0 and a solution (u, 1) of the problem (4.13)
such that

ueC(Q), meC*(Q).
Moreover, this solution is unique in the class of weak solutions that satisfy the
energy inequality.
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