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SOME NEW RESULTS ON A LAVRENTIEFF PHENOMENON

FOR PROBLEMS OF HOMOGENIZATION WITH

CONSTRAINTS ON THE GRADIENT

C. D�APICE - T. DURANTE - A. GAUDIELLO

In this paper we analyze, in the context of a Lavrentieff phenomenon,
the process of homogenization for Dirichlet problems of the following type:

m
p
h (�, β) = inf

��

�

f (hx, Du)dx +

+

�

�

βu dx : u ∈W 1,p(�) (u ∈C1(�) if p = �c1�),

u = 0 on ∂�, |Du(x)| ≤ ϕ(hx) for a.e. x in �

�

,

where� is a bounded open subset of R
n with Lipschitz boundary, β ∈ L1(�),

p ∈ ]n, +∞] or p = �c1� and under suitable hypothesis on f and ϕ. This
problem has been considered in [20] under different hypothesis on f and ϕ.

0. Introduction.

The mathematical models of problems concerning nonhomogeneousmate-
rials use equations or functionals with periodical coef�cients or integrands with
small period. A good approximation of the macroscopic behaviour of such ma-
terials can be found letting the parameter � that describes the microstructure go
to zero. This procedure is called homogenization.
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A sequence of equations or functionals is considered and, using an appro-
priate convergence, the limit equation or functional that describes the macro-
scopic properties is found. This allows to replace a highly nonhomogeneous
medium with an equivalent homogeneous material.

On the other hand it�s very important in the study of physical problems
schematizable by minimization of a functional of Calculus of Variations the
choice of the class of functions. Infact since 1926 it was pointed out an unex-
pected phenomenon concerning an integral functional of Calculus of Variations.

The considered functional was naturally de�ned and lower semicontinuous
(with respect the L1 topology) on the set of the absolutely continuous functions
de�ned on the interval [0,1]; moreover on the set of the Lipschitz functions
u of this kind and such that u(0) = 0 and u(1) = 1 a minimum value was
attained. This value surprisingly enough was strictly lower than the in�mum
value of the same functional computed on the set of Lipschitz functions with
the same boundary conditions (Lavrentieff phenomenon); this fact implies that,
for example, this minimum value cannot be approximated by �nite elements
method. Other examples of the same phenomenon concerning much simpler
functionals were shown in [38].

In this paper we study the homogenization of variational problems for
integral functionals de�ned on functions subject to oscillating constraints on
the gradient that can describe some phenomena in elastic-plastic torsion and
elastatics. These problems can show the presence of a Lavrentieff phenomenon
and, being the integral functional suitable for a process of homogenization, its
persistence after this process. Precisely we analyze the homogenization for
Dirichlet problems of following type:

m
p
h (�, β) = inf

� �

�

f (hx , Du) dx +(0.1)

+

�

�

βu dx : u ∈ W 1,p(�) (u ∈ C1(�) if p = �c1�),

u = 0 on ∂�, |Du(x)| ≤ ϕ(hx) for a.e. x in �
�
,

where � is a bounded open subset of R
n with Lipschitz boundary, β ∈ L1(�),

p ∈ ]n, +∞] or p = �c1�, and f, ϕ are functions satisfying the following
conditions (here and in the sequel Y =]0, 1[n):

(0.2)






f : (x , z) ∈ R
n × R

n → f (x , z) ∈ [0, +∞[,
f measurable and Y -periodic in the x variable, convex in the z one,
f (·, z) ∈ L1(Y ) ∀ z ∈ R

n,

ϕ : x ∈ R
n → ϕ(x) ∈ [0, +∞[,

ϕ Y -periodic.
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A classical conjecture (see for instance [3] and [8]), suggests

lim
h→+∞

{m
p
h (�, β)}h∈N = m

p
hom(�, β) = inf

��

�

f
p
hom(Du) dx +(0.3)

+

�

�

βu dx : u ∈ W 1,p(�) (u ∈ C1(�) if p = �c1�), u = 0 on ∂�
�
,

where f
p
hom is the convex function from R

n to [0, +∞] de�ned by

f
p
hom(z) = inf

� �

Y

f (y, z + Du) dy : u ∈ W 1,p(Y ) (u ∈ C1(Y )(0.4)

if p = �c1�), u Y -periodic, |z + Du(y)| ≤ ϕ(y) a.e. in Y
�

z ∈ R
n

(in (0.4) it is assumed that inf ∅ = +∞).
It is possible to verify, with some examples, that the function f

p
hom really

depends on p (see Remarks 1.12 and 1.13).
Out of the context of the Lavrentieff phenomenon, convergence as in (0.3)

has been veri�ed in many papers under different assumptions (see [1], [8]�[16],
[18], [22]�[26]).

In the context of the Lavrentieff phenomenon, convergence (0.3) has been
analyzed in [19] and [20]. Precisely in [20] it has been proved that if

there exist ϑ ∈ [0, 1
2 [ and m > 0 such that 0 < m ≤ ϕ(y)(0.5)

for a.e. y in ]0, 1[n\] 12 − ϑ, 1
2 + ϑ[n

and if (0.2) together with one of the following conditions is satis�ed:

(0.6) k|z|q ≤ f (x , z) a.e. x in R
n, z in R

n, k > 0, q > n

or

(0.7) ϕ ∈ Lq(Y ) q ∈ ]n, +∞],

then (0.3) holds.

In this paper we prove (0.3) with the hypothesis (0.5) replaced by

(0.8) ∃α ∈ R+ :

�

Y

f (y, ±
√

nαϕ(y)ej ) dy < +∞ ∀ j ∈ {1, . . . , n},

where {e1, . . . , en} denotes the canonical basis of R
n . More precisely if f

and ϕ satisfy (0.2), (0.7), (0.8), then (0.3) holds. Moreover an analysis of the
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convergence of the subsequence of the minimum points of the relaxed problems
in (0.1) is performed.

Observe that the assumption (0.8) allows to analyse some type of con-
straints on the gradient that are not examined by assumption (0.5). For example,
if ϕ is bounded assumption (0.8) but not necessarily (0.5) is satis�ed (see �g.1).

....................................................................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......


...........................................
.......
.......
.......
.......
.

.......

.......

......

.......

......

.......................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................

K y = χy−k

�g. 1

We make use of the �-convergence introduced by E. De Giorgi and of the
identi�cation techniques of �-limits contained in [18], [20] and [26].

1. Notations and preliminaries.

We recall the de�nition and the main properties of �− convergence (see
also [28]).

Let (U, τ ) be a topological space satisfying the �rst countability axiom and
denote R = R ∪ {+∞, −∞}.

De�nition 1.1. Let Fh, h ∈ N, F � and F �� be functionals from U to R.
We say that F � is the �−(τ )-lower limit of {Fh}h∈N and we write

(1.1) F �(u) = �−(τ ) lim inf
h→+∞

Fh(u) ∀u ∈U,

if the following conditions are satis�ed:

(1.2) u ∈U, {uh}h∈N ⊆ U, uh
τ

→ u ⇒ F �(u) ≤ lim inf
h→+∞

Fh(uh),

(1.3) ∀u ∈U, ∃{uh}h∈N ⊆ U : uh
τ

→ u, F �(u) ≥ lim inf
h→+∞

Fh(uh).
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We say that F �� is the �−(τ )-upper limit of {Fh}h∈N and we write

(1.4) F ��(u) = �−(τ ) lim sup
h→+∞

Fh(u) ∀u ∈U,

if (1.2) and (1.3) hold with the operator �lim inf� replaced by �lim sup�.
When F � = F ��, we say that {Fh}h∈N �−(τ )-converges to F �(= F ��) on U

and we write

(1.5) F �(u) = F ��(u) = �−(τ ) lim
h→+∞

Fh(u) ∀u ∈U.

Remark 1.2. Since (U, τ ) satis�es the �rst countability axiom, for every u in
U the subsets of R:

�
lim inf
h→+∞

Fh(uh) : {uh}h∈N ⊆ U and uh
τ

→ u
�

and
�
lim sup
h→+∞

Fh(uh) : {uh}h∈N ⊆ U and uh
τ

→ u
�

have minima. Consequently, the limits in (1.1) and (1.4) exist and are given by

F �(u) = min
�
lim inf
h→+∞

Fh(uh) : {uh}h∈N ⊆ U and uh
τ

→ u
�
,(1.6)

F ��(u) = min
�
lim sup
h→+∞

Fh(uh) : {uh}h∈N ⊆ U and uh
τ

→ u
�
.(1.7)

Recall the following properties of �−-convergence proved in [28].

Proposition 1.3. [28]. Let {Fh}h∈N be a sequence of functionals from U to R.
Then the functionals �−(τ ) lim infh→+∞ Fh and �−(τ ) lim suph→+∞ Fh

are τ -lower semicontinuous on U .
Moreover, if {hk}k∈N is an increasing sequence of integer numbers, it

results

�−(τ ) lim inf
h→+∞

Fh(u) ≤ �−(τ ) lim inf
k→+∞

Fhk
(u) ≤

≤ �−(τ ) lim sup
k→+∞

Fhk
(u) ≤ �−(τ ) lim sup

h→+∞

Fh(u) , ∀u ∈U.



8 C. D�APICE - T. DURANTE - A. GAUDIELLO

De�nition 1.4. [28]. Let {Fh}h∈N be a sequence of functionals from U to R.
We say that the functionals Fh are equicoercive, if for every real number c

there exists a compact set Kc in U such that

{u ∈U : Fh(u) ≤ c} ⊆ Kc , ∀h ∈ N.

If F is a functional from U to R, sc−(τ )F denotes the greatest τ -lower
semicontinuous functional on U less than or equal to F .

Theorem 1.5. [28]. Let Fh(h ∈ N) and G be functionals from U to R. Assume
that there exists

(1.8) F(u) = �−(τ ) lim
h→+∞

Fh(u) ∀u ∈U,

that G is a τ -continuous functional and the functionals Fh+G are equicoercive.
Then the functional F + G attains its minimum on U and

min
�
F(v) + G(v) : v ∈U

�
= lim

h→+∞
inf

�
Fh(v) + G(v) : v ∈U

�
.

Moreover, if uh ∈U is a solution of

min
�
sc−(τ )Fh(v) + G(v) : v ∈U

�
h ∈ N

and
uh

τ
−→ u,

then u is a solution of

min
�
F(v) + G(v) : v ∈U

�
.

Introduce, now, some notations.
If A and B are two bounded open subsets of R

n such that A ⊆ B , write
A ⊂⊂ B .

A R valued function G , de�ned on the set of the bounded open subsets of
R

n , is increasing if
�1 ⊆ �2 ⇒ G(�1) ≤ G(�2).

For an increasing function G, the inner regular envelope G− of G (see
[29]) on an open subset � of R

n is de�ned by

(1.9) G−(�) = sup
A⊂⊂�

G(A).
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For every bounded open subset � of R
n,C◦(�) and C◦

◦ (�) denote the
topologies induced on C◦(Rn) respectively by the extended metrics

d(u, v) = �u − v�C◦(�) = sup
x∈�

|u(x) − v(x)|,

δ(u, v) =

�
d(u, v) if u = v on ∂�,

+∞ otherwise.

For every p in [1, +∞[, W
1,p
per (Y ) denotes the set of the functions u

in W
1,p
loc (Rn) with u Y -periodic. For every bounded open subset � of

R
n, W 1,p

◦ (�) denotes the set of the functions u in W 1,p(�) with u = 0 on
∂�. C1

per(Y ),Lipper(Y ),C1
◦ (�),Lip◦(�) are introduced in a similar way.

For any z in R
n, uz denotes the function de�ned by

uz(x) = z · x ∀x ∈ R
n.

Recall that a subset of R
n is said to be a polyhedron if it is intersection of a �nite

number of half spaces and call a function u on R
n a piecewise af�ne function if

it is C◦(Rn) and can be expressed as

u(x) =

m�

j=1

(uzj (x) + sj )χ ◦

Pj

(x) ∀x ∈

m�

j=1

◦

Pj ,

where z1, . . . , zm ∈ R
n, s1, . . . , sm ∈ R and P1, . . . , Pm are piecewise disjoint

polyhedrons with nonempty interiors such that
m�

j=1

Pj = R
n .

For every subset P of R
n and � > 0, P+

� and P−
� denote the open sets

de�ned by

P+
� = {x ∈ R

n : dist (x , P) < �}, P−
� = {x ∈ P : dist (x , ∂P) > �}.

If x◦ belongs to R
n and r is in ]0, +∞[, denote

Br (x◦) =
�
x ∈ R

n : |x − x◦| < r
�
.

Let α be a nonnegative function in C∞
◦ (Rn), whit support contained in

B1(0), such that
�

Rn α(y) dy = 1 and let u be in L1loc(R
n). For every � > 0 set

α(�)(y) = �−nα(y/�), y in R
n , and de�ne the �-regularization u� of u by

(1.10) u�(x) =

�

Rn

α(�)(x − y)u(y) dy , x ∈ R
n.
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If ϕ satis�es (0.2), set

ϕh(x) = ϕ(hx) ∀x ∈ R
n, ∀h ∈ N.

By virtue of the Sobolev embedding theorem, W
1,p
loc (Rn) ⊂ C◦(Rn) with

continuous injection, for p ∈ ]n, +∞]. Then, for every bounded open subset �
of R

n, h ∈ N, and p in ]n, +∞], consider the following functionals on C◦(Rn):

(1.11) F
p
h (�, u) =






�

�

f (hx , Du) dx if u ∈ W
1,p
loc (Rn),

|Du(x)| ≤ ϕh(x) for a.e. x in �,

+∞ otherwise on C◦(Rn),

(1.12) Fc1
h (�, u) =






�

�

f (hx , Du) dx if u ∈ C1(Rn),

|Du(x)| ≤ ϕh(x) for a.e. x in �,

+∞ otherwise on C◦(Rn).

For every bounded open subset � of R
n and for every p in ]n, +∞] or

p = �c1� set

(1.13)






F �p(�, u) = �−(C◦(�)) lim inf
h→+∞

F
p
h (�, u), ∀u ∈ C◦(Rn),

F ��p(�, u) = �−(C◦(�)) lim sup
h→+∞

F
p
h (�, u), ∀u ∈ C◦(Rn).

If
F �p (�, u) = F ��p(�, u) ∀u ∈ C◦(Rn),

set

(1.14) F p (�, u) = �−(C◦(�)) lim
h→+∞

F
p
h (�, u) ∀u ∈ C◦(Rn).

Moreover, set

(1.15)






F �p
◦ (�, u) = �−(C◦

◦ (�)) lim inf
h→+∞

F
p
h (�, u), ∀u ∈ C◦(Rn),

F ��p
◦ (�, u) = �−(C◦

◦ (�)) lim sup
h→+∞

F
p
h (�, u), ∀u ∈ C◦(Rn).

If
F �p

◦ (�, u) = F ��p
◦ (�, u) ∀u ∈ C◦(Rn),
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set

(1.16) F p
◦ (�, u) = �−(C◦

◦ (�)) lim
h→+∞

F
p
h (�, u), ∀u ∈ C◦(Rn).

By virtue of (0.2), for every u in C◦(Rn) and for every p in ]n, +∞]
or p = �c1�, the above set functions F �p(·, u) and F ��p(·, u) are increasing.
Consequently de�ne F−

�p (�, u) and F−
��p (�, u) by (1.9) written with G =

F �p(·, u) and G = F ��p(·, u) respectively.
For every p in ]n, +∞] or p = �c1�, the following properties hold:

F �p(�, u) ≤ F ��p(�, u) for every bounded open subset� of R
n(1.17)

and u in C◦(Rn).

F �p(�, u + c) = F �p(�, u) and F ��p(�, u + c) = F ��p(�, u)(1.18)

for every bounded open subset� of R
n, u in C◦(Rn) and c in R.

(1.19) F �p(�, u1) = F �p(�, u2) and F ��p(�, u1) = F ��p(�, u2)

for every bounded open subset� ofRn and u1, u2 inC◦(Rn)with u1 = u2 in�.

For every function g : R
n →]−∞, +∞] we set dom g = {z ∈ R

n : g(z) <

+∞}.
The following results yield some properties of the function f

p
hom de�ned in

(0.4).

Proposition 1.6. Let f and ϕ be functions satisfying (0.2), (0.8), α be the
constant given in (0.8) and, for p in ]n, +∞] or p = �c1�, let f

p
hom be the

function de�ned in (0.4).
Then

i) dom f
p
hom is a convex subset of R

n ;
ii) f

p
hom is a convex function on R

n ;
iii) 0∈ dom f

p
hom;

iv) 0 belongs to (dom f
p
hom)◦ if (dom f

p
hom)◦ is not empty;

v) dom f
p
hom is bounded if f and ϕ satisfy (0.7) too;

vi) f
p
hom is bounded on Bαr (0), if Br (0) is included in dom f

p
hom ;

vii) f
p
hom(z) = inf

��

Y

f (hx , z + Dv) dx : v ∈ W 1,p
per (Y ) (C1

per(Y ) if p =� c1�),

|z + Dv| ≤ ϕh a.e. in Y
�

∀ z ∈ R
n, h ∈ N.
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Proof. The statements i), ii) and iii) immediately follow from De�nition (0.4).
Prove now iv) for p in ]n, +∞[. The proof is similar in the other cases.
Since (dom f

p
hom)◦ is not empty, there exist z◦ in R

n and r in ]0, +∞[ such
that

(1.20) Br (z◦) ⊆ dom f
p
hom.

Let α be the constant given in (0.8) (observe that it is not restrictive to
assume α in ]0, 1[) and verify that

(1.21) Bαr (αz◦) ⊆ dom f
p
hom, Bαr (−αz◦) ⊆ dom f

p
hom.

Let z be in Bαr (αz◦) (resp. Bαr (−αz◦)), then
1
α
z belongs to Br (z◦) (resp. −

1
α
z

belongs to Br (z◦)). Consequently, by virtue of (1.21),

∃w1 ∈ W 1,p
per (Y ) : |z + Dw1| ≤ αϕ a.e. in Y (resp. ∃w2 ∈ W 1,p

per (Y ) :

|z + D(−w2)| = | − z + Dw2| ≤ αϕ a.e. in Y ),

fromwhich it follows that, z+Dw1 (y) (resp. z−Dw2 (y)) belongs to the convex

envelope of the set
�

±
√

nαϕ(y)ej

�

j=1,...,n
for a.e. y in Y . Consequently, since

α is in ]0, 1[, De�nition (0.4) and assumptions (0.2), (0.8) provide that

f
p
hom(z) ≤

�

Y

f (y, z + Dw1) dy ≤

n�

j=1

��

Y

f (y, +
√

nαϕ(y)ej ) dy +

+

�

Y

f (y, −
√

nαϕ(y)ej ) dy
�

< +∞,

f
p
hom(z) ≤

�

Y

f (y, z − Dw2) dy ≤

n�

j=1

��

Y

f (y, +
√

nαϕ(y)ej ) dy +

+

�

Y

f (y, −
√

nαϕ(y)ej ) dy
�

< +∞,

i.e. (1.21). By virtue of i), the statement iv) follows from (1.21).
Regarding the proof of v), �rst observe that (0.7) and (0.8) provide that ϕ

is in L1(Y ). If z is in dom f
p
hom, there exists u in W

1,p
per (Y )(C1

per(Y ) if p = �c1�)

such that

(1.22) |z + Du| ≤ ϕ a.e. in Y,

�

Y

Du dy = 0.
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Consequently

|z| =
�
�
�

�

Y

(z + Du) dy
�
�
� ≤

�

Y

|z + Du| dy ≤

�

Y

ϕ dy < +∞,

that is

dom f
p
hom ⊆

�
z ∈ R

n : |z| ≤

�

Y

ϕ dy
�
.

To prove vi) observe that if z belong to Bαr (0), then
1
α
z is in Br (0). Then

by virtue of our assumption,

∃w ∈ W 1,p
per (Y ) (C1

per(Y ) if p = �c1�) : |z + Dw| ≤ αϕ a.e. in Y,

from which it follows that z + Dw belong to the convex envelope of the set�
±

√
nαϕ(y)ej

�

j=1,...,n
for a.e. y in Y .

Consequently, since we can assume α less than 1, De�nition (0.4) and assump-
tions (0.2), (0.8) provide that

f
p
hom(z) ≤

�

Y

f (y, z + Dw) dy ≤

≤

n�

j=1

�

Y

f (y, ±
√

nαϕ(y)ej ) dy < +∞ ∀ z ∈ Bαr (0).

The proof of vii) is achieved arguing in the same way of Theorem 7.6 in
[17]. �

For every x in R
n , p in ]n, +∞] or p = �c1�, de�ne

K
� p(x) =

�
z ∈ R

n : F
� p(Ix , uz) < +∞(1.23)

for some neighbourhood Ix of x
�
,

K
�� p(x) =

�
z ∈ R

n : F
�� p(Ix , uz) < +∞(1.24)

for some neighbourhood Ix of x
�

where, for a �xed z in R
n, uz : x ∈ R

n → zx ∈ R.
The following result is proved in Lemma 2.1 of [18]:
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Lemma 1.7. [18]. Let f and ϕ be functions satisfying (0.2), (0.8), for p in
]n, +∞] or p = �c1�, let f

p
hom be the function de�ned in (0.4) and, for every x

in R
n, K

� p(x), K
�� p(x), be the sets de�ned in (1.23) and (1.24). Then

(1.25) dom f
p
hom = K

� p(x) = K
�� p(x) ∀x ∈ R

n.

Let g : R
n →] − ∞, +∞] be a convex function such that 0 belongs to

dom g. Then the limit

(1.26) g(z) = lim
t→1−

g(t z) z ∈ R
n

exists for every z in R
n .

The following result is proved in [26]:

Lemma 1.8. [26]. Let g : R
n →] − ∞, +∞] be a convex function such that 0

belongs to dom g and let g be the function de�ned in (1.26).
Then g is convex and

g(z) ≤ g(z) ∀ z ∈ R
n,(1.27)

g(z) = g(z) ∀ z ∈ R
n \ ∂domg.(1.28)

Moreover, if 0 belongs to (dom g)◦, g is lower semicontinuous on R
n .

De�nition 1.9. Let f and ϕ be functions satisfying (0.2), (0.8) and, for p in
]n, +∞] or p = �c1�, let f

p
hom be the function de�ned in (0.4). Since f

p
hom is a

convex function and 0 belongs to dom f
p
hom [see i) and iii) of Proposition 1.6],

de�ne f
p

hom by

(1.29) f
p

hom(z) = lim
t→1−

f
p
hom(t z) z ∈ R

n.

Lemma 1.10. Let f and ϕ be functions satisfying (0.2), (0.8), α be the constant
given in (0.8), � be a bounded measurable subset of R

n and {mh}h∈N be a
sequence of measurable vectorial functions on � such that

(1.30) ∃h◦ ∈ N : ∀h( ∈ N) > h◦ |mh (x)| ≤ αϕh(x) a.e. in �.

Then we have

lim sup
h→+∞

�

�

f (hx ,mh(x)) dx ≤ c|�|,

where

c =

n�

i=1

� �

Y

f (y,
√

nαϕ(y)ei) dy +(1.31)

+

�

Y

f (y, −
√

nαϕ(y)ei) dy
�

< +∞.
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Proof. By virtue of (1.30), for every integer number h > h◦ and for a.e. x in

�,mh(x) belongs to the convex envelope of the set
�

±
√

nαϕh(x)ei

�

i=1,...,n
.

Consequently assumptions (0.2) and (0.8) provide that

lim sup
h→+∞

�

�

f (hx ,mh(x)) dx ≤

≤

n�

i=1

�
lim sup
h→+∞

�

�

f (hx ,
√

nαϕh(x)ei) dx +

+ lim sup
h→+∞

�

�

f (hx , −
√

nαϕh(x)ei ) dx
�

=

= |�|

n�

i=1

��

Y

f (y,
√

nαϕ(y)ei) dy +

�

Y

f (y, −
√

nαϕ(y)ei) dy
�
. �

The following result is proved in Lemma 1.3 of [20].

Lemma 1.11. [20]. Let f and ϕ be functions satisfying (0.2), let � be a
bounded open subset of R

n and, for p in ]n, +∞] or p = �c1�, let F
� p be

de�ned in (1.13). Then,

(1.32) F
� p(�, tu) ≤ t F

� p(�, u) + |�|(1− t)

�

Y

f (y, 0) dy

for every u in C◦(Rn) and t in [0, 1].

Similar inequalities hold for F
� p
− , F

�� p, F
�� p
− in place of F

� p.

We prove through the following examples that the function f
p
hom really

depends on p.

Remark 1.12. Let n = 1, f be a function satisfying (0.2) and K be a closed

set such that K ⊆ Y, |K | = 1
2
,

◦

K = φ and ϕ = χ
K
.

For p in ]n, +∞] or p = �c1�, let f
p
hom be the function de�ned in (0.4).

Then, in [20] it is proved that there exists c ∈ R+ depending on f such that

f
p

hom(z) ≤ f
p
hom(z) ≤ c < f

c1

hom(z) = f c1
hom(z) = +∞

for every z ∈ R such that 0 < |z| < 1
2
and for every p in ]n, +∞].
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Remark 1.13. Let w be the function on R
2 de�ned by

w(x1, x2) =
x1

max{|x1|, |x2|}
a.e. in P =] − 1, 1[2, w − x1 P-periodic.

Let q in ]1, 2[ and de�ne the function

f : (x , z) ∈ R
2 × R

2 → f (x , z) = |det [Dw(x), z]| + |z|q .

For p in [1, +∞], set

f̂
p
hom(z) = inf

� 1

meas(P)

�

P

f (y, z + Dv) : v ∈ W 1,p
per (P)

�
, z ∈ R

n.

In [19], Section 6, it is proved that

(1.33) f̂
p
hom(z) ≥ |z2| + |z|q , ∀ z = (z1, z2) ∈ R

2, p > 2,

(1.34) f̂
p
hom(z) ≤ cq |z|

q , ∀ z = (z1, z2) ∈ R
2, 1 ≤ p ≤ 2,

where cq is a positive constant only depending on q .

Fix now z in the non empty open set A =
�
z ∈ R

2 : |z2| + |z|q > cq |z|
q
�

and consider the function

ϕ(x1, x2) =
zx

max{|x1|, |x2|}
a.e. in P =] − 1, 1[2, ϕ − uz P-periodic.

For p in [1, +∞], set

f
p
hom(z) = inf

� 1

meas(P)

�

P

f (y, z + Dv) : v ∈ W 1,p
per (P), |z + Dv| ≤ |Dϕ|

�
,

z ∈ R
n.

From (1.33) it follows that

(1.35) f
p
hom(z) ≥ f̂

p
hom(z) ≥ |z2| + |z|q , ∀ z = (z1, z2) ∈ R

2, p > 2.

On the other hand, arguing as in (6.12) in [19], it results that

(1.36) f
p�

hom(z) ≤ cq |z|
q < |z2| + |z|q , 1 ≤ p� ≤ 2.

Combining (1.35) with (1.36), it follows that

f
p�

hom(z) < f
p
hom(z), 1 ≤ p� ≤ 2 < p ≤ +∞.
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2. Some properties of �-limits.

In this section we adapt some results on the sub-additivity of �-limits
proved in [18].

Let f and ϕ be function satisfying (0.2), (0.8), α is the constant given in
(0.8) and for p in ]n, +∞] or p = �c1�, let f

p
hom be the function de�ned in (0.4).

If (dom f
p
hom)◦ �= ∅, iv) of Proposition 1.6 provides that

(2.1) ∃δ ∈ (0, 1) : B(r/α)δ (0) ⊆ dom f
p
hom.

Obviously δ depends on p.
By arguing as in Lemma 2.3 in [18], it is easy to prove the following result:

Lemma 2.1. Let f and ϕ be functions satisfying (0.2), (0.8) and, for p in
]n, +∞] or p = �c1�, let f

p
hom be the function de�ned in (0.4). Assume that

(dom f
p
hom)◦ �= ∅ and let δ be the constant given in (2.1).

Then there exists a constant M dependent only on n, and ϕ such that
for every bounded open subset � of R

n and for every compact subset B of
R

n included in � there exist a sequence {ψh}h∈N in W 1,p
◦ (�)(Lip◦(�) if

p = +∞,C1
◦ (�) if p = �c1�) and ψ in W 1,p

◦ (�)(Lip◦(�) if p = +∞ or
if p = �c1�) with

0 ≤ ψh ≤ 1 in �, ∀h ∈ N;(2.2)

ψh = 1 in B, ∀h ∈ N;(2.3)

ψh → ψ strongly in L∞(�), as h → +∞;(2.4)

|Dψh | ≤
M

δ dist(B, ∂�)
ϕh a.e. in �, ∀h ∈ N.(2.5)

The proofs of Proposition 2.2 and Proposition 2.3 essentially follow the
same outlines of the proofs of Proposition 2.4 and Proposition 2.5 in [18].
In our case, to complete proofs we make use of (2.5), of Lemma 2.1 and of
Lemma 1.10.

Proposition 2.2. Let f and ϕ be functions satisfying (0.2), (0.8) and, for
p in ]n, +∞] or p = �c1�, let f

p
hom be the function de�ned in (0.4),

F �p, F ��p, F �p
◦ , F ��p

◦ be the functionals de�ned in (1.13), (1.15). Assume that
(dom f

p
hom)◦ �= ∅.

Then

(2.6) F
� p(�, u) = F

� p
− (�, u) = F

� p
◦ (�, u),

F
�� p(�, u) = F

�� p
− (�, u) = F

�� p
◦ (�, u),

for every bounded open subset � of R
n and for every u in C◦(Rn) such that

u = 0 on ∂�.
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Proof. The proof is performed only for p in ]n, +∞[. In the other cases the
proof is similar.

Let � be a bounded open subset of R
n and u in C◦(Rn) such that u = 0

on ∂�.
Prove (2.6) for the functionals F

�� p and F
�� p
◦ . The proof for F

� p and F
� p
◦ is

analogous.
Let {�k}k∈N be a sequence of positive numbers such that �k → 0+ as

k → +∞ and, for every k in N, let χk be the real function de�ned by

(2.7) χk(t) =






0 if t ∈ [0, �k],
1
2�k

(t − �k)
2 if t ∈ ]�k, 2�k],

t − 3
2
�k if t ∈ [2�k, +∞[,

−χk(−t) if t ∈ ]− ∞, 0[.

For every k in N let �k ⊂⊂ � be such that

(2.8) sup
x∈�\�k

|u(x)| <
�k

2
, |� \ �k | < �k .

Prove that

(2.9) F
�� p
◦ (�, u) ≤ F

�� p
− (�, u).

To this aim assume that F
�� p
− (�, u) < +∞. Then for every k in N

there exists a sequence {uk
h}h∈N in W

1,p
loc (Rn) such that uk

h → u in C◦(�k)

as h → +∞ and there exists rk in N such that rk ≥ k,

(2.10) |Duk
h | ≤ ϕh a.e. in �k , ∀h ≥ rk

and

(2.11) F
�� p(�k , u) ≥ lim sup

h→+∞

�

�k

f (hx , Duk
h) dx .

For every k in N, let be sk in N such that sk ≥ rk ,

(2.12) F
�� p(�k, u)) +

1

k
≥

�

�k

f (hx , Duk
h) dx ∀h > sk,

and

(2.13) �u − uk
h�C◦(�k) ≤

�k

2
∀h > sk .
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For h suf�ciently large, set kh = max{k ∈ N : sk ≤ h} and de�ne the
functions uh and uh by

(2.14) uh(x) = u
kh
h (x) uh(x) = χkh (uh(x)) x ∈ R

n.

Since h ≥ rkh , from (2.10) it follows that

(2.15) |Duh | ≤ ϕh a.e. in�kh for h suf�ciently large,

moreover from (2.13) and (2.8) it follows that

(2.16) uh = 0 on ∂�kh for h suf�ciently large.

Still denote by uh the function de�ned by

uh =

�
uh in �kh

0 in R
n \ �kh .

Then by virtue of (2.7), (2.13) and (2.14) it results that

(2.17) |uh(x) − u(x)| ≤ |uh(x) − uh(x)| + |uh(x) − u(x)| ≤

≤ 3�kh +
1

2
�kh =

7

2
�kh in�kh , for h suf�ciently large,

and by (2.8) that

(2.18) |uh(x) − u(x)| = |u(x)| ≤
1

2
�kh in � \ �kh , for h suf�ciently large.

Consequently, from (2.17) and (2.18) it follows that

(2.19) uh → u in C◦
◦ (�)

and, from (2.7) and (2.15), that

(2.20) |Duh | ≤ ϕh a.e. in �, for h suf�ciently large.

Let B1 and B2 be two open subsets of R
n such that B1 ⊂⊂ B2 ⊂⊂ �kh

for h large enough, let {ψh}h ⊆ W 1,p
◦ (B2) be the sequence given by Lemma 2.1

whit B = B1 and set

(2.21) wh = ψhuh + (1− ψh)uh ∀x ∈ �.
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Obviously wh → u in C◦
◦ (�). Moreover, for every t in [0, 1[, by virtue of

(2.15), (2.20), Lemma 2.1, and (2.19) it results

t |Dwh | ≤ t |ψhDuh + (1− ψh)Duh + Dψh (uh − uh)| ≤(2.22)

≤ t
�
ψhϕh + (1− ψh)ϕh + |Dψh ||uh − uh |

�
≤

≤ t
�
ϕh +

M

δ dist(B1, ∂B2)
ϕh�uh − uh�C◦(�)

�
≤ ϕh

a.e. in �, for h suf�ciently large.

By using the convexity of f (x , ·), it results

�

�

f (hx , t Dwh) dx ≤ t
��

�

ψh f (hx , Duh) dx +(2.23)

+

�

�

(1− ψh) f (hx , Duh) dx
�

+ (1− t)

�

�

f
�
hx ,

t

1− t
(uh − uh)Dψh

�
dx ≤

≤ t
��

�kh

ψh f (hx , Duh) dx +

�

�kh

(1− ψh) f (hx , Duh) dx +

+

�

�\�kh

(1− ψh) f (hx , 0) dx
�

+ (1− t)

�

�

f
�
hx ,

t

1− t
(uh − uh)Dψh

�
dx ,

∀ t ∈ [0, 1[ for h suf�ciently large.

Hence, by de�nitions (2.14),

�

�

f (hx , t Dwh) dx ≤(2.24)

≤ t
��

�kh

ψh f (hx , Duh) dx +

�

�kh

(1− ψh)χ
�
kh

(uh) f (hx , Duh) dx+

+

�

�kh

(1− ψh)(1− χ �
kh

(uh)) f (hx , 0) dx +

�

�\�kh

f (hx , 0) dx
�

+

+ (1− t)

�

�

f
�
hx ,

t

1− t
(uh − uh)Dψh

�
dx ,

∀ t ∈ [0, 1[ for h suf�ciently large,

from which, by virtue of the properties of {ψh}h∈N , {χkh }kh∈N and (2.11), it
follows that

�

�

f (hx , t Dwh) dx ≤(2.25)
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≤ t
��

�kh

f (hx , Duh) dx + 2

�

�\B1

f (hx , 0) dx
�

+

+ (1− t)

�

�

f (hx ,
t

1− t
(uh − uh)Dψh ) dx ≤

≤ t
�
F

�� p(�kh , u) +
1

kh

+ 2

�

�\B1

f (hx , 0) dx
�

+

+ (1− t)
��

B2

f (hx ,
t

1− t
(uh − uh)Dψh) dx +

�

�\B2

f (hx , 0) dx
�
,

∀ t ∈ [0, 1[, for h suf�ciently large.

Since
uh − uh → 0 in C◦(B2) as h → +∞,

by virtue of (2.5) of Lemma 2.1 ∀ t ∈ [0, 1[ ∃ht ∈ N : ∀h( ∈ N) > ht

�
�
�

t

1− t
(uh − uh)Dψh

�
�
� ≤

t

1− t
||uh − uh ||C◦ (B2)

M

δ dist(B1, ∂B2)
ϕh ≤

≤ αϕh a.e. in �,

where α is the constant given in (0.8). Consequently, Lemma 1.10 provides that

(2.26) lim sup
h→+∞

�

�

f (hx ,
t

1− t
(uh − uh)Dψh) dx ≤ c|B2| ∀ t ∈ [0, 1[,

where c is the constant de�ned in (1.31). Hence by (2.25) and (2.26), as
h → +∞,

F ��p
◦ (�, tu) ≤ t F

��p
− (�, u) + 2t |� \ B1|

�

Y

f (y, 0) dy + (1− t)|�|·(2.27)

·
�
c +

�

Y

f (y, 0) dy
�
, ∀ t ∈ [0, 1[.

Since u = 0 on ∂� it follows that tu → u in C◦
◦ (�).Therefore by (2.27)

as t → 1− and as B1 converges to � we deduce that

(2.28) F ��p
◦ (�, u) ≤ F

��p
− (�, u).

On the other side,since always

(2.29) F
��p
− (�, u) ≤ F ��p(�, u) ≤ F ��p

◦ (�, u),
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the conclusion follows from (2.28) and (2.29). �

Proposition 2.3. Let f and ϕ be functions satisfying (0.2), (0.8), for p in
]n, +∞] or p = �c1�, let f

p
hom be the function de�ned in (0.4), F �p ,F ��p be

the functionals de�ned in (1.13) and let �, �1, �2 be bounded open subsets of
R

n .

If �1 ∩ �2 = φ and �1 ∪ �2 ⊆ �, then

(2.30) F
�p
− (�, u) ≥ F

�p
− (�1, u) + F

�p
− (�2, u) ∀u ∈ C◦(Rn).

If � ⊆ �1 ∪ �2 and (dom f
p
hom)◦ �= φ , then

(2.31) F
��p
− (�, u) ≤ F

��p
− (�1, u) + F

��p
− (�2, u) ∀u ∈ C◦(Rn).

Proof. The proof is performed only for p in ]n, +∞[. In the other cases the
proof is similar.

Inequality (2.30) follows directly from the de�nition of F
�p
− .

To prove (2.31), it suf�cies to consider the case in which � ⊂⊂ �1 ∪ �2

and prove that

(2.32) F ��p(�, u) ≤ F ��p(�1, u) + F ��p(�2, u) ∀u ∈ C◦(Rn).

Fix u in C◦(Rn) and assume that the right hand side of (2.32) is �nite.

Consequently, for i = 1, 2 there exists a sequence {u(i)
h }h∈N in W

1,p
loc (Rn), such

that u
(i)
h → u in C◦(�i ) as h → ∞, |Du

(i)
h | ≤ ϕh a.e. in �i for h suf�ciently

large and

(2.33) F ��p(�i , u) ≥ lim sup
h→+∞

�

�i

f (hx , Du(i)
h ) dx .

Since � ⊂⊂ �1 ∪ �2, for � small enough it result that � ⊂⊂ �−
1,� ∪ �2.

Let {ψh}h∈N be a sequence in W 1,p
◦ (�1) satisfying Lemma 2.1 with

B = c1(�−
1,�) and set

(2.34) wh = ψhu
(1)
h + (1− �h)u

(2)
h .

Observe that wh → u in C◦(�). Moreover, as in (2.22), for every t in
[0, 1[ it results t |Dwh | ≤ ϕh a.e. in �, for h suf�ciently large.
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By making use of the convexity of f (x , ·) we have

F ��p(�, tu) ≤ lim sup
h→+∞

�

�

f (hx , t Dwh) dx ≤(2.35)

≤ t lim sup
h→+∞

�

�

ψh f (hx , Du
(1)
h ) dx + t lim sup

h→+∞

�

�

(1− ψh) f (hx , Du
(2)
h ) dx+

+(1 − t) lim sup
h→+∞

�

�

f (hx ,
t

1− t
(u

(1)
h − u

(2)
h Dψh) dx ≤

≤ t lim sup
h→+∞

�

�1

f (hx , Du
(1)
h dx + t lim sup

h→+∞

�

�\�−
1,�

f (hx , Du
(2)
h ) dx +

+ (1− t) lim sup
h→+∞

�

�∩(�1\�
−
1,�

)

f
�
hx ,

t

1− t
(u

(1)
h − u

(2)
h )Dψh

�
dx +

+ (1− t) lim sup
h→+∞

�

�\(�1\�
−
1,�

)

f (hx , 0) dx , ∀ t ∈ [0, 1[.

Since � ∩ (�1 \ �−
1,�) ⊆ �1 ∩ �2,

u
(1)
h − u

(2)
h → 0 in C◦(� ∩ (�1 \ �−

1,�)) as h → +∞.

Then, by virtue of (2.5) of Lemma 2.1, it results that

∀ t ∈ [0, 1[, ∃ht ∈ N : ∀h( ∈ N) > ht

�
�
�

t

1− t
(u(1)

h − u(2)
h )Dψh

�
�
� ≤

t

1− t
||u(1)

h − u(2)
h ||C◦(�∩(�1\�

−
1,�

))

M

δ�
ϕh ≤ αϕh

a.e. in � ∩ (�1 \ �−
1,�),

where α is the constant given in (0.8). Consequently, Lemma 1.10 provides that

lim sup
h→+∞

�

�∩(�1\�
−
1,�

)

f (hx ,
t

1− t
(u

(1)
h − u

(2)
h )Dψh) dx ≤(2.36)

≤ c|�| ∀ t ∈ [0, 1[,

where c is the constant de�ned in (1.31).
Combining (2.33) with (2.35) and (2.36) it results

F ��p(�, tu) ≤ t F ��p(�1, u) + t F ��p(�2, u) + (1− t)c|�| +(2.37)

+ (1− t)|�|

�

Y

f (y, 0) dy ∀ t ∈ [0, 1[.

Finally, passing to the limit, as t → 1−, in (2.37), inequality (2.32) is
proved. �
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3. Finiteness conditions.

Let f and ϕ be functions satisfying (0.2), (0.8) and, for p in ]n, +∞] or
p = �c1�, let F ��p be the functional de�ned in (1.13). In this section, following
the some outlines of cap.3 in [18], we give suf�cient conditions on � and u
in order to get �niteness of F ��p(�, u). To this purpose we �rst prove some
lemmas.

Lemma 3.1. Let f and ϕ be functions satisfying (0.2), (0.8) and for p in
]n, +∞] or p = �c1�, let f

p
hom be the function de�ned in (0.4).

Let ϑ > 0, z be in dom f
p
hom and v in W

1,p
per (Y ) (in C1

per(Y ) if p = �c1�)

such that |z + Dv| ≤ ϕ a.e. in Y and f
p
hom(z) + ϑ >

�
Y f (y, z + Dv) dy and,

for every h in N and x in R
n , set vh (x) = 1

h
v(hx).

Then

(3.1) |z + Dvh | ≤ ϕh a.e. in R
n, ∀h ∈ N

and

|�|( f
p
hom(z) + ϑ) > lim

h→+∞

�

�

f (hx , z + Dvh) dx(3.2)

for every bounded open subset � of R
n.

Proof. Inequality (3.1) follows immediately by the assumptions on v and ϕ .
Fix a bounded open subset � of R

n . By the periodicity of f (·, Dv(·)), the
limit in (3.2) exists and

lim
h→+∞

�

�

f (hx , z + Dvh ) dx = lim
h→+∞

�

�

f (hx , z + (Dv)(hx)) dx =(3.3)

= |�|

�

Y

f (y, z + Dv) dy < |�|( f
p
hom(z) + ϑ). �

Let � > 0 and let P1, . . . , Pm be subsets of R
n . Denote by ν�(P1, . . . , Pm)

the function de�ned by

ν�(P1, . . . , Pm)(x) = cardinality of the set(3.4)

{P ∈ {P1, . . . , Pm} : dist(x , P) < �}, x ∈ R
n.

By making use of Lemma 2.1 and by arguing as in Lemma 3.2 in [18], it is
easy to prove the following result:
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Lemma 3.2. Let f and ϕ be functions satisfying (0.2), (0.8) and, for p in
]n, +∞] or p = �c1�, let f P

hom be the function de�ned in (0.4). Assume
(dom f

p
hom)◦ �= φ . Let δ be the constant �xed in (2.1) and M be the constant

given in Lemma 2.1.

Then for every �nite family {�1, . . . , �m} of bounded disjoint open subsets
of R

n, � > 0 suf�ciently small and j in {1, . . . ,m}, there exist a sequence
{γ

�, j
h }h∈N ⊆ W 1,p

◦ (�+
j,�)(Lip◦(�

+
j,�) if p = +∞,C1

◦ (�+
j,�) if p = �c1�) and γ �

j

in W 1,p
◦ (�+

j,�)(Lip◦(�
+
j,�) if p = +∞ or p = �c1�) such that

0 ≤ γ
�, j
h ≤ 1 in

m�

i=1

�i , ∀h ∈ N;(3.5)

γ
�, j
h = 1 in �−

j,�, ∀h ∈ N;(3.6)

m�

i=1

γ
�,i
h (x) = 1 in

m�

i=1

�i , ∀h ∈ N;(3.7)

γ
�, j
h → γ �

i strongly in L∞
� m�

i=1

�i

�
, as h → +∞;(3.8)

|Dγ
�, j
h (x)| ≤

M

δ�
sup
y∈Rn

ν�(�1, . . . , �m)(y)ϕh(x)(3.9)

a.e. in

m�

i=1

�i , ∀h ∈ N.

For every function u =
m�

j=1

(uzj + sj )χPj
in PA(Rn) and � > 0, set

σ�(u) = sup
x∈Rn

ν�(P1, . . . , Pm)(x),

where ν�(P1, . . . , Pm)(x) is de�ned in (3.4). Observe that there exist �(u) > 0
and σ(u) in N such that

(3.10) σ�(u) = σ(u) ∀� ∈ [0, �(u)[.

Lemma 3.3. Let f and ϕ be functions satisfying (0.2), (0.8), α be the constant
given in (0.8), for p in ]n, +∞] or p = �c1�, let f

p
hom be the function de�ned in

(0.4) and F ��p be the functional de�ned in (1.13). Assume (dom f
p
hom)◦ �= φ . Let



26 C. D�APICE - T. DURANTE - A. GAUDIELLO

δ be the constant �xed in (2.1) and let M be the constant given in Lemma 2.1.
Then

(3.11) F ��p(�, tu) ≤ t

�

�

f
p
hom(Du) dx + (1− t)|�|

�

Y

f (y, 0) dy

for every bounded open subset � of R
n , every piecewise af�ne function u and

for every t ∈
�
0, α δ

σ 2(u)(δ+M(2�Du�L∞(�)+1))

�
, where σ(u) is given by (3.10) (recall

that we can assume α < 1).

Proof. The proof is performed only for p in ]n, +∞[. In the other cases the

proof is similar. Let� and t be as above, let u =
m�

j=1

(uzj +sj )χ ◦
pj
be a piecewise

af�ne function and, for every j in {1, . . . ,m}, set �j = � ∩
◦

Pj . In order to
prove (3.11) assume that

(3.12)

m�

j=1

f
p
hom(zj )|� ∩

◦

Pj | =

�

�

f
p
hom(Du) dx < +∞.

Inequality (3.12) provides that zj belongs to dom f
p
hom for every j in

{1, . . . ,m}. Hence, for every �xed ϑ in (0, +∞) and j in {1, . . . ,m}, there

exists a function v j (depending on ϑ ) in W
1,p
per (Y ) such that

|zj + Dv j | ≤ ϕ a.e. in Y and f
p
hom(zj ) + ϑ >

�

Y

f (y, zj + Dv j ) dy.

Consequently, by setting v
j
h (x) = 1

h
v j (hx) for every x in R

n and h in N, from
Lemma 3.1 it follows that

(3.13) |zj + Dv
j
h | ≤ ϕh a.e. in R

n, ∀h ∈ N

and, for every � > 0,

(3.14) ( f
p
hom(z) + ϑ)|� ∩ �+

j,� | > lim
h

�

�∩�+
j,�

f (hx , zj + Dv
j
h ) dx .

For � in [0, �(u)[ (see (3.10)) and for every j in {1, . . . ,m}, let {γ
�, j
h }h∈N

in W 1,p
◦ (�+

j,�) and γ �
j in W 1,p

◦ (�+
j,�) be given by Lemma 3.2 with γ

�, j
h = 1 in

�−
j,� . For every � in [0, �(u)[, let {w�

h}h∈N be the sequence de�ned by

(3.15) w�
h =

m�

j=1

(uzj + sj + v
j
h )γ

�, j
h .
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From Lemma 3.2, it results

(3.16) w�
h →

m�

j=1

γ �
j (uzj + sj ) = w� uniformly on �, as h → +∞.

Observe now that, to taking into account (3.7),
m�

j=1

Dγ
�, j
h = 0 a.e. in

� and that for a.e. x in R
n card { j ∈ {1, . . . ,m} : γ

�, j
h (x) �= 0} ≤ σ(u)

and card{ j ∈ {1, . . . ,m} : Dγ
�, j
h (x) �= 0} ≤ σ(u). Moreover for every j in

{1, . . . ,m}, since u = uzj + sj on �j , it results that

(3.17) sup
x∈�+

j,�

|uzj (x) + sj + v
j
h (x) − u(x)| ≤ (2�Du�L∞(�) + 1)�

for h suf�ciently large. Hence by (3.9), (3.10), (3.13) and (3.17) it follows that

t |Dw�
h | ≤ t

�
�
�

m�

j=1

�
Dγ

�, j
h (uzj + sj + v

j
h ) +(3.18)

+ γ
�, j
h (zj + Dv

j
h )

���
� = t

�
�
�

m�

j=1

�
Dγ

�, j
h (uzj + sj + v

j
h − u) +

+ γ
�, j
h (zj + Dv

j
h )

���
� ≤ t

m�

j=1

�
|Dγ

�, j
h | sup

x∈�+
j,�

|uzj (x) + sj + v
j
h (x) − u(x)|

�
+

+ t

m�

j=1

�
γ

�, j
h |zj + Dv

j
h |

�
≤ tσ 2(u)

M

δ�
ϕh(x)(2�Du�L∞(�) + 1)� +

+ tσ(u)ϕh = tσ 2(u)
� M

δ
(2�Du�L∞(�) + 1) + 1

�
ϕh ≤ ϕh

a.e. in �, for h suf�ciently large. Taking into account the convexity of f (x , ·),
Lemma 3.2, (3.16), (3.18) and recalling that

�m
j=1 Dγ

�, j
h = 0 a.e. in �, it

results that

F ��p(�, tw�) ≤ lim sup
h

�

�

f (hx , t Dw�
h) dx ≤(3.19)

≤ t lim sup
h

�

�

f (hx ,

m�

j=1

γ
�, j
h (zj + Dv

j
h )) dx +
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+ (1− t) lim sup
h

�

�

f
�
hx ,

t

1− t

m�

j=1

Dγ
�, j
h (uzj + sj + v

j
h − u)

�
dx ≤

≤ t

m�

j=1

lim sup
h

�

�

γ
�, j
h f (hx , zj + Dv

j
h ) dx +

+ (1− t) lim sup
h

�

�

f
�
hx ,

t

1− t

m�

j=1

Dγ
�, j
h (uzj + sj + v

j
h − u)

�
dx ≤

≤ t

m�

j=1

lim sup
h

�

�∩�+
j,�

f (hx , zj + Dv
j
h ) dx +

+ (1− t) lim sup
h

m�

j=1

�

�−
j,�

f (hx , 0) dx +

+ (1− t) lim sup
h

�

�\∪m
i=1

�−
i,�

f
�
hx ,

t

1− t

m�

j=1

Dγ
�, j
h (uzj + sj + v

j
h − u)

�
dx .

On the other hand Lemma 3.2 and (3.17) provide that

t

1− t

�
�
�

m�

j=1

Dγ
�, j
h (uzj + sj + v

j
h − u)

�
�
� ≤(3.20)

≤
t

1− t

m�

j=1

|Dγ
�, j
h | |uzj + sj + v

j
h − u| ≤

≤
t

1− t

m�

j=1

|Dγ
�, j
h | sup

�∩�+
j,�

|uzj + sj + v
j
h − u| ≤

≤
t

1− t
σ 2(u)

M

δ�
ϕh(x)(2�Du�L∞(�) + 1)� =

=
t

1− t
σ 2(u)

M

δ
(2�Du�L∞(�) + 1)ϕh ≤ αϕh

a.e. in � \

m�

i=1

�−
i,� for h large enough.

From Lemma 1.10 and (3.20) it follows that

lim sup
h

�

�\∪m
j=1

�−
j,�

f
�
hx ,

t

1− t

m�

j=1

Dγ
�, j
h (uzj + sj + v

j
h − u)

�
dx ≤(3.21)
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≤ c
�
�
�� \

m�

i=1

�−
i,�

�
�
�

where c is the constant de�ned in (1.31). Then, by combining (3.19) with (3.14)
and (3.21) and by making use of the periodicity of f (·, 0), it results

F ��p(�, tw�) ≤ t

m�

j=1

|� ∩ �+
j,� |( f

p
hom(zj ) + ϑ) +(3.22)

+ (1− t)|�|

�

Y

f (y, 0) dy + (1− t)c
�
�
�� \

m�

i=1

�−
i,�

�
�
�.

As in (3.17), it results

sup
�

�
�
�w� − u| = sup

�

|

m�

j=1

γ �
j (uzj + sj − u)

�
�
� ≤

≤

m�

j=1

sup
�∩�+

j,�

|γ �
j | |uzj + sj − u| ≤ σ(u)(2�Du�L∞(�) + 1)�.

Consequently

(3.23) w� → u in C◦(�) as � → 0.

Then, from (3.22), (3.23) and the C◦(�)−lower semicontinuity of F ��p(�, ·)
it results

F ��p(�, tu) ≤ lim inf
�→0+

F ��p(�, tw�) ≤(3.24)

≤ t

m�

j=1

|�j |( f
p
hom(zj ) + ϑ) +

+ (1− t)|�|

�

Y

f (y, 0) dy + (1− t)c
�
�
�� −

m�

j=1

∂Pj

�
�
�.

By passing to the limit in (3.24), as ϑ → 0+, and by recalling that

m�

j=1

|�j | f
p
hom(zj ) =

�

�

f
p
hom(Du) dx and that |� ∩ ∪m

j=i∂Pj | = 0,

inequality (3.11) is proved. �

Arguing as in Lemma 3.4 in [18], the Lemma 3.3 and the Proposition 1.6
provide the following result:
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Lemma 3.4. Let f and ϕ be functions satisfying (0.2), (0.7), (0.8), for p in
]n, +∞] or p = �c1�, let f

p
hom be the function de�ned in (0.4) and F ��p be the

functional de�ned in (1.13). Assume (dom f
p
hom)◦ �= φ . Let δ be the constant

�xed in (2.1) and M be the constant given in Lemma 2.1. Then there exists a
costant c, such that

(3.25) F ��p(�, tu) ≤ t

�

�

f
p
hom(Du) dx + (1− t)|�|

�

Y

f (y, 0) dy

for every bounded open subset � of R
n , every u in C1(Rn) and every t in�

0, δ
c(δ+M(2�Du�L∞(�)+1))

�
.

Arguing as in Lemma 3.5 in [18], Lemma 3.4 and Proposition 1.6 provide
the following result:

Proposition 3.5. Let f and ϕ be functions satisfying (0.2), (0.7), (0.8), for p in
]n, +∞] or p = �c1�, let f P

hom be the function de�ned in (0.4) and F ��p be the
functional de�ned in (1.13). Assume (dom f

p
hom)◦ �= φ . Let δ be the constant

�xed in (2.1) and M be the constant given in Lemma 2.1.
Then there exist two positive costants r in [0, δ[ and c in [0, +∞[ such

that

(3.26) u ∈ Liploc, �Du�L∞(�) ≤ r ⇒ F
��p
− (�, u) ≤ c|�| < +∞

for every bounded open subset � of R
n.

4. A representation result on the class of the af�ne functions.

In this section we give a representation result of F p(�, ·) on the class of
the af�ne functions.

Recall that, for a given z in R
n, uz denotes the function de�ned by

uz : x ∈ R
n → x z ∈ R.

Lemma 4.1. Let f and ϕ be functions satisfying (0.2), for p in ]n, +∞] or
p =� c1�, let f

p

hom be the function de�ned in (1.29) and F ��p be the functional
de�ned in (1.13). Then

(4.1) F ��p(�, uz) ≤ |�| f
p

hom(z)

for every bounded open subset � of R
n and for every z in R

n .
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Proof. Let � be a bounded open subset of R
n and z ∈ R

n.
In order to prove (4.1), assume that f

p

hom(z) < +∞. Then, for every
� > 0 there exists 0 < t� < 1 such that for every t in ]t�, 1[ there exists v in

W
1,p
per (Y ) (v ∈ C1

per (Y )if p = �c1�) such that |t z + Dv| ≤ ϕ a.e. in Y and

(4.2) f
p

hom(z) + � ≥

�

Y

f (y, t z + Dv) dy.

Set vh(x) = 1
h
v(hx), x ∈ R

n, h ∈ N. Then vh → 0 in C◦(�) and
|t z + Dvh | ≤ ϕh a.e. in �. Consequently, by virtue of (4.2), it results

F ��p(�, tuz) ≤ lim sup
h

�

�

f (hx , t z + Dvh )dx =(4.3)

= |�|

�

Y

f (y, t z + Dv) dy ≤ |�|( f
p

hom(z) + �).

As t → 1− and � → 0, the thesis follows from (4.3). �

In order to prove the reverse inequality in (4.1) recall the following result
proved in Lemma 3.2 in [20].

Lemma 4.2. [20]. Let f and ϕ be functions satisfying (0.2) and for p in
]n, +∞] or p = �c1�, let F �p be the functional de�ned in (1.13). Then

r−n
1 F �p(x1 + r1Y, uz) = r−n

2 F �p(x2 + r2Y, uz),(4.4)

∀x1, x2 ∈ R
n, ∀r1, r2 ∈ ]0, +∞[, ∀ z ∈ R

n.

Proposition 4.3. Let f and ϕ be functions satisfying (0.2), (0.8), for p in
]n, +∞] or p = �c1�, let f

p

hom be the function de�ned in (1.29) and F �p be
the functional de�ned in (1.13). Assume that (dom f

p
hom)◦ �= φ . Then

(4.5) |�| f
p

hom(z) ≤ F �p(�, uz)

for every bounded open subset � of R
n and for every z ∈ R

n.

Proof. First assume � = Y and �x z in R
n .

In order to prove (4.5) assume that F �p(Y, uz) < +∞. Then, by virtue of
Lemma 1.7, z belongs to dom f

p
hom . Consequently, Proposition 1.6 provide that

t z belongs to dom f
p
hom for every t in [0,1]. Hence for every t in [0,1] there

exists v ∈ W
1,p
per (Y )(C1

per (Y ) if p = �c1�) such that |t z + Dv| ≤ ϕ a.e. in Y .
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For every h in N, set vh(x) = 1
h
v(hx), x in R

n . Obviously

(4.6) vh → 0 in C◦(Y ) as h → +∞ and |t z + Dvh | ≤ ϕh a.e. in Y.

Since F �p(Y, uz) < +∞, by virtue of Lemma 1.11, F �p(Y, tuz) < +∞

too. Hence there exist {uh}h∈N in W
1,p
loc (Rn) (C1(Rn) if p = �c1�) and a

subsequence {hk}k∈N of N such that uh → tuz in C◦(Y ), |Duhk
| ≤ ϕhk

a.e.
in Y and

(4.7) F �p(Y, tuz) ≥ lim
k

�

Y

f (hk x , Duhk
) dx .

Let �� and ��� be open subsets of R
n such that �� ⊂⊂ ��� ⊂⊂ Y , let

{ψh}h∈N in W 1,p
◦ (���)(Lip◦(�

��) if p = +∞,C1
◦ (���) if p = �c1�) be given by

Lemma 2.1 with ψh = 1 in �
�
and set

(4.8) wk = ψhk
uhk

+ (1− �hk
)(vhk

+ tuz).

Obviously wk − tuz is in W
1,p
per (Y )(C1

per (Y ) if p = �c1�), wk → tuz in
C◦(Y ) and

t |Dwk | ≤ t
�
ψhk

ϕhk
+ (1− ψhk

)ϕhk
+ �uhk

− vhk
− tuz�C◦(Y )|Dψhk

|
�

≤(4.9)

≤ t
�
ϕhk

+ �uhk
− vhk

− tuz�C◦(Y )

M

δ dist(��, ∂���)
ϕhk

�
∀ t ∈ [0, 1].

From (4.6) and (4.9) it follows that

(4.10) t |Dwk | ≤ ϕhk
, ∀ t ∈ [0, 1[ and k large enough depending on t .

Consequently, vii) of Proposition 1.6 provides that

�

Y

f (hk x , t Dwk) dx ≥(4.11)

≥ inf
��

Y

f (hk x , t2z + Dv) dx : v ∈ W 1,p
per (Y ) (C1

per (Y ) if p = �c1�),

|t2z + Dv| ≤ ϕhk
a.e. in Y

�
= f

p
hom(t2z).

By (4.11) and the convexity of f (x , ·) it follows that

f
p
hom(t2z) ≤ t

�

Y

f
�
hk x , ψhk

Duhk
+ (1− ψhk

)(Dvhk
+ t z)

�
dx+(4.12)
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+(1− t)

�

Y

f
�
hk x ,

t

1− t
(uhk

− vhk
− tuz)Dψhk

�
dx ≤

≤ t

�

Y

ψhk
f (hk x , Duhk

) dx + t

�

Y

(1− ψhk
) f (hx , Dvhk

+ t z) dx+

+(1− t)

�

Y

f
�
hk x ,

t

1− t
(uhk

− vhk
− tuz)Dψhk

�
dx ≤

≤

�

Y

f (hkx , Duhk
) dx +

�

Y\��

f (hx , Dv(hkx) + t z) dx +

+ (1− t)

�

Y

f
�
hk x ,

t

1− t
(uhk

− vhk
− tuz)Dψhk

�
dx ∀ t ∈ [0, 1[.

Since
uhk

− vhk
− tuz → 0 in C◦(Y ) as k → +∞,

by virtue of (2.5) of Lemma 2.1

∀ t ∈ [0, 1[ ∃kt ∈ N : ∀k( ∈ N) > kt
�
�
�

t

1− t
(uhk

− vhk
− tuz)Dψhk

�
�
� ≤

t

1− t
�uhk

− vhk
− tuz�C◦(Y ) ·

·
M

δdist(��, ∂���)
ϕhk

≤ αϕhk
a.e. in Y,

where α is the constant given in (0.8). Consequently Lemma 1.10 provides that

lim sup
k→+∞

�

Y

f
�
hkx ,

t

1− t
(uhk

− vhk
− tuz)Dψhk

�
dx ≤(4.13)

≤ c|�| , ∀ t ∈ [0, 1[,

where c is the constant de�ned in (1.31). Hence, by passing to the limit in (4.12)
as k → +∞, (0.2), (4.7) and (4.13) provide that

f
p
hom(t2z) ≤ F �p(Y, tuz)+|Y \�� |

�

Y

f (y, t z+Dv) dy+(1−t)c|�|, ∀ t ∈ [0, 1[,

from which, by virtue of Lemma 1.11,

f
p
hom(t2z) ≤ t F �p(Y, uz) + (1− t)

�

Y

f (y, 0) dy +(4.14)

+ |Y \ ��|

�

Y

f (y, t z + Dv) dy + (1− t)c|�|, ∀ t ∈ [0, 1[.
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As �� increases to Y and t → 1−, from (4.14) it follows that

(4.15) f
p

hom(z) ≤ F �(Y, uz).

Consider now the general case with � a bounded open subset of R
n . For every

k in N, let Qk
j , Bk

j , j = 1, . . . ,mk , be cubes of type x + rY such that

(4.16)






Qk
i ∩ Qk

j = φ if i �= j,
mk�

j=1

Qk
j ⊆ �, |� \

mk�

j=1

Qk
j | < 1

k
,

Bk
j ⊂⊂ Qk

j , |Qk
j \ Bk

j | <
1

kmk

∀ j ∈ {1, . . . ,mk}.

From (4.16) and (2.30) of Proposition 2.3 it follows that

F �p(�, uz) ≥ F
�p
− (�, uz) ≥ F

�p
−

� mk�

j=1

Qk
j , uz

�
≥(4.17)

≥

mk�

j=1

F �P
− (Qk

j , uz) ≥

mk�

j=1

F �p(Bk
j , uz).

On the other hand, Lemma 4.2 and (4.15) provide that

(4.18) F �p(Bk
j , uz)=|Bk

j |F
�P(Y, uz) ≥ |Bk

j | f
p

hom(z), j =1, . . .mk , ∀k ∈ N.

Combining (4.17) with (4.18) and (4.16) it results

F �p(�, uz) ≥

mk�

j=1

|Bk
j | f

p

hom(z) =(4.19)

=
�
�
�

mk�

j=1

Bk
j

�
�
� f

p

hom(z) ≥ (|�| −
2

k
) f

p

hom(z).

As k → ∞ in (4.19), inequality (4.5) is proved. �

Combining Lemma 4.1 with Proposition 4.3, we obtain the following
result:

Corollary 4.4. Let f and ϕ be functions satisfying (0.2), (0.8), for p in
]n, +∞] or p = �c1�, let f

p

hom be the function de�ned in (1.29) and F �p , F ��p

be the functionals de�ned in (1.13). Assume that (dom f
p
hom)◦ �= φ . Then

(4.20) F �p(�, uz) = F ��p(�, uz) = |�| f
p

hom(z)

for every bounded open subset � of R
n and for every z in R

n .
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5. Some abstract results.

For every u in L1loc(R
n) and for every y in R

n denote by uy the function in
L1loc(R

n) de�ned by

(5.1) uy(x) = u(x − y) ∀x ∈ R
n .

Let U be a vector subspace of L1loc(R
n) such that uy ∈U for every u in U

and for every y in R
n , and, for every bounded open subset � of R

n , let τ� be a
topology on U .

Moreover let V be a subspace ofUτ�-dense for every bounded open subset
� of R

n .
For every bounded open subset � of R

n , consider a functional G(�, ·)
satisfying

G(�, ·) : U → [0, +∞],(5.2)

G(�, ·) convex and τ�-lower semicontinuous,

and de�ne the following relaxed functional of G(�, ·) on U

(sc−(τ�)G)(�, u) = inf{lim inf
h

G(�, uh) :(5.3)

{uh}h∈N ⊆ V , uh
τ�
→ u}, u ∈U.

Moreover for every bounded open subset � of R
n de�ne

(5.4) (sc−(τ�)G)−(�, u) = sup
A⊂⊂�

(sc−(τA)G)(A, u), u ∈U.

In [26], by mean of a Jensen type inequality (see Proposition 4.1, in [40]),
the following result is proved, in order to give suf�cient conditions to deduce
the identity of G−(�, u) and (sc−(τ�)G)−(�, u).

Proposition 5.1. Let G be as in (5.2). Assume that G(·, u) is increasing for
every u in U and

(5.5) G(�−
r , uy) ≤ G(�, u)

for every bounded open subset � of R
n, u ∈U, r > 0 and for every y ∈ R

n

with |y| < r

and that

(5.6) for every u ∈ U if u� is the regularized function of u as in (1.10), then

u� ∈ V for every � > 0 and u�

τ�
→ u for every bounded open subset � of

R
n .

Then

(5.7) (sc−(τ�)G)−(�, u) = G−(�, u)

for every bounded open subset � of R
n, u ∈U.
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6. A representation result on W 1,1
loc

(Rn) ∩ C◦(Rn).

In this section, following the same outlines of cap. 5 in [20], we give �rst
a representation result of F

p
− on C1, where F p is de�ned in (1.14). Then, we

obtain a representation result of F
p
− on W 1,1

loc (Rn) ∩ C◦(Rn).

Lemma 6.1. [20]. Let f and ϕ be functions satisfying (0.2), (0.8), for p in
]n, +∞] or p = �c1�, let f

p

hom be the function de�ned in (1.29) and F ��p be the
functional de�ned in (1.13). Assume that (dom f

p
hom)◦ �= φ .

Then

(6.1) F
�p
− (�, u) ≥

�

�

f
p

hom(Du) dx

for every bounded open subset � of R
n and for every piecewise af�ne function

u.

Proof. Let � be a bounded open subset of R
n and let u =

m�

j=1

(uzj + sj )χ ◦

Pj

be

a piecewise af�ne function. For every j in {1, . . . ,m} set �j = � ∩ P◦
j and,

for � suf�ciently small, let ��
1, . . . , ��

m be open subsets of R
n with��

j ⊂⊂ �j ,
|�j \ ��

j | < � for every j in {1, . . . ,m}.

Since the functional F
�p
− (·, u) is increasing, from Proposition 2.3, (1.18),

Corollary 4.4 and (1.19) it follows that

F
�p
− (�, u) ≥ F

�p
− (

m�

j=1

�j , u) ≥

m�

j=1

F
�p
− (�j , u) ≥(6.2)

≥

m�

j=1

F �p(��
j , uzj ) =

m�

j=1

|��
j | f

p

hom(zj ) =

�

m

∪
j=1

��
j

f
p

hom(Du) dx .

Inequality (6.1) is obtained by passing to the limit, as � → 0, in (6.2).

Lemma 6.2. [20]. Let f and ϕ be functions satisfying (0.2), (0.7), (0.8), for p
in ]n, +∞] or p = �c1�, let f

p

hom be the function de�ned in (1.29) and F ��p be
the functional de�ned in (1.13). Assume that (dom f

p
hom)◦ �= φ .

Then

(6.3) F
�p
− (�, u) ≤

�

�

f
p

hom(Du) dx

for every bounded open subset � of R
n and for every u in C1(Rn).
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Proof. Let � be a bounded open subset of R
n and u ∈ C1(Rn). Let δ be

the constant �xed in (2.1), let r be in ]0, δ[ and let c be the constant given by
Proposition 3.5.

First assume that Du(x) belongs to (dom f
p

hom)◦ for every x in �.
For every ν in N let {Qν

j }j∈N be a sequence of open cubes of R
n with

sidelenght 1
ν
such that |Rn \

∞�

j=1

Qν
j | = 0 and Qν

i ∩ Qν
j = φ if i �= j . Denote

x ν
j the center of Qν

j and set z
ν
j = Du(x ν

j ). Moreover, for every � > 0, let Qν,�
j

be the cube with center in x ν
j and faces parallel to the ones Qν

j and sidelenght
1
ν

+ � .

Since u is in C1(Rn), it turns out that dist( ∪
x∈�

Du(x), ∂(dom f
p

hom)) > 0.

Hence there exists t◦ in ]0, 1[ such that
1
t◦
Du(x) belongs to (dom f

p

hom)◦ for
every x in �.

Let �� ⊂⊂ � and let us choose ν ∈ N and the cubes Qν
j so that Q

ν
j ⊂⊂ �

for every j = {1, . . . ,mν}, �� ⊂⊂
��mν

j=1 Q
ν

j

�◦

and

(6.4)
1

1− t◦
sup
x∈Qν

j

|Du(x) − zν
j | ≤

1

2
r ∀ j ∈ {1, . . . ,mν}.

Let �ν > 0 be such that Qν,�ν

j ⊂⊂ � for every j in {1, . . . ,mν} and, by
(6.4),

(6.5)
1

1− t◦
sup

x∈Qν,�

j

|Du(x) − zν
j | ≤ r ∀ j ∈ {1, . . . ,mν}, ∀� ∈ ]0, �ν[.

From (6.5) and Proposition 3.5 it follows that

(6.6) F
��p
−

�
Qν,�

j ,
1

1− t◦
(u − uzν

j
)
�
≤ c|Qν,�

j |, ∀ j ∈ {1, . . . ,mν}, ∀� ∈ ]0, �ν[.

Proposition 2.3, the convexity of F
��p
− and (6.6) provide that

F
��p
− (��, u) ≤ F

��p
−

� mν�

j=1

Qν,�
j , u

�
≤

mν�

j=1

F
��p
− (Qν,�

j , u) =(6.7)

=

mν�

j=1

F
��p
−

�
Qν,�

j ,
t◦uzν

j

t◦
+ (1− t◦)

u − uzν
j

1− t◦

�
≤
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≤

mν�

j=1

�
t◦F

��p
−

�
Qν,�

j ,
uzνj

t◦

�
+ (1− t◦)F

��p
−

�
Qν,�

j ,
u − uzνj

1− t◦

��
≤

≤

mν�

j=1

�
t◦F

��p
−

�
Qν,�

j ,
uzνj

t◦

�
+ (1− t◦)c|Q

ν,�
j |

�
.

Combining (6.7) with Corollary 4.4, it results

(6.8) F
��p
− (��, u) ≤

mν�

j=1

�
t◦|Q

ν,�
j | f

p

∞

� zν
j

t◦

�
+ (1− t◦)c|Q

ν,�
j |

�
.

As � → 0 in (6.8), since for j = 1, . . ., mν ,
zν
j

t
belongs to dom f

p

hom,

(6.9) F
��p
− (��, u) ≤ t◦

mν�

j=1

|Qν
j | f

p

∞(
zν
j

t◦
) + (1− t◦)c|�|.

Now, since u belongs to C1(Rn) and
�

∪
x∈�

�
1
t◦
Du(x)

��
⊆ (dom f

p

∞)◦ , and f
p

hom

is continuous on (dom f
p

hom)◦ , as ν → ∞ it results

(6.10) lim
ν

mν�

j=1

|Qν
j | f

p

hom

� zν
j

t◦

�
=

�

�

f
p

hom

� 1

t◦
Du(x)

�
dx < +∞.

Therefore, if Du(x) belongs to (dom f
p

∞)◦ for every x in �, inequality (6.3)

is obtained from (6.9), (6.10), taking into account the continuity of f
p

∞ on

(dom f
p

∞)◦ and passing to the limit for �� increasing to � and t◦ → 1−.
On the other hand, if there exists E ⊆ � such that |E | > 0 and

Du(x) � ∈ cl(dom f
p

hom), ∀x ∈ E,

then �

�

f
p

hom (Du) dx = +∞

and (6.3) holds. Therefore assume that

(6.11) Du(x) ∈ cl(dom f
p

hom) ∀x ∈ �.
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(6.11) and Lemma 1.8 provide that t Du(x) belongs to (dom f
p

hom)◦, for every t
in ]0, 1[ and x in �. Consequently, by applying (6.3) with the function tu, it
results

(6.12) F
��p
− (�, tu) ≤

�

�

f
p

hom(t Du) dx ∀ t ∈ ]0, 1[.

Hence, by virtue of the convexity of f
p

hom, it follows

(6.13) F
��p
− (�, tu) ≤ t

�

�

f
p

hom(Du) dx + (1− t)|�| f
p
hom(0) ∀ t ∈ ]0, 1[.

Finally, by passing to liminf for t → 1− in (6.13), the semicontinuity of
F

��p
− (�, ·) provides (6.3). �

We prove, now the representation result of F
p
− on C1(Rn).

Proposition 6.3. [20]. Let f and ϕ be the functions satisfying (0.2), (0.7), (0.8).
For p in ]n, +∞] or p = �c1�, let f

p

hom be the function de�ned in (1.29) and
F �p , F ��p be the functionals de�ned in (1.13). Assume that (dom f

p
hom)◦ �= φ .

Then

(6.14) F
�p
− (�, u) = F

��p
− (�, u) =

�

�

f
p

hom(Du) dx

for every bounded open subset � of R
n and for every u in C1(Rn).

Proof. Let � be a bounded open subset of R
n and u in C1(Rn).

Prove that

(6.15) F
�p
− (�, u) ≥

�

�

f
p

hom(Du) dx .

Assume F
�p
− (�, u) < +∞. Denote G� the restriction of F

�p
− (�, ·) to

W 1,∞(�). Obviously u is in domG�.
If u◦ denotes the function de�ned by u◦(x) = 0 for every x in R

n ,
Proposition 3.5 provides that u◦ belongs to (domG�)◦, where the interior is
taken in the W 1,∞(�)-topology. Consequently tu belongs to (domG�)◦ for
every t in ]0, 1[ (see, for example [31], pag. 413) and therefore

(6.16) G� is W
1,∞(�)-continuous at tu for every t ∈ ]0, 1[.

For every t in ]0, 1[ let {ut
h}h∈N be a sequence of piecewise af�ne functions such

that ut
h → tu in W 1,∞(�) as h → +∞ (see for example [32], pag. 309). Then
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from (6.16), Lemma 6.1, Fatou�s Lemma and the 1.s.c. of f
p

hom (see Lemma
1.8), it follows that

G�(tu) = lim
h

G�(ut
h) = lim

h
F

�p
− (�, ut

h) ≥(6.17)

≥ lim inf
h

�

�

f
p

hom(Dut
h) dx ≥

�

�

f
p

hom(t Du) dx , ∀ t ∈ ]0, 1[.

On the other hand, by virtue of Lemma 1.11, it results that

(6.18) G�(tu) ≤ tG�(u) + (1− t)|�|

�

�

f (y, 0) dy ∀ t ∈ ]0, 1[.

Hence, combining (6.17) with (6.18) it follows that

(6.19)

�

�

f
p

hom(t Du) dx ≤ t F
�p
− (�, u)+ (1− t)|�|

�

�

f (y, 0) dy, ∀ t ∈ ]0, 1[.

As t → 1− in (6.19), Fatou�s lemma and Lemma 1.8 provide (6.15).
The conclusion follows from (6.15) and Lemma 6.2. �

To extend (6.14) on W 1,1
loc (Rn) ∩ C◦(Rn), we recall two lemmas. For the

proof of these lemmas compare the proof of the Lemma 5.5 and Lemma 5.6 in
[20].

For every u in C◦(Rn) and y in R
n , de�ne the function uy as in (5.1).

Lemma 6.4. [20]. Let f and ϕ be functions satisfying (0.2) and, for p in
]n, +∞] or p = �c1�, let F ��p, F �p be the functionals de�ned in (1.13). Then

(6.20) F
�p
− (�−

r , uy) ≤ F
�p
− (�, u) F

��p
− (�−

r , uy) ≤ F
��p
− (�, u)

for every bounded open subset � of R
n , for every u ∈ C◦, r > 0, y ∈ R

n such
that |y| < r .

Let f and ϕ be functions satisfying (0.2), (0.8) and, for p in ]n, +∞]
or p� = c1�, let f

p
hom be the function de�ned in (0.4) and f

p

hom be the function
de�ned in (1.29). For every bounded open subset� of R

n , de�ne the functionals

F
p
hom(�, ·) : u ∈ W 1,1

loc (Rn) →

�

�

f
p
hom(Du) dx ,(6.21)

F
p

hom(�, ·) : u ∈ W 1,1
loc (R

n) →

�

�

f
p

hom(Du) dx .(6.22)

Moreover let (sc−(C◦(�))F
p
hom)(�, ·) be de�ned by (5.3) with G = F

p
hom,

U = W 1,1
loc (Rn)∩C◦(Rn), V = C1(Rn), let (sc−(C◦

◦ (�))F
p
hom)(�, ·) be de�ned

by (5.3) with G = F
p
hom, U = W 1,1

◦ (�) ∩ C◦(Rn), V = C1
◦ (�) and let

(sc−(C◦(�))F
p
hom)−(�, ·) be de�ned by (5.4). Analogously for F

p

hom.
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Lemma 6.5. [20]. Let f and ϕ be functions satisfying (0.2), (0.7), (0.8) and for
p in ]n, +∞] or p = �c1�, let F

p
hom, F

p

hom be the functionals de�ned in (6.21),
(6.22). Assume that (dom f

p
hom)◦ �= φ .

Then

F
p

hom(�, u) = (sc−(C◦(�))F
p

hom)−(�, u) =(6.23)

= (sc−(C◦(�))F
p
hom)−(�, u)

for every bounded open subset � of R
n and for every u in W 1,1

loc (Rn) ∩ C◦(Rn),

F
p

hom(�, u) = (sc−(C◦
◦ (�))F

p

hom)(�, u) =(6.24)

= (sc−(C◦
◦ (�))F

p
hom)(�, u)

for every bounded open subset � of R
n with Lipschitz boundary and for every

u in W 1,1
◦ (�) ∩ C◦(Rn).

Prove now the representation result.

Proposition 6.6. [20]. Let f and ϕ be functions satisfying (0.2), (0.7), (0.8),
for p ∈ ]n, +∞] or p = �c1�, let f

p

hom be the function de�ned in (1.29) and F �p ,
F ��p be the functionals de�ned in (1.13). Assume that (dom f

p
hom)◦ �= φ .

Then

(6.25) (F �p)−(�, u) = (F ��P)−(�, u) =

�

�

f
p

hom(Du)dx

for every bounded open subset � of R
n and for every u in W 1,1

loc (Rn) ∩ C◦(Rn).

Proof. By virtue of Lemma 6.4, the functionals F �p and F ��p satisfy the
assumptions of Proposition 5.1 with U = W 1,1

loc (Rn) ∩ C◦(Rn), V = C1(Rn),

τ� = C◦(�). Then, by virtue of Proposition 5.1 it results
(6.26)�

(F �p)−(�, u) = ((F �p)−)−(�, u) = (sc−(C◦(�))(F �p)−)−(�, u),

(F ��p)−(�, u) = ((F ��p)−)−(�, u) = (sc−(C◦(�))(F ��p)−)−(�, u),

for every bounded open subset � of R
n and u in W 1,1

loc (Rn) ∩ C◦(Rn).
Finally, combining (6.26) with Proposition 6.3 and the �rst equality of

(6.23), the representation result (6.25) holds. �
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7. The convergence of minimun points.

Let q in ]n, +∞[ and p ≥ q or p = �c1�. For every bounded open
subset � of R

n , denote sc−(C◦
◦ (�))p,q the operator de�ned by (5.3) with

U = W 1,q
◦ (�) and V = W 1,p

◦ (�) (V = C1(Rn) if p = �c1�).

Moreover denote u◦ the function de�ned by u◦(x) = 0 for every x in R
n .

Theorem 7.1. Let f and ϕ be functions satisfying (0.2), (0.7), (0.8). For p
in ]n, +∞] or p = �c1�, let f

p
hom be the function de�ned in (0.4), f

p

hom be the
function de�ned in (1.29), F

p
h be the functionals de�ned in (1.11) and F

p
hom be

the functional de�ned in (6.21). For every p in ]n, +∞] or p = �c1�, for every
bounded open subset � of R

n with Lipschitz boundary and β in L1(�) de�ne

m
p
h (�, β) = inf

��

�

f (hx , Du) dx +

�

�

βu dx :(7.1)

u ∈ W 1,p
◦ (�)(u ∈ C1

◦ (�) if p = �c1�), |Du(x)| ≤ ϕ(hx) for a.e. x in �
�

and, by denoting Argmin(G) the set of minimum points of a functional G, for
every p ≥ q or p = �c1� (where q is given in (0.7)) de�ne

M
p
h (�, β) = Argmin

�
sc−(C0

0 (�))p,q F
p
h (�, u) +(7.2)

+

�

�

βu dx : u ∈ W 1,q
◦ (�)

�
.

Assume (dom f
p
hom)◦ �= φ .

Then, for every n < p ≤ q, m
p
h (�, β) = m

q
h (�, β) and the sequence

{m
q
h } converges, as h → +∞, to

mq (�, β) = inf
� �

�

f
q
hom(Du) dx +

�

�

βu dx : u ∈ W 1,q
◦ (�)

�
=(7.3)

= min
��

�

f
q

hom(Du) dx +

�

�

βu dx : u ∈ W 1,q
◦ (�)

�
=

= min
�
sc−(C◦

◦ (�))F
q
hom(�, u) +

�

�

βu dx : u ∈ W 1,q
◦ (�)

�

and every sequence {uh}h∈N such that uh ∈ M
q
h for every h in N is compact in

C◦(�) and the subsequences that converge in C◦(�) converge to solutions of
problems in (7.3).
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Moreover, for every p in ]q, +∞] or p = �c1�, the sequence {m
p
h }h∈N

converges, as h → +∞, to

m p(�, β) = inf
� �

�

f
p
hom(Du) dx +

�

�

βu dx : u ∈ W 1,q
◦ (�)

�
=(7.4)

= min
��

�

f
p

hom(Du) dx +

�

�

βu dx : u ∈ W 1,q
◦ (�)

�
=

= min
�
sc−(C◦

◦ (�))F
p
hom(�, u) +

�

�

βu dx : u ∈ W 1,q
◦ (�)

�

where W 1,p
◦ (�) in the �rst equality of (7.4) has to be replaced by C1

◦ (�) when
p = �c1�. Every sequence {uh}h∈N such that uh ∈ M

p
h for every h in N is

compact in C◦(�) and the subsequences that converge in C◦(�) converge to
minimum points solutions of minimum problems in (7.3).

Assume (dom f
p
hom)◦ = φ .

Then u◦ is the only solution of mp(�, β) and the sequence {uh}h∈N

converges in C◦(�) to u◦ . Moreover, if in addition we assume that

(7.5) f (y, 0) = min
z∈Rn

f (y, z) for a.e. y in Y,

it turns out that the sequence {m
p
h (�, β)}h∈N converges to mp(�, β) and that

m p(�, β) = |�|

�

Y

f (y, 0) dy.

Proof. Assume (dom f
p
hom)◦ �= φ .

Let � be a bounded open subset of R
n with Lipschitz boundary and β

in L1(�). The functional u ∈ W
1,q
loc (Rn) →

�
�

βu is C◦(�)-continuous on

W
1,q
loc (Rn). Moreover, by virtue of (0.7), the functionals F

p
h (�, ·) +

�
�

β(·) are
equicoercive on W 1,q

◦ (�) in the topology of C◦(�). Therefore Theorem 1.5,
Proposition 2.2 and Proposition 6.6 provide that

(7.6) lim
h

m
p
h (�, β) = mp(�, β) for every p ≥ q or p = �c1�.

The last equalities in the right hand sides of (7.3) and (7.4) follow by (6.24) of
Lemma 6.5. The convergence of solutions follows from the equicoerciveness
of functionals F

p
h in the same way. If (dom f

p
hom)◦ = φ , the thesis follows by

arguing as in Theorem 5.2 in [18]. �

Concerning to the Lavrentieff phenomenon, in Theorem 7.1 the minimum
values m

p
h effectively depend on p. Recall the following examples given in

[20]:
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Example 7.2. Let n = 1, f be function satisfying (0.2) and K be closed set

such that K ⊆ Y , |K | = 1
2
,

◦

K= φ and ϕ = χk and K1 be a subset of K such

that |K1| = 1
4
. Let q > n and let β = 0, � = Y and f (x , z) = χk1 (x)|z − 1|q .

For p in ]n, +∞] or p = �c1�, let m
p
h , h ∈ N,mp be as in Theorem 7.1. Then f

and ϕ satisfy assumption of Theorem 7.1 and for every p in ]n, +∞]

mp = m
p
h = 0 <

1

4
= mc1

h = mc1 for every h ∈ N.
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functions a gradient borné, J. Math. Pures Appl., 56 (1977), pp. 79�84.



SOME NEW RESULTS ON A LAVRENTIEFF PHENOMENON. . . 45
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