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ON THE CONTINUITY OF THE SOLUTION
OF THE SINGULAR EQUATION (B8(u)), = Lu

BIANCA STROFFOLINI - VINCENZO VESPRI

Dedicated to Professor Sergio Campanato on his 70th birthday

We extend some result of [2] proving the continuity of bounded solu-
tions of the singular equation (8(x)); = Lu where £ is a more general
operator of second order.

1. Introduction.

Let B(s) be a maximal monotone graph in R x R and such that:
B(s1) — B(s2) = vols1 —52) VsieR, >0

and sup_y, 4 1B(s)| < o0.
Let Q be a domain in RY of class C*! and €27 will denote the cross .
product
Qr=Qx (0,7).
We are concerned with the local continuity of local bounded solutions of the
problem:

(L1 (Bw), = Z Dj(aij(x, t) Dju + a; (x, t)u) + b; (x, t)Diju + c(x, Hu,
ij
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where a;; are measurable functions satisfying:

VIER < a(x, DEE < MIEP,

ij

” Z‘a?, Zb? C”q',’QT e

where g and r are such that

I+N 1
r 2q !

andqe[z(lNTl),oo] re[1 - ,oo] 0<k; <1,N=>2.

In the case B(u) = u it is a classical result [4] that locally weak solutions
are locally Holder continuous.

The local continuity for local bounded solutions has been settled in the
case of laplacian by Di Benedetto and Vespri [2]. They prove the continuity at a
point P € Q7 showing that the oscillation of u in a sequence of shrinking boxes
about P tends to zero as the size of such neighborhoods tend to zero.

We will follow the same lines of proof, with suitable changes due to the
lack of radial simmetry for general coefficients.

We first examine the case of coefficients independent of the time. Then we
achieve the general case using a fixed point theorem for coefficients continuous
in t.

In dimension n = 2 one can consider a maximal monotone graph 8 =
Bac + Bs of bounded variation, with B4¢ strictly increasing and B, > 0 [3].

2. Local Energy estimates.

: By weak solutions of equation (1.1) we mean a function u € L%(0, T’
W12(Q)) such that for all ¢ € (0, T) satisfies:

f§¢| // <u>¢,+§:<a,,Du+a,u>D¢+

+ b Dyud + cu¢} dxdt =0

for all g € W'2(0, T; L2(2)) (N L2(0, T; Wo* (S2))
We use the same notation of [2], that we recall for sake of completeness.
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For p > 0 we denote by K, the cube of wedge 2p centered at the origin, i.e.

K, = {xecR" | max |x;| <
p=xeR" | max x| < p)

and by [y + K] the cube centered at y and congruent to K,. For § > 0 denote
by Q(p,0p?) the cylinder of cross section K,, height 6p?, and vertex at the

origin, i.e.
0(p,6p") = K, % (=0p*,0)

and for a point (y, s) € R¥*! we let [(y, s) 4+ Q(p, 60%)] be the cylinder of
vertex at (y, s) and congruent to Q(p, 0p?).
The truncations (u — k). and (u — k)_, for k € R, are defined by:

(u — k)y = max{u —k; 0}, (u—k)_ = max{k — u; 0},

Next, define '
A1) = (xeK, | (ux, 1) —k)x > 0}

introduce the numbers

. 2q(1+x)
+
H#e =@ =0l 00000 4= g—1
. 2r(l+x) 2
F=—, k==K
r—1 N

and the function
He
HE—(u—k)x+c

VHE, (4= ), ) = In* | } 0<c< HE

Proposition 1. There exists a constant y = y (data) such that for every cylinder
[(y,9) + Qap, 00pH)] C [(y,5) + Qp, 6p*)], 0 € (0, 1), we get

2.1) sup / (u—~Kk)ilx, t)dx +
y+K,

s—0p2<t<s

+ // D — k)< dxdr <
(y,5)+Q(p,00p?)

gy// (u—k)i|D§1|2dxdt+y/f (u—k)y dxdt +
»,8)+Q(p,00% (,9)+0(p,60%
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2(14x)

0 N
+||Za?+Zb?+ch,,.(f9 A, @l dr) T
_.pZ

(2.2) sup / VA(HE, (= K)x, o) (x, 1) dx <

s—0p?<t<s
y (data)
T (1 =ao?)p?
y (data)
C

// W(H, (u— k)4, ¢) dxdT +

+ /-\D(Jf,f, (U = k), N, 5 — 0p%) +
+l’_(1+ lnﬂ’ic){/s |AE (r)l‘%dr}
c? c s—0p2 ko

Proof. We may assume that (y, s) coincides with the origin. Let x — ¢;(x) be
a nonnegative cut-off function in K, such that

2(14x)
F

=1 on K,,,0¢€(0,1)
f1(x) =0 for x€9K,

1
IDg| < ‘(T_U—)p

and t — £,(¢) the cut-off function

0 v for t € (—oo0, —0p?)
t+ 6p?

ZI_—J)T/)Z for ¢t e (—902, —0'8,02)
1

5H(t) =

for t > —o6p>.
We multiply (1.1) by the test function
+(u — k)22l

and integrate by parts over K, x (—8p?, t). For simplicity we indicate by ¢ the
product &;&5.

I = i// Z(aiiju 4+ a;u)D;[(u — k)i§2] dxdt >
ij

> c/f |D(u — k)1 |*¢* dxdt ~//Za,?;2x[(u — k)1 > 0]dxdr —
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—2clf DG — Bl — k)52 D¢ | dvdr —

—2ff(za,?)%(u —k)1¢|D¢| dxdr .

We use twice Young’s inequality:

23) 204 / / D(u — K2 = k)| DE | dxdt <

e /f DG — k)22 dxd +  (Co) ff(u —2ID¢dxdr |

@4 2 [ (X a i~ k.t dvae <
< f/(u —k)3|D¢ P dxdr + y //Zaizg‘zx[(u — k)1 > 0]dxdr .
Therefore we get:

(2.5) I> CO/ ID(u —k)r¢|*dxdt —

- y//(u — k)%|D¢ | dxdt — y//Za,?;zx[(u —k)s > 0ldxdr,

11 = // |16 Diu + cul(u — k)2 | dxdr <

<o // |D(u — k) |*(u — k)% dxdt + // [ > bt +c‘(u —k)+t*dxdr
We impose to k the restrictions

Co
esssup |(u — k)| < g = —
0(6p) RERToN

Then:

11 < %//‘D(u——k)iﬂzdxdr—{-/f‘Zb?—l—c‘(u—k)igzdxdr <
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_ %0 f/].p(u—k)igﬁdxdr+50f/‘Zb?+c|x[(u—k)i]dxdr.

In conclusion

(u—~k)t
sup / ( / B (k + s)s ds>gf(x)g§(t) dx +
—0p2<t<0J K, 0

+ // ID(u — k)y|*dxdt <
Q(p,a6p?)

5)/// (u — k)% |Dgy|* dxdt +
Q(p.0p?)

(u—k)x
+V/./ (f ﬁ/(kis)ds)f?(ﬂé“z,;(t)dxdt+
Q(p,0p?) 0

+f/‘2ai2+2bi2+clx[(u—k)i>0]dxd'c.

Taking into account that

(u—k)x Yo
/ Bt s)sds = - (u = 3.
0

(u—k)x
/ B'(k£s)sds < sup|B(s)|(u—k)+
0

and using Holder inequality, we reach the assertion (2.1).
To prove (2.2), take as test function £\’ §12(x) and write

P (u—k)x
:{-_ﬂl(u)u,lllw/ = 57/ ,5/(/{ + s)\If\I”ds
0

for t € (—0p2, 0)

(u—k)x
sup / f Bk £5)WW' ds | ¢i(x) dx +
-0p?<t<0Y Kgp, 0

+ /[ (14 WU 2D~ kg |Pe2(x) dxdt <
4 L0007
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<),

ap

(u—k)y
( f Bk + s)\IJ\I/’a’s> (x — 0p%) dx +
0

+2/f do(x, 21 + W)W 2 dxdr +
+// W2 % dxdt +929//|Du|2(1 + N dxdr +

+ 110g f o [(n — B)s > O)dxdr

1Jsing that

(u—k)x
/ Bk + )W ds > «\pz
40

we get

sup / /\Dz(ﬂf,(u—k)i,c)(x,t)dx <
~0p2<1<0J K
y (data)

= mf/‘p(ﬂi, (u—k)y,0)(x,t)dxdt +

N y(dcata) f/\p(ﬂzt’ (u—k)y,0)(x,s —6p2)dx +

+ 20 +log<J€ ) [ [ @0+ 0%+ i s > 01

and this last term is substituted by

C%—(l + log (—J%ﬂi»{ /tt0€ la"e,ﬁ,‘fl,(f)l5 df}

0—

2(1-+k)

T O

Remark 1. The estimate (2.1). holds true even in more general hypotheses

a) div(a(x,t,u, Du)Du > Co|Dul* — ¢o(x, 1),
b) la(x,t,u, Du)| < Ci|Du| + ¢1(x, 1),
¢) |b(x,t,u, Du)| < C3|Dul* -+ ¢,

where oo, 12, ¢, € Lq’r(QT),
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Remark 2. Along the proofs we will encounter quantities of the type
A;p"“ w72, where A; are constants that can be determined a priori only in
terms of the data and are independent of w and p. We may assume, without loss
of generality, that they satisfy A;p"*w™ < 1. Indeed, if not, we would have
o < Cp® for C = max A; and ey = %ﬁ and the first iterative step would be
trivial.

Fix 0 > 0 and consider [(y, s) + Q(2p, 20p?)] C Q, we put

ut = sup u o, u = inf u
[(7,)+0(2p.26p%)] [0:)+0(2p.26p7)]

and _
w = osc u=p"—pu.
[(7,8)+0(2p,20p%)]

We define the following level sets
Af, = {00 €,9) + 0, 0pD)]  ulx, 1) > ut — o),
A, ={(, ) €y, 9) + Q(p, 007)] 1 ulx, 1) < p~ + £ w).

We have the following estimates

Proposition 2. There exists a number v* depending on the structure of
B, A, ET, w such that

meas A, , < v |Q(p, 001 = u(x, 1) < ut — AT,

0 2
V(x, 1) el(y,s) + Q(-g—, %)1.

Proposition 3. There exists a number v~ depending on the structure of 8, A,
&7, w such that

meas s, < V7100, 007 = u(x, 1) > u~ + A w,

9 2
V(.0 el(y, s) + Q<§, —})1.
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Proof. We only prove the case +. The numbers v* are given by the formula:

n C( OEFw )'Ui ,{2 2 2, data, o)
Vo= , o =mi ; = , @).
1+ 065w mnN/cl N2 ¢ = c(data, w

Without loss of generality, we may suppose (y, s) = (0, 0) and &+ = £. For

n=0,1,2,..., we consider the sequences of radii
_ % p ~ Pn + Pn+1
pn—5+2n+1, Pn =5

and the sequence

bi=ME+ (=N k=t o
On =Kj, X (=05,,0), QOn=K, x (~0py,0).
Finally, we get
(2.6) sup f (u — ky)3 dx +// |D(u — kn) 1+ *1x, dxdt <
—0p2<t<0YKp, O(fu,005%) )

n§-2 2
[1+ (0&w) ok, | +

=V

r—1

7

0 o,
+ Za?+2b?+c”q,,[ /.. Mé:,p,xﬂrﬂmdr}

Now, we are in the position to repeat the same argument as in [2]. Let .(x) be
a cut-off function in Kz, £,(x) = 1 on K ooy and |DE,| < & The function
(u —ky) 8 belongs to

L®(—042,0; LA(K7,) N LA(=052, 0; W2 (K 5)),

we apply the embedding theorem:

CD b A ] < /] « fQ i — k)2 dxds <

n+l1

/ (u—ka)} 57 dxdt < ( / =), 5 dxdr) [bg,,0, 177 <
On
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iz
= Y (//: ID(M - kn)-}-gn|2dth) :

Vi3
2
' sup / (u— kn)+2 dx I‘A’E,,,p,l I Mz,
—-0pr<t<0Y K}

bn

Now we compute

/ﬁ ID(”—kn)+Zn|2dxdt <

< // ]D(u—k,l)+]2dxdt+//~ |DEu | (u — ky)3 dxdt .

Taking into account inequality (2.6), yields

4n§2w2

02

0 _ 2(1+41)
+|1Za}+2b,?+clq {f Mg’pn(r)lédr} ,
o _0:511

where g, 7, k = —[2\7/(1 have been introduced in Section 2.
Also the second factor of the right-hand side in (2.7) can be estirnated
analogously, combining (2.6) and (2.8), finally we get:

(2.8) /f ID(u — k)18l dxdt < y [14 @& H]lAg, 4| +

n

| ‘ 16 -1 1+ 335
(2.9) | A, i | = V-;;[l + (08w) " 1] Ag, | T +

}%(m)

‘9,0,,

0 .
2 4
+ )/16n|| E aiz + § bl2 + C“(/:rl‘Agn’pnlN-l—Z { / " [A;”,p” (T)lfdf

We put

| A, 0, 1 {/0 . i\
Yy =—2 , Z,=— [Ag , (D)7 dr
| Qn [ KRn _ §nsPn

6 pn

and divide (2.9) by | Q.|

2 2 2
Yn+1 < )/16'10m[1 + (Qéw)—]]{YnH-NH + YnN+2 Zr1;+K}a
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Zns1 (ki = huset)* < |Kp, 7 = K120, <
< |Kg, |7 - k,JEnnﬁ oy S VRV = k)l g,
Zyy < 167077 [1 4 (05w) (Y, + Z1).
the sequences {Y,} and {Z,} tend to zero, provided
Yo+ ZI+K < v
(see Lemma 4.2 in [1]). O

Fix 6 > 0 and consider the cylinder [(y, s) + Q(p, 8p*)]; for & € (0, 1)
we set
Ae,p={xeK, ulx,t) > pu" —Etw).

We assume that the function u(-, s — 6p?) does not exceed the value u* — &w
fur some & € (0, 1) at the bottom of the cylinder, i.e.

u(x,s —0p") < p" —§fw, Vxely+ K,

Proposition 4. For every 6 € (0, 1) there exists a number £ € (0, i&g”)
depending only upon the data and the numbers 55’ and 6 such that

e, 1l S VKLl Ve (s —0p%s).

+ v6
The number £ is chosen to satisfy v* =
Froof. Without loss of generality we can assume that (y, s) = (0, 0). Consider
ihe logarithmic estimate (2.2) for (u—k)4 with k = —&yw, 0 = ;, c=& w,

where &, need to be chosen. We first observe that the integral on the riglit
at the time level —0p? is zero. The first integral on the right is majorised by

26| log (55 ) 1K,

the integration over a smaller set a% 1o On such a set W > log (fé;)'

. The integral on the left hand side is minorised extending

iherefore the logarithmic inequality (2 2) reads as follows:

(1 (50)) 01 = v (25, 1.

The last term is estimated by

1 \* £
() (e )

aiidl we can choose the parameters in order to make it < 1. O

We state a proposition that can be found in a more general way in [2].
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Proposition 5. Let ve W'2(K ), satisfying

/ |Dvj*dx <y
Kﬂ

Jfor a given constant y and meas{x € K, : v(x) < 1} > «|K,| for a given
a € (0, 1). Then, for every n € (0, 1), and A > 1, there exists x* € K, and a
number & € (0, 1) such that, within the cube Ks,(x*) centered in x* with wedge.
28p, there holds:

meas{x € K, (x*) : v(x) < A} > (1 = n)| K.

3. On the sets where u is near ™ or near u~.

Define Ag;’p(t) ={xekK, ulx,1) > ut —ETw} and A (1) = {x e
K, :ulx,t) <p” — & w}, we have

+
meas Aéi,p -—/

Ol
+
AR, oldr.

Observe that the numbers v+

Proposition 3.

are the ones introduced in Proposition 2 and

Proposition 6. If

0

G.1) meas Al , = [ 144, 01dr > v 100, )
pe

holds, for every A > 1 and n € (0, 1) there exist a point (y?, s el(y,s) +
Q@+0,810)]1 C (3, 9) + Q(p, p*)] such that

(3.2) meas{(x', 1 el(yy,sy) + Q64p; Bipz)] cu(x, 1) > pl—rEtw*) >

> (1=, sE) + 064, 820H]I.

The number 8T depends upon the data and the numbers A, n, £t and w.
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Proposition 7. If

0
(3.3) meas A , = / A ,(O1dt > v710(p, p*)|
—,D2

holds, for every . > 1 and n € (0, 1) there exist a point (y*,s*) € [(y, s) +
Q(6-p, 82N C Ly, s) + Q(p, p*)] such that

(3.4) meas{(x, ) €[(y*, s*) + 0©4+p, 82 p)] 1 ulx, 1) < p* + A" 0"} >

> (1= mIOE, %) + Q6-p, 82 pM]I.
The number 6~ depends upon the data and the numbers A, 1, £~ and w.

Proof. 'We write (2.1) on Q(p, p?) and Q(2p, 2p%) respectively for the func-
tions (u — k™), with kt = Wi — ETw* and (u —k7)_ with k= = pu* + £~ o*
and take into account that the term

0 5 %(1+K)
{/ AL, (01 dr}
—'9,511

is controlled by y wp™ .

(3.5) / f Dt — WP dxdt < yo'o",
0(p,p?)

(3.6) /f D — )| dxdt < yw*pV.
Q(p,p?)

We rewrite (3.5) and (3.2) in terms of vt = Z *;‘ , (3.6) and (3.4) in terms of

— _ u—pl
= w*Em
(3.7 meas{(x, 1) € Q(p, p*) : vF < 1} > vi|Q(p, p?)I,
14 N
(3.8) f/ |DvEP? dxdt < ——p".
Q(p,p?) w*EE2

For t € (—p?, 0) we put
ATt ={x e K, : vE(x, 1) < 1},

1
Te={t € (—p* 0) : meas A*(t) > VA1),
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J§ the complement of T with respect to (—p?, 0)

0
vilQ(p,pz)IS/ /meami(z)dt:f / meas AF () dr +
_Pz Kp Tt Kp

meas 7 1
+ [ messazwar < ™50, 01+ Lii0Go, 1.
7 JK,

From which we get
7 1 * 2
meas 73 > Evip .

From this and (3.7) we get:

1
—vip? inf/ ;Dui(x,r)ﬁdxdzg/ / IDvE(x, 0)|? dxdt <
2 7 Jk, 72 JK,

teyJ

5// |Dvi(x,t)|2dxa't < ;2/ *pN
Q(0.0%) §*w

Therefore there exist time levels s7 and s* for which

/ IDvE(x, s dx < —L—pN-2
KP

w*g:lﬂ
and .
meas{x € K, : vE(x, s%) < 1} > SVEIKp|.
Now we apply Proposition 5 to conclude. (]

Let the cylinder [(y, s) + Q(p, p?)] be fixed and consider coaxial boxes of
the type

(3.9) [0+ Q)] 0<r<p.

The time-location of the vertices ranges over

(3.10) Tels — (p* —r?),s]

and r is a positive parameter ranging over

(3.11) r€lép, pl, where §e(0,1) isto be chosen.

We assume that conditions (3.1) and (3.3) are violated for all cylinders of the
type previously defined. In such a case, we will identify , within [(y,s) +
Q(p, pH] two disjoint subcylinders such that in one of this u is all near ut and
in the other u is all near ™.
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Proposition 8. Ler (3.1) and (3.3) both hold for all coaxial cylinders of the
type previously defined. There exist two points (y{,s*), (y5,s*), at the same
time level s*, a number § € (0, 1) and two cylinders

[F,s") + 0, )], (3, s*) + 0@, )],

contained in [(y, s) + Q(p, p?)], such that

r=6op,

u(x, 1) > p= + %(1 —xNw, Y, 1) el s+ Q)]
and

2
u(x,t) < pt - ;A =2D0, Vix,Del03,s)+ 00, ).

The proof of this Proposition is the same of Proposition 8.1 in [2]. Using
Proposition 8§ it is possible to derive a local estimate for the gradient Du.

Proposition 9. Let (3.1) and (3.3) both hold for all coaxial cylinders previously
defined and choice €T = &~ = —112- and A = % There exists a constant y
depending only upon the data and w such that

pr2y§/ / |Du|? dxdr .
s—p? JEp<|lx—yll<p

4. Comparison function.

We consider first the case of coefficients independent of the time ¢. We
consider an auxiliary function constructed with the difference of the parabolic
problem in a circular cylindric section and an elliptic problem in a circular
anulus. We consider ¢ solution of the elliptic equation in a circular cross section

gy, 4d

LE=0 on oAz, 44
4.1) tx)=0 in|x| = 4d

¢(x) =1 in|x| = &g
and v solution of

(BW); = Lv  onvhgag x (0,k)
4.2) v(x,t) =0 in|x| = 4d
' vix, 1) =1 in|x| = g

v(x,0) = 0.
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Notice that ¢ is locally Holder continuous and v satisfies the maximum principle
of Moser. Put z = ¢ — v, it satisfies:

B@)i =Lz oneaq x (0, k)

(43) Z(X,t) =0 in]xl =4d
Z(x,t) =1 in|x| =g
z2(x,0) =1 in|x| =¢q.

We observe that z is positive and satisfies Harnack inequality. Here f is a
maximal monotone graph in R x R satisfying:

Bls) —BGsa) _

> 7, suplB(s)| < 7
S — 8 ‘

for some given constants ;. The quantities &, d, ¥: will be chosen in depen-
dance of the local oscillation of u.
We will prove the continuity of z in the cylindrical domain C(1, 2d; k):

Proposition 10. The function 7 — z(x,t) is continuous in the cylinder with
anular cross section C(1,2d; k). Moreover there exists a nonnegative, continu-
ous, increasing function p — h(p) such that:

1
Vxoe{l <|x| <2d}, Vte(0,k), VYpe(0, 5),

sup lZ(x,f) —Z(XOJ)| Eh(/’)

[x~xo|<p
We will indicate with @ a number such that

w> 0sC u.
Cleo,4d; k)

We will be working in a cylindrical domain slightly larger than C(g,, 4d; k),
say, for example:

C(,2d; k) = {% < |x| < 2d} x (0, k).

For a cylinder [(y, s) + Q(2p,20p2)] C C(1, 2d; k) we set

2t = sup 7z, 7" = inf
[(7,$)+0(2p,20p7)] [(:9)+0(p,2007)]
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and denote by w a number satisfying:

w>zt—7z7 = 0sc
[(7,9)+0Q(2p,20p%)]

The function z satisfies the energy estimates of Section 2. For the logarithmic
estimate, Proposition 4 continue to hold for the function z. In this context,
having fixed v¥ € (0,1), and & € (0, 1), the numbers &= for which the
analogues of Proposition 2 and 3 hold are chosen from the formulae

+ _ y(data, w)

+
1n(§%)

Putting z as test function in the equation, we obtain:

k a 4 v
/ / (—/ ﬁ’(s)sds) dxdt + —//[Dz|2dxdt =<
0 'A’Eo,4d at 0 2
</k3/|uz|2+ S @+ S0P+ el )2 dxds
TJo 2 v SEY ' ’

/ zz(x,t)l’{)+v//|Dz|2dxdt Sc/ Dz* dxdt
Agg,4d

where D = 13" a? + 1 3" b2 + |c|. Using Holder’s inequality, we obtain:

/ DZ*dxdt < 252”1)”,,,,{ sup z? +f IDzlzdxdt},
0<t<k

min{1, v} { sup z -I-f |Dz|? dxdt}
O<t=<k

s/zz(x,0)+2ﬂz||i>nq,,{ sup z2+/ lDzlzdxdt}.

O<r<k

If 282 || DIl is less than min{1, v} it is possible to estimate

sup z2 —|—f |Dz|? dxdt

0<t=<k
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in terms of f z2(x, 0). We argue as in [4]; we consider a partition of (0,k) ina

finite number of intervals in such a way that 282 D|| ¢r < 5 and we get
(4.4) sup z2 + // |Dz|*dxdt < ¢ / 22(x,0) dx .
O<r<k

We notice that z is strictly positive. We extend z(-, ¢) for |x| < &y by 1 and
continue to denote by z such an extension, then, denoting by By the ball of
radius d about the origin, we have:

2(, 1) e Wy"(Bag) forae. te(0,k).

In particular, we consider cylindric domains with anular cross section {§p <
lx —yll < p} x {s — p?, s}. If (4.1) and (4.3) hold for all coaxial cylinders and
for all choice of &%, there exists ¥ = v (w, w) such that :

Ry
(4.5) pNw? < y/ f |Dz|*dxdr .
. sfpz {Bo<llx—yll<p}

We suppose that §7! is a positive integer, (y, s) coincident with the origin and
we iterate estimate (4.5) on cylinders

Q) =[(0,£)) + Q8" p, 8% p*)]

1
lj+

§IN=2 N §52ny)2 <)// f |Dz|* dxdr .
1 {8rp<llx=yll<p}

Summation with respect to- j, j =0,1,...,8 % — 1
8 2pNw? < Vf / |Dz2 dxdt .
{8"p<llx—yll<p}
Summation with respectton =0, 1,---,ng — 1

0
nod*N 2pNw? <y / / |Dz|* dxdt .
—p2 J{8"p<|x—yll<p)

Taking into account estimate (4.4), we get

52N_2,0N 2 <)/,ON

and then ngd*N % < y/, therefore we can choose ng in such a way that W
lies in (2, 1). Therefore we have proved that
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Proposition 11. There exists a positive integer ng that can be determined only
in terms of the data w and w such that for 0 <n <ny—1,0<j <35 -1
we have the following alternative:

(4.6) IKLQEQﬁm@J)>H*“%wH<vﬂQW%ﬁ”ﬁN
or
4.7) |«mmeQzmuJ><f4v%wH<v1waﬁ%ﬁw

5. Reducing the oscillation.

Let [(v, s) + Q(p, p*)] C C(1, 2d; k) be fixed and consider coaxial boxes
of the type [(y, 7) + O, r2)], where r ranges over [8p, p], § = §(w, w). The
time location of their vertices ranges over 7 € [s — (p?—r?), s]. We assume that
both (4.1) and (4.3) hold for z for all cylinders of the type specified above i.e.

meas{(x, Hely, )+ 00 )] z(x, 1) >zt — %w} >vH0@, rd))

and

meaS{(x, Hel, )+ Q0 rHl i z(x,t) <z~ + —l-liw} > 1710, )],

where v* are chosen as before. By Proposition 9

5
prz < y(w, w)/ / IDz]dedt.
s—p% J{8p<llx—yll<p}

Let Q,ﬁ' be a cube for which, say for example, (4.6) holds. Then , by the analog
for z of Proposition 2 we have

1 ) 5n 82n 2
20, 0) <2t — —w, Y oely )+ o2, 2

18 " 27 2 -

We return to the starting cylinder [(y, s) + Q(p, p3)]. and , within it, consider
the box [y + K 14:,] X {t],5}; since ty —s = jé?'p?, 1 <0 < 8§70, we get by
Proposition 11:

| 1
2(x,5 —0p*) < 7" — W, Yrely + Kyl
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Then, by logarithmic estimate for z we have: Vvt e (0, 1) there exists a number
&1 such that

meas{(x, 1) € [(y, £) + Q(2r, 40r*)] : 2(x, 1) >zt —ETw} < vT|QQr, 49r2)|.

Now we fix v* as in Proposition 2 for the largest choice of 6 in the range
indicated and select £* from Proposition 4 for z. Then, by the analogous of
Proposition 2

2
z(x,1) <zt — §§+w, Y(x,t)el(y,s) + O, 20r?)],
in particular

2 1 1
zmw<f=§ﬁm wLwﬂmw+Q§W%§me.

6. Continuity for ¢ > 0.

Set C™ Y (w, w) = %[6 (w, w)]"@®) The oscillation of z decreased of a
factor [1—£&(w, w)] going down to a smaller box. The argument can be repeated
for w fixed and continued over a sequence of nested shrinking cylinders with a
common vertex at (y, s). Introduce the sequences: wy = 1 and py = 1 and,
forn = 1,2,..., wpgy = [1 — E(w, wp) Wy, pps1 = C Nw, wy)p, and set
On = [y, $) + Q(pn, p2)]. Then w, — 0 and oscy, < w,.

7. Continuity for ¢ = 0.

Due to the information of the initial datum, the continuity within Al,zd is
simpler to establish. Fix y € /1,54 and consider Q(y, 0; p) = [y+K,1x{0, ,o 23,
This box lies with its bottom at + = 0. We'let z+ be defined by z+ =
SUP (y.0:py 2 and observe that for all 50 €(0,1)

(2= G —E))(,0 =0, Vxely+K,

For the logarithmic estimate Proposition 4 for every v+ € (0, 1) there exists
&1 €(0, 1) such that

meas{(x, t) € Q(y, 0; %p) L2(x, 1) > 25— EY7T) < 1T 0y, O; %ﬂ)lf
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Then we select vt from the logarithmic estimate (Proposition 4) with § = 1
and choose £*. By the analog for z of Proposition 2 it follows that

2 1
z(x, 1) <zt - 5&* TV, ) e Q0,0 7P

Observe that there is no shrinkage in the time variable; we can consider a
sequence of nested cylinders

Q(y,0;4"p)

and the sequences:
2.4
z20=1 zpp=(0- g"g' V2w, n=0,1,2,....

The procedure can be continued in each pair of boxes 0,41 C Q, to yield a
Holder modulus of continuity near ¢t = 0:

2
supz < (1 — &)™,
On 3

8. Coming back to v.

We observe that v is continuous, being the difference of ¢ and z that are
continuous. We prove

Proposifion 12. For every v(')'e (0, 1), there exists a number oy € (0, 1) and
k > 1 that can be determined a priori only in terms of €y, d, y; and vy such
that:

meas{(x, t) € Byy x (0,k) : v(x,1) < g9} < vo|Bag x (0, k).
Proof. For a positive integer s, consider the truncated function
(v —27%)_ = max{(2~* — v); 0}.

We regard v(-, ¢) as an element of W19(Byy), so that (v — 27%)_ e WHO(Byy).
Moreover, since (v — 27%)_ vanishes for'|x| = ¢y we have forall s € N

meas{x € By : v(x, 1) > 27} > | B |.
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Therefore for all ¢ € (0, k), the truncations (v — 27*)_ satisfy the Poincaré type
inequality: _
Q7 =27 [, 1) < 276D N'Byy| <

N+1

< y(N) N/ [Dv(x, t)|dx .
€y 276+D cy <2

Let indicate with A, (¢) the set {x € Byy : v(x,t) < 27°}. We integrate in dt
over (%k, k) majorising the result integral on the right hand side by means of
Holder inequality and square both sides and rewrite it as:

k
47| Agy1)? < v (data, w)d“’”/ / |Dv|* dxdt |Ag — Agyq).
1/2k J As (1)

Let (x; t) — ¢(x,t) be a nonnegative piecewise smooth cut-off function in
Bug x (0, k) such that

te,t) =1 on By x {1k, k}
t(x,t) =0 for |x] = 4d and fort =0
IDfl <5, 0<¢ <2,

In the weak formulation take the testing function (v —27*)_¢? and integrate By
parts over the cylinder with anular cross section {ey < |x| < 4d} x (0, k)

k
/ f ID(v—2"%)_|?dxdt < %/f(v ~ 2792 dxdt +
0 Jeg<|x|<2d d
r—1

.-}-—)Ig-/‘f(vv—Z_s)*dxdt—F”Za?—l—be-l—c“q’r(/O-k ]A;_S‘Zd(z)ﬁ) <

< y(data, w){4™* + k™ '27}|B4g x (0, k)| +

+ “ doat+ ) bt +c”q,r(fok IA;_X,M(IN%)T,

|Agr1(0))? < y(data, @) (1 +k7'2%)[Byg x (0, k)| |As — Agir]| +

DDA C”q,< /ok lA;-s,M(r)I?)

r—

|As - As+1 [
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We add these inequalities for s = 1,2, ..., 5o — 1, where s is to be chosen. We

have:
So—l

(50— DIAg P < D A <
1

So—l

< y(data, ) (1 + k712 Bag x (0,0 ) 1A; = Agyl.
1

We choose k = 2% and then choose sy so large that the right hand side is less
than vy. 0

Proposition 13. There exists numbers oy and k so that for every 1 < r < d
there exists at least one point (y,t) of the cylindrical surface |y| = r, t €
(0, k), such that

v(y, t) > 0p.

Proof. Suppose, by contradiction that
v(y,t) <op. V{lyl=r}x(0,k),

where op need to be chosen. Then v satisfies (4.2) in the cylindrical domain
with anular cross section

{r <|x| <4d} x (0, k)

and it is nonnegative and less than oy on the parabolic boundary of such domain.
In particular

1
0<wvlx,t) <oy, VYx,n)e{d <|x| <2d} x (Ek’ k)
This implies that

1
meas{(x, ) € Byg X (Ek’ k) :v(x,t) <op} >

N-—1
N

In the previous proposition fix vy = % and determines k and oy accordingly.
This generates a contradiction that proves the proposition. 0

>

1 7 1
B -k, k)| > —-|B =k, k).
|2d><(2 )|”8| 2d><(2 )|
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9. Proof of the Theorem for N > 3.

To prove the continuity of u at a point (y, s) € Qr, first assume that such
point coincides with the origin and work within a cylinder Q(p; 0p?), with @
positive number to be chosen. The number € can be chosen as an integer, so the
starting cylinder will be partitioned, up to a set of measure zero, into disjoint
layers of the type

9.1) [0, )+ Q(p, p?)], & =—ip%i=0,1,...,0—1.

The numbers y* and w are defined in Section 2. We will show that within such
a layer, we can locate a small set where u is quantitatively bounded away, either
from p* or from p~.

We let é* and A be defined as in Proposition 9 and § be determined by
Proposition 8. Notice that the number § depends upon w and is independent of
p.

Fix any box of the type (9.1) and assume , after a translation, that his vertex
coincides with the origin, so we can rewrite as [Q(p, p?]. We partition the
cylinder in two steps. First we partition the cube K p» Up to a set of measure
zero, into m" pairwise disjoint subcubes of wedge 2 =p, with m positive integer

to be chosen. ;

3

K, =\ J[xe+K

3t

where x, are their centres. Secondly, we partition the cylinder into m™m?2
pairwise disjoint cylinders. We denote by (x,, #;) their vertices:

1 1
[Cee, 1) + Q(—p, —5pH)]
m m

T

~
i

where for each £ inthe range £ = 1, ..., m" we have #, = (1—h);p;2. Therefore
m2 mN 1
Q@M—UU@MM@(AZM]
h=1¢=1

Within each [(xp, #;) + Q( P L p?)] consider coaxial cylinders of the type
[(xe, T) + Q(r r%)]. The time location of their vertices ranges over t €
[ty — (& m2 0> —r?), 1] and 7 is a positive parameter ranging over the interval
[8m P, L »]. These are cylinders of the type (4.9), (4.10), (4.11), where p has
been replaced by mi p. For each of these cylinders Propositions 2 and 3 hold true
for & = 1. Since we are choosing é+ = £~ = ﬁ we denote by v the common
value of v*.
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Proposition 14. There exists a positive integer m than can be determined a
priori only in terms of w and the data, such that for some cylinder [(x,, th) +
Q(%p, &%pz)] and for some cylinder [(x;,7) + Q(r,r*)] C [(xg,14) +
Q(p, 1 p?)] either

meas{(x, 1) €l(xe, T) + Q(r; rz)] cu(x,t) > pt— 1—12-0)} < v|Q(r, rz)]

or

meas{(x,t) €[, ) + QPO s u(x, 1) < u= + %a)} <00, ).

If both are violated for every cylinder of the type [(x;, 7) + Q(r, #%)] and
for every [(x¢, %) + Q(sp, 25p?)], making up the partition of Q(p, p?) by
virtue of Proposition 9 there exists a constant that can be determined in terms of
the data and w and independent of p and m such that:

1 N Ph
(-—p> w? < y/ / \Duf? dxdt
m = () JIxe+K p]

h

Ve=1,....,m", YVh=1,..., m?

Adding over such indices:
m?pNw? <y / |Du|? dxdr .
0(p,p?)

We combine this with Proposition 6 and 7 and rewrite the resulting inequality
as: .
data,
1 < ____}/( 2 a2 «) .
A wm
The proposition follows by choosing m so large that the right hand side does
not exceed 1. It follows also that @ — m(w) is a decreasing function of w and

lin})m(w) = 0.
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10. The approach to continuity.

Let [(x;, ) + Q(p, p*)] be a cylinder for which the alternative — holds.
Then, by Propositions 2 and 3 we have :
2

~ 1 P p
u(x,t) > u ~—T§a), V(x,t)e[(xg,t)—l—Q(—,——-)].

If instead. the alternative + holds true w1th1n [(xg, )+ O(r, r?)] then u(x, t) <
pt— o, V@, nelln, o)+ 0(s&p, £-p?)]. We may assume that 5~
an integer. Then we further partition the starting cube K, up to a set of measure

zero into
5(w)

disjoint cubes of wedge

0@, _ 2
2m(w) P = 200p0.
Weletxp, £ =1,2,..., g(w) denote their centres so that

q

Izp U[xf+K6nop]
=1

Analogously, we subdivide the cube Q(p, p?) into
. <4m(w) N am(w)\?
PR =\ T5(w) 5()

pairwise disjoint cylinders. If we denote by (xg, #,) their vertices, they take the
form:

I} )
(10.1) [Cxe, 1) + Q(—p, (%)2‘)2”’

where foreach £ =1,2, ..., q(w)

S 2
t = (1 —h)<5n—1) Pl h=1,2,---, p(o).

Proposition 15. For each boxes of the type (9.1) there exists a subcylinder of
the type (10.1) for which either

1
(10.2)  u(x,t) < p* - e YO, t)e[(xe,th)+Q(—p ( —) )

or

1
(103) u(@.n) >u + o, Vi, r)e[(xz,th)JrQ(——p G~ )2 1.
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Let us concentrate on the lower half of the cylinder 0(p, 00 i.e.
[0, —%9) + Q(p, %9,02)]. We assume that the number € has been chosen and
let

1 1
(xe, T) + Q(op, 83011 C [(0, —50+0(p, -2-9p2>]

be a cylinder for which (10.3) holds. We start from such a box and construct a
long, thin cylinder with vertex at the top of Q(p, 6p?) i.e.

[xe + K4 ] x [t,0],  4r =dpp.

‘We rewrite this as )
[(xe, 0) + Q(4r, 40r™)],

where B
28,20 — 1) < 6 < 48;20.
We have
1
(10.4) u(x, —40r?) > u~ — —w, Vxelx, + Kyl

18

Proposition 16. There exists a number & € (0, %) that can be determined a
priori only in terms of the data and o such that

ux,t) > u” +Ew, Y@, 1) €l(xg,0) + O, 6r)].

The proof uses the logarithmic estimate to expand the information to the
top of the cylinder. Thus we have isolated a long, thin cylinder where u is
bounded below. The abscissa of the vertex of such cylinder is not known;
if x, = O then it would imply a decreasing of the oscillation of a factor
(1 —&). Since the location of x, € K, is not known, there is a necessity to
establish that a version of (10.4) holds within a small thin cylinder with vertex
at the origin. This is achieved into two stages. The first stage is some sort of
spreading of positivity. If the alternative (10.3) holds, there exists a time level
ty € (—0p?, %9,02) such that u is quantitatively bounded below in the full cube
[x¢ + Ks,0]. Such positivity spreads sidewise to a full smaller cube about the
origin, after a sufficiently long time.

Proposition 17. There exists numbers &, 8, € (0, 1) and 0 > 1, that can be
determined a priori in terms of the data and w, and a time level

1
—0p? <t < —Eepz
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such that either

(10.5) u(x,t) < pt —&ow, Vxely+Ks,,l
or
(10.6) u(x,to) > u~ +&w, Vxely+ Ks,l.

The essential tool is a sequential selection of blocks of positivity (see [2]).
The number 6 will be a product of a finite, increasing sequence of positive
integers 6 = [] k; that determine a partition of Q(p, 6p?) into disjoint stacks.
There are two alternatives: either among the stacks there exists one where the
bound — is verified for the same abscissa x, for at least one cube within a
smaller stack or the same with +. In fact one cannot present the case of neither
of the two being verified because otherwise it will be in contradiction with
Proposition 15. In the proof the key point is the use of the local comparison
function, used to consider a suitable rescaled parabolic equation in a cylinder of
the form (x, tj41) + Q(r, kj+180“1p2). The change of variables that maps the
ball of center x, in a ball with center in the origin is the following:

4x — x; . (tjy1 — 1) + 16k 41 p*
Ixel 162
It is convenient to introduce a new function # normalized in order to satisfy

u(x,t) > 1.

X —>

The function # satisfies the differential equation

(BG@)), = L(@)
in an annular contained in {1 < |x| < 2d}. Let v the local comparison function
introduced in Section 4

(B()) = Lv on gy 4q X (0, kjy1)
v(x,2) =0 in x| =4d

vix,t) =1 in|x| = &g

v(x,0) =0.

We use Proposition 13 and choose numbers oy, ; and k;; so that
v(y,t) > 00, VY1<]|yl<d, andforsome ¢e€(0,kj).
Returnig to the original coordinates, there exists a time level ¢, such that
u(x, to) > - +6,j0, YVx€Kj ,.

The same holds if we start from the alternative with +. This procedure
determines k; from ki, ka, ..., k;.

The second step is the reduction of the oscillation of u near the top of the
starting box Q(p, 0p?).
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Proposition 18. There exist numbers &,, 6, € (0, 1) and a number 0 > 1 that
can be determined a priori in terms of the data and w, such that either

(10.7) u(x, ) < pt =&, V(x, 1) € QB 08,07
or
(10.8) we, £) > u” A+ Ew, V(X 1) € QBup, 08,07

The proof starts from (10.6) and uses the logarithmic estimate (Proposition
4) and Propositions 3 and 2.

The argument of continuity consists in showing the existence of a family of
nested shrinking cylinders with the same vertex , for each of them the oscillation
is controlled by a sequence w, that tends to zero. We have determined the
functions w — &.(w), 8,(w), 8(w) from the previous Proposition. Consider a
cylinder with vertex at the origin, contained in Q7 of the form Q(2p, 26 (w) 0?),
where w is any number satisfying osc # < w; applying the previous Proposition,
we get

osc u<(l—-é&w)w.
Q[8,0,08%p?]

Consider the sequence
wo=2M, wu41 =1 —&(wp))w,.

By induction, one constructs a sequence of cylinders Q, with radii p, and
heights 6 (w,)p?, for each of them

oscu < wy,
Qll

These cylinders form a family of nested shrinking cylinders with the same vertex
at the origin.

11. Coefficients that depend on ¢.

Let us consider a compact subset K C 27 and denote by B the Banach
space of functions u € L2(0, T; W'2(£2)) such that

lullo,2r = K
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and the modulus of continuity of u is bounded in .K; that is there exists a
continuous increasing function @, w(0) = 0 such that:

lu(xy, 1) — u(x, H)| < w(|x; — x2] + [t — 1o]2).

“We will apply the Schauder Theorem to the following family of nonlinear

operators:
w—v=&(w, 1),

where v is the solution of the linear equation:

B'wyv =" Ditay(x,)Dju + a;(x, 5)v) +

i

+ (=0 3 Dilay (v, 1) Dyv + i, 1)) | +
ij
+ tbi(x, s)Dijv + (1 — 7)b; (x, ty) Div + te(x, s)v + (1 —1t)elx, i)v,
- with s = 1y + th.

Under the assumptions of Hélder-continuity on the coefficients in x and ¢
with respect to the parabolic metric, one can prove the equicontinuity in w and

inz.
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