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RECENT DEVELOPMENTS OF THE CAMPANATO
THEORY OF NEAR OPERATORS
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Dedicated to Professor Sergio Campanato on his 70th birthday

1. Introduction.

The concept of nearness between operators introduced by Campanato is
defined as follows:

Definition 1.1. Let X be a set, B be a Banach space with norm || - ||, A and
B be two operators such that A, B : X— B. We say that A is near B, if there
are two positive constants, o, k, with 0 < k < 1, such for every x1, x, € X we
have:

(1 |B(x1) = B(xz) — a[A(x) — A(x2)]|| < k| B(xy) — B(x2)|.

The starting point of the theory of near operators is the following theo-
rem which was demonstrated by Campanato, firstly in the case of two Hilbert
spaces (see [4]), and then in the following form (see [9]).

Theorem 1.2. Let X be a set, B a Banach space with norm || - ||, A, B be
two operators such that: A, B : X— B, and let A be near B. Under these
hypotheses, if B is a bijection between X and B, A is also a bijection between
X and 8.
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2. A short history.

The idea of introducing the above defined concept of nearness between
operators was generated from the problem of showing the existence and unique-
ness of solutions of nonvariational elliptic problems of the type:

2 1
@) [ueH N H (Q)
a(x, H(u)) = f,

,,,,,

R", a : @ x R” — R is a measurable function which is bounded with
respect to the first variable, continuous with respect to the second variable
and verifies a particular condition of ellipticity, denominated Condition A and
considered in the following. We remember that, even in the linear case where
alx, Hw)) = Z:’ j=14ij(x)D;ju, Problem (2) is not well posed in general,
- under the sole hypothesis of uniform ellipticity i.e. there exists v > 0 such that

n

3) D aymm =vinlz, Yn=(n....,1.) €R".
i,j=1

Hypotheses that are more restrictive than (3) are needed to prove existence
and uniqueness of the solution for Problem (2). One of these is the above
mentioned Condition A, which has been suggested by one of the quite natural
modes in which these problems are usually solved, i.e. the classic fixed point
theorem of contractions. We consider in fact the equation

€Y Au = af + Aw — aa(x, H(w))

and define amap 7 : H2 N H) () — H? N H} () which associates to each
w € H* N HJ () the solution u € H? N HY(S2) of equation (4).

It can be proved that J is a contraction in the above space if a(x, -) verifiés
the following algebraic condition (see [4]):

Condition A 2.1. Three positive constants a, y, § exist, with y + 8 < 1, such
that forall £, 7 € R™, and for all x € Q we have

n
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(%) <yl +4
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Basically, from these considerations, it can be deduced that the operator
u +— a(-, H(u)) is a bijection between H? N HJ(2) and L*(2) as a conse-
quence of the following facts:

(1) a(., H(u)) has a certain relationship with A
(i) Auisabjiection between H? N Hy ($2) and L?(£2).

This is the starting point to apply the scheme of the theory, i.e. Defini-
tion 1.1 and Theorem 1.2.
In fact we can write

Bu = Au
A(u) = a(x, H(u))
X = H>N H} ()
B = L*(Q).
From Condition A it can be obtained that A is near B, while from

Theorem 1.2, since B is a bjiection between these spaces, it can be deduced
that A is a bjiection between them (see [5]).

3. Some developments of the theory.

The following results have been added subsequently to Theorem 1.2 (see
[41, [9] and [13]):

Theorem 3.1. The map A : X5 — B is injective (surjective) if, and only if, it is
near amap B 1 X — B which is injective (surjective).

Theorem 3.2. (Open range). Let A be near B. If B(X) is open in B, then
A(X) is also open in B.

Theorem 3.3. (Dense range). Let A be near B. If B(X) is dense in B, then
A(X) is also dense in B.

One of the ways to demonstrate that A(X) is open (or dense) in B is
therefore linked to finding an operator B such that B(X) is open (or dense)
in B and such that A is near B.

Moreover we can also show the following theorem (see also [8]).

Theorem 3.4. (Compact range). Let A be near B. If B(X) is compact in B,
then A(X) is also compact in B.
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Proof. Let {y,},en be a bounded sequence in A(X). We denote with:
X,={xeX  :y, = AX)},

and we define by {z,},en C B(X) the unique point such that z, = B(X,). The
uniqueness is obtained from the following inequality, that is deduced from (1)
of Definition 1.1:

"

Vx',x" e X.

(6) |BG&") =BG < I) AG) -

From (6) it follows that {z,},cn is a bounded sequence. B(X) is compact so that
if {h,}neny € N is a monotonic increasing sequence such that z;, — z € B(X),
we consider y,, = A(Xj,), X = {x € X : B(x) = z} and y = A(X). In this
case the uniqueness of y is obtained from the following inequality (deduced
from (1) of Definition 1.1)

k+1
(7 [AG) — A < —:—HB(x') - B[, Vx,x"eX.
We claim that y, — y. In fact:
k+1
I3h, =1 = |AG0,) = A = =B, ~ Beo)| =

k+1
— a/ ”zhn ——Z“, XhHGXh”,XEX.

This proves that A(X) is compact.

However we remark that the theory of near operators is not limited to differ-
ential operators which satisfy some algebraic condition such as Condition A,
but it has a wider field of applications. Moreovér Definition 1.1 and Theorem 1.2
can be generalized to complete metric spaces (see [12]).

A first example can be given by showing, using the theory of near opera-
tors, one of the possible generalizations of the Lax-Milgram Theorem (see also
[7D. Therefore, this theory, which was created with the scope of solving non-
variational elliptic problems, has interesting applications in variational elliptic
problems too.

Theorem 3.5. Let H be a Hilbert space and a : H x H — R be a Junction,
with the properties:

(1) v — a(u,v) is linear Vu € H,
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Q) la(ur, v) —a(uy, v)| < Mllu; —uzlly |vllg YveH,
) Fv>0: aluy,ur —ug) — auy, uy — uz) > viluy — usl|%, Yuy,us € H.

(If u—a(u, v) is a linear map, condition (3) reduces to the well known coerciv-
ity condition).

Then, for all F € H* there exists one and only one u € H which solves the
equation

(8) a(u,v) = F(v), YveH.

Proof. We denote with - the map between H and H* defined by: 4 (u)(v) =
a(u, v). We are going to show that » is a bijection between H and H*, i.e. for
all F € H* it there exists one and only one u € H such that

Au)(v) = F(v), YveH.

This is equivalent to the thesis of the theorem: there exists one and only one
solution u € H of the equation

a(u,v) = A)(v) = F(v), YveH.

By Theorem 1.2, it is sufficient to show that #4 is near to the operator g :
H— H* defined by:
Fu)() = (u, v)y.

In particular we remark that ||g(u)||5+ = ||u||z. Moreover, consider the Riesz
operator R : H*— H defined by R(F) = w, F € H*, w € H, where F(v) =
(w,v)u, Yve H and ||w|lg = ||F||g-. Then, in particular, (R(A()), v)y =
AW)(v) = a(u,v), and R = g1, so that g is a bijection between H and H*.

We obtain the thesis of thé theorem by showing the inequality (1), for the
operator § and »4, i.e. showing that two positive constants « and & € (0, 1) exist
such that:

|§@u1) = Fua) — alA@)) — AW . < k|| Fur) — F(uo)]

H*"

We remark that :

2 —
H* —

|G u1) — Gua) — alA(uy) — Aua)]|

= [y = w2 — @A R(AWD)) — RAW|? =

= Jur = wa ], + | R(AGW)) — RAWD|?, —
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= 20 (R(AW1)) — R(AWM2)), uy — u)y =
= [ur — ]}, + | RCAW@D) ~ RAW@)| 7 ~
= 2ala(uy, uy —uz) —a(uy, uy — uy)] <
(by hypotheses (2) and (3))

< ur = wlly + M2 fur = o[y = 2evus o, =

2 2
=[1+a*M* = 2av]|uy — wa||}, = k[ G1) — Jw2) 3.
Here we have set : k = 1 + a?M? — 2av. Itholds 0 < k < 1 provided
0 <1+a?M?—2av < 1, that is:

2v

O<a < —.
M2

As an application of Theorem 3.5 we can solve a simple classic variational
elliptic problem (see for example [16], Section 26.5).

Let us consider a bounded open set €2 in R", with a sufficiently regular
boundary, and the form

a(u,v) = Z/ a;(x, Du)D;vdx ,
=1 Y€

where Du = (Dyu, ..., Dyu), u € Hj(22). On a(-, -) we make the following
hypotheses:

(a) a;(x, p) is measurable in x, and continuous in p € R".
(b) dv > OsuchthatVp, peR", VxeQ:

> lai(x, p) — ai(x, B)I(pi — Py) = vlip — B2

i=1

() AM > 0OsuchthatVp,peR", VxeQ:

Y laix, p) — a;(x, PP < Mllp — P2

i=l1

Under these hypotheses , for each f € H~!(Q2) a unique solution u €
H{}(2) exists for the equation:

n
Z/ ai(x, DuyD;vdx =< f,v> VYve HOI'(Q).
i=1 V¢

The theory of near operators is also applicable in more general situations than
those considered up to now, as it can be seen from the following theorem.
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Theorem 3.6. Let X and Y be Banach spaces, Q@ C X be an open set, and let
A: Q=Y AecCl(Q), xp e

If the Fréchet differential dA(xy) is a bijection between X and Y, then a
constant o > 0 exists such that the restriction of A to the ball S(xq, o) is near
dA(xp).

As a consequence of this theorem and Theorem 3.2, we obtain the classic
theorem of local invertibility of differentiable functions.

More generally, if A is not differentiable, the question rises whether it is
possible to find a smooth operator B, such that A is near B, and under what
hypotheses on A, X, 8 does this occurs. For the moment, a positive answer
has been given to this question in the case A : Q — R™, where 2 is an open
set in R™ (see [15]). In this case, we succeed in finding a good operator B,
such that A is near B provided A is injective and continuous on 2 and if a
particular hypothesis of monotonicity is valid for A. More precisely, if A is
injective and continuous on 2 and if 3¢ € (0, 1) and r > O such that Vx, y e
and Vz € S(0, r) the condition

(Alx +2) = Ay + DIAR) — AR = | AX) — A [fn

is satisfied, it can be shown that, for a fixed x € 2, a neighbourhood U (xg) C
and an operator B : U(xg) — R™ exist such that:

(a) B is differentiable in xg,
(b) dB(xp) is invertible,
(¢) Aisnear Bin U(xg).

4. A theorem on implicit functions.

In view of the strict link existing between the open mapping theorem and
the theorem of implicit functions, a result can also be found in the theory of
near operators that concerns implicit functions (see [14]).

Theorem 4.1. Let X be a topological space, Y be a set, Z be a Banach space
with norm || - ||; moreover let F : X x Y — Z, and B : Y — Z be prescribed
functions such that: ‘

(1) J(xg, yo) € X X Y such that F(xg, yg) = 0;

) x —> F(x, yg) is continuous in x = Xg,

(3) there are a > 0, k € (0, 1) and a neighbourhood of U (xo) of xo in X such
thatVy, y2 €Y and Y x € U (xg) we have
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O [BOD =BG —alF(x, y1) = Fx, w1 < k| B — Bw)|;

(4) B is injective;
(5) B(Y) is a neighbourhood of 7o = B(yy).

Under these hypotheses there is a ball S(zg, o) C B(Y) and a neighbour-
hood V(x9) C U(xp) such that a unique function f : V(x0)—> B~ (S(zp, 0))
exists which is the solution of the problem:

Fx, f(x)) =0
10

(10 F0) = yo .
We observe that the hypotheses (3), (4) and (5) replace the hypotheses
of differentiability with respect to the y variable and the invertibility of the
differential in the classic Hildebrandt-Graves theorem.

From Theorem 4.1 the following theorem can be deduced (see [15]).

Theorem 4.2. Let the function F : Q — R" be continuous in the open set S2 in
R™ x R". Assume that:

(1) Yx, y— F(x,y) is injective; _
(2) there are ¢ € (0,1) and r > 0 such that Y(x,y1),(x,») € Q and
YzeS,r)

(F(x,y1+2) = F(x, y2 + 2)|F(x, y1) — F(x, y2)ge >

> | F(x, y1) — Fx, )%

Finally, let (xo, yo) € Q be such that

F(xo, y0) = 0.

Then there are two neighbourhoods U (xq) and V (o) such that there is a
unique function f : U — V which solve

F@, f(x)) =0
(1D {fum=m.
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5. A topology on the set of operators.

The term near, introduced by means of Definition 1.1, is not purely formal,
but in fact indicates a relation of topological nearness between operators, in the

following sense.
Let X be a set and B be a Banach space with the norm Il - |I. Let us denote

with 4 and # the sets:

A={(B,B:X — B,
H ={P, & : X—B, P is a bijection between X and B}.

We want to define a topology 7 on the set 4 such that J¢ is open in 4 with
the topology .

The topology t can be identified by selecting a neighbourhoods base on
A, defined in the following way:

U(B) = (Ur(B), k€ (0, 1)},
where for each B € 4 and k € (0, 1) we set
Up(B) = {A . X—B suchthat Yx;,x,€X wehave
[BG) = B — tAGn) — A1 = k] B - B ]

It is not difficult to verify that U(B) satisfies the three properties required for
the identification of a neighbourhoods base.

(i) The intersection of a finite family of elements of U(B) is itself an element
of U(B) : in fact for all 2, k € (0, 1) and for all A e Ur(B) N U,(B) we have:

[1[BG1) — B(x)] = t[AG)) — A)]|| < k|e[B(x)) — B(x)1||

|(1=D[B(x1) = B(x)]—(1=0)[A@x) — Ax)]| < A (1=0)[B(x1)~B(x)]].
Hence, Uy (B) N Up(B) € U(B) if t € (0, 1) because:
|BG) = B(xa) — [AGx1) — A(x)]|| =
= ||t + (1 = DB ~ Bx)] — [t + (1 — H][A(x;) — Ax)]| =
< 1B = B(x)] — t[A(x1) — A1 +
+ |1 = DB (x1) — B(xp)] — (1 — H[A(x;) — A)]| =
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< [tk + (1 = Hh]|B(x1) — B(xp)|.
(i) If Ux(B) € U(B), then B € Uy (B): indeed
0= |B(x1) — B(x2) = [B(x1) — B(x)]| < k| B(x1) = B(x2)]|.

(iil) If Up(B) € U(B), then there exists V,(B) € U(B) with the property:
for all C € V,(B) AW, (C) € U(C) such that W;(C) C Ui(B). In fact, let
CeV,(B),ie.

|B(x1) — B(xz) — [C(x1) — C(x)]|| < ||B(x1) — B(xp)].
We consider
Wi(C) = {A . X—>B: Vx;,x,€X we have
[CG) = Clra) = [AG) — A = 1] Cx1) = Cxa) }
Let us show that there exists [ € (0, 1) such thatif A € W,;(C), then A € U, (B):
| B(x1) — B(xp) — [A(x)) — A()]|| <

< | B(x1) = B(x2) — [C(x1) — C(x)]|| +

+ | Cxr) = Clxz) — [Alx) — A)]|| <
< h||B(x1) — Bx)|| +1]|C(x1) = Clx) || <
< h||B(x1)) = B(x)|| + 1| B(x1) — B(x2) — [C(x1) — Cx)]| +
+1||B(x)) = B(x2)|| < (h +1h + D||B(x1) — B(xp)

k)

we obtain the thesis by choosing / < &%, with 0 < & < k.

Moreover, it is also simple to verify that the set J€ is open in + with respect
to the topology 7 defined above.

In fact, if B € # then Ui(B) (with 0 < k < 1) cannot intersect + \ J€ :
indeed, if A € Uy(B) then, according to Theorem 1.2, A is a bijection and
therefore A ¢ A \ .

Remark 1. In the topology of the uniform convergence # is not open in 4.
Indeed, it is enough to consider as an example X = [—1,1], 8 = R and
the functions f, f, : X— & defined in the following way : f(x) = x°,
fulx) = x3 — %x2 + ;%x. It is evident that f,— f uniformly on X but the
functions f, cannot be inverted.
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Remark 2. The above defined topology is not a Hausdorff topology on .
Indeed, Ux(B) = Up(B + T), Vy € B, (where Ty(x) = y,Vx € X) so that
B and B + T, cannot be separated.

On the contrary, all operators taking the same value at an assigned point
can be separated. For example, consider ¢ = {B : X— 8B : B(xy) = 0} with
fixed xo € X: then 7 is a Hausdorff topology on #.

Remark 3. U, (B) is convex.
In fact, if we take D, C € Uy(B) and consider VA e (0, 1) the operator
Ay =AD+ (1 —1)C, then A, € Uy(B) since:
|BGxD) — B(xa) — [Ax(x1) — Ay (x)]]| =

[ BGer) = BGra) = [AD (1) + (1= 2)C(x1) — AD(x2) — (1 = WC(x)]| <
< [AIBGx1) = B(x2)] — ALD(x)) — D(x)]|| +
+ |1 =BG = Be)] — (1 = DIC) — Cw)]|| <
< KA BG) — Bo) | + k(1 — 1) | Bx) — B(xp) | =
= k| B(x1) — B(x)|.

6. Conclusive considerations.
The theory of near operators allows us to obtain:

(1) a generalization of some important results;
(2) the possibility of demonstrating some already known results in a “simpler
manner”.

Estimates similar to the nearness Condition (1) can be found, for example,
in [1] and in [11].

In particular, some open mapping theorems in metric spaces are reported
in [11].

Concerning the theorem of implicit functions, a wide bibliography of its
several generalizations is given in [2].
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