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SOME NEW RESULTS ON A LAVRENTIEFF PHENOMENON
FOR PROBLEMS OF HOMOGENIZATION WITH
CONSTRAINTS ON THE GRADIENT

C. D’APICE - T. DURANTE - A. GAUDIELLO

In this paper we analyze, in the context of a Lavrentieff phenomenon,
the process of homogenization for Dirichlet problems of the following type:

m}’;(Q, B) = inf{ / f(hx, Du)dx +
Q
+f Budx: ueWhP(Q) wecC'(Q)if p="cl),
Q
u=00ndR, |[Du(x)| < ¢(hx) for a.e. x in Q},

where 2 is a bounded open subset of R” with Lipschitz boundary, g € L' (),
p €1n,+00] or p = ’cl’ and under suitable hypothesis on f and ¢. This
problem has been considered in [20] under different hypothesis on f and ¢.

0. Introduction.

The mathematical models of problems concerning nonhomogeneous mate-
rials use equations or functionals with periodical coefficients or integrands with
small period. A good approximation of the macroscopic behaviour of such ma-
terials can be found letting the parameter € that describes the microstructure go
to zero. This procedure is called homogenization.

Entrato in Redazione il 30 Ottobre 1998.
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A sequence of equations or functionals is considered and, using an appro-
priate convergence, the limit equation or functional that describes the macro-
scopic properties is found. This allows to replace a highly nonhomogeneous
medium with an equivalent homogeneous material.

On the other hand it’s very important in the study of physical problems
schematizable by minimization of a functional of Calculus of Variations the
choice of the class of functions. Infact since 1926 it was pointed out an unex-
pected phenomenon concerning an integral functional of Calculus of Variations.

The considered functional was naturally defined and lower semicontinuous
(with respect the L' topology) on the set of the absolutely continuous functions
defined on the interval [0,1]; moreover on the set of the Lipschitz functions
u of this kind and such that #(0) = 0 and u(1) = 1 a minimum value was
attained. This value surprisingly enough was strictly lower than the infimum
value of the same functional computed on the set of Lipschitz functions with
the same boundary conditions (Lavrentieff phenomenon); this fact implies that,
for example, this minimum value cannot be approximated by finite elements
method. Other examples of the same phenomenon concerning much simpler
functionals were shown in [38].

In this paper we study the homogenization of variational problems for
integral functionals defined on functions subject to oscillating constraints on
the gradient that can describe some phenomena in elastic-plastic torsion and
elastatics. These problems can show the presence of a Lavrentieff phenomenon
and, being the integral functional suitable for a process of homogenization, its
persistence after this process. Precisely we analyze the homogenization for
Dirichlet problems of following type:

0.1) m,'j(sz,ﬁ):inf{/f(hx,Du)arxJr
Q
+f Budx :ue WHP(Q) ueC'(Q)if p ='cl’),
Q
u=00ndQ, |Dulx)| < ¢(hx) for ae. x in Q}

where € is a bounded open subset of R” with Lipschitz boundary, 8 € L'(Q),
p € In,+o0] or p = ‘cl’, and f, ¢ are functions satisfying the following
conditions (here and in the sequel ¥ =]0, 1["):

f:i(x,20eR" xR" - f(x,z)€[0, 400,

f measurable and Y-periodic in the x variable, convex in the z one,
02) 3 f(,20eL'(Y) VzeR"

¢ :xeR" — px)e[0, +o0l,

¢ Y-periodic.



SOME NEW RESULTS ON A LAVRENTIEFF PHENOMENON. .. 5

A classical conjecture (see for instance [3] and [8]), suggests

©3) lim (mf (2, Blew = miy (2, B) = int | /Q Frow (D) dx +

+/ Budx:ueW'P(Q) ueC (Q)ifp="cl"), u=0on aQ},
Q
where fh’(’)m is the convex function from R” to [0, +oc] defined by

04  fP ()= inf{ / f(&,z+Du)dy:ueW"P(Y) (ueC'(Y)
Y
if p='cl’), u Y-periodic, |z + Du(y)| < ¢(y) ae. in Y} ZeR"

(in (0.4) it is assumed that inf J = 4+00).

It is possible to verify, with some examples, that the function fh‘;m really
depends on p (see Remarks 1.12 and 1.13).

Out of the context of the Lavrentieff phenomenon, convergence as in (0.3)
has been verified in many papers under different assumptions (see [1], [8]-[16],
[18], [22]-[26]).

In the context of the Lavrentieff phenomenon, convergence (0.3) has been
analyzed in [19] and [20]. Precisely in [20] it has been proved that if

0.5) there exist ¢ € [0, [ and m > 0 such that 0 < m < ¢(y)
forae. yin]O, 1["\]} — 9, § + o["

and if (0.2) together with one of the following conditions is satisfied:

(0.6) klzlf < f(x,z) ae.xinR", zinR", k>0,g>n
or

0.7 peLi(Y) gqeln, +ocl,

then (0.3) holds.

In this paper we prove (0.3) with the hypothesis (0.5) replaced by

(0.8) 3a6R+:/f(y,iﬁa¢(y)ej)dy<—|-oo Vjell,..., n},
Y

where {ej, ..., e,} denotes the canonical basis of R”. More precisely if f
and ¢ satisfy (0.2), (0.7), (0.8), then (0.3) holds. Moreover an analysis of the
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convergence of the subsequence of the minimum points of the relaxed problems
in (0.1) is performed.

Observe that the assumption (0.8) allows to analyse some type of con-
straints on the gradient that are not examined by assumption (0.5). For example,
if ¢ is bounded assumption (0.8) but not necessarily (0.5) is satisfied (see fig.1).

i
s

—

fig. 1

We make use of the I'-convergence introduced by E. De Giorgi and of the
identification techniques of I'-limits contained in [18], [20] and [26].

1. Notations and preliminaries.

We recall the definition and the main properties of '~ convergence (see
also [28]).

Let (U, t) be a topological space satisfying the first countability axiom and
denote R = RU {400, —00}.

Definition 1.1. Let Fj,, h € N, F’' and F" be functionals from U to R.
We say that F' is the T~ (t)-lower limit of {Fy}ren and we write

(1.1 F'(u) =T (t) liminf F,(u) YueU,
h—+o00
if the following conditions are satisfied:

(1.2) ueU, (uphneny S U, up > u = F'(u) < lim inf F (i),
— 400

(1.3) YueU,H{uplhen S U :up— u, F'(u) > lhimianh(uh).
— 400
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We say that F" is the I'~(t)-upper limit of { F,}neny and we write

(1.4) F"(u) =T (t)limsup F;,(u) YueU,

h—+o00

if (1.2) and (1.3) hold with the operator “liminf” replaced by “lim sup”.
When F' = F", we say that {Fy}peny T~ (t)-converges to F'(= F") on U
and we write

(1.5) F'(u) =F"(u) =T"(7) hEToo F,(u) Yuel.

Remark 1.2. Since (U, t) satisfies the first countability axiom, for every u in
U the subsets of R:

{limianh(uh) Auptneny € U and uy, 5 u}
h—+o00

and { lim sup Fy, (1) : {uptneny € U and uy, = u}
h—4-o00

have minima. Consequently, the limits in (1.1) and (1.4) exist and are given by

(1.6)  F'(u) = min { liminf F; () : {uahaen € U and uy > u},
—+00

(17)  F"(u) = min { limsup Fy (i) © {unhheny < U and uy = u}.

h—+o00

Recall the following properties of I" ™ -convergence proved in [28].

Proposition 1.3. [28]. Let {F},},en be a sequence of functionals from U to R.
Then the functionals T~ (t) liminfy_, o F, and I'"(7) limsup,_, , . Fj,
are T -lower semicontinuous on U .
Moreover, if {hi}ken is an increasing sequence of integer numbers, it
results

' (v)liminf F,(u) < T'" (7)) iminf Fy, (u) <
h— 400 k—+00

<I'"(v)limsup F, (u) < T'""(v)limsup F,(u), Vuel.

k—+00 h—+00
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Definition 1.4. [28]. Let {F},},en be a sequence of functionals from U to R.
We say that the functionals Fy, are equicoercive, if for every real number ¢

there exists a compact set K. in U such that

fueU: F,(u) <c} < K., VYheN.

If F is a functional from U to R, sc”(t)F denotes the greatest T-lower
semicontinuous functional on U less than or equal to F.

Theorem 1.5. [28]. Let F),(h € N) and G be functionals from U to R. Assume
that there exists

(1.8) Fu)=T"(7) hEToth(u) Yuel,

that G is a t-continuous functional and the functionals F,+G are equicoercive.
Then the functional F + G attains its minimum on U and

min {F(v) + G ve U} - hETooinf{Fh(v) +G) ive U}.
Moreover, if u, € U is a solution of
min {sc—(r)Fh(v) +GW):ve U} heN
and

T
u, —u,

then u is a solution of

min {F(v) +GW) ve U}.

Introduce, now, some notations.
If A and B are two bounded open subsets of R” such that A C B, write
A CCB.
A R valued function G, defined on the set of the bounded open subsets of
", is increasing if
Q) €2 = G(2) = G(§2).

For an increasing function G, the inner regular envelope G_ of G (see
[29]) on an open subset €2 of R" is defined by

(1.9 G_(2) = sup G(A).

ACCQ
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For every bounded open subset 2 of R"”, C°(€2) and C?2(£2) denote the
topologies induced on C°(R") respectively by the extended metrics

d(u,v) = [lu—vl|lco@ = sup lu(x) —v(x)l,

xeQ
du,v) ifu=vonodQ,
S(u,v) = )
400 otherwise.

For every p in [1, +oo], W;grp (Y) denotes the set of the functions u
in Wh? (R*) with u Y-periodic. For every bounded open subset Q2 of

loc
R", W1-P(Q) denotes the set of the functions u in W!7(Q) with u = 0 on
9. Ch (Y), Lip,,.(Y), CJ (), Lip,(€2) are introduced in a similar way.

per
For any z in R", u, denotes the function defined by

u,(x) =z-x VxeR".

Recall that a subset of R” is said to be a polyhedron if it is intersection of a finite
number of half spaces and call a function # on R" a piecewise affine function if
itis C°(R") and can be expressed as

m m
u(x) =y (g, (x) s (1) Vx € L Pi.
j=1 j=1
where z1,...,2, € R",s1,...,5, € Rand Py, ..., P, are piecewise disjoint

polyhedrons with nonempty interiors such that | J P; = R".
j=1
For every subset P of R” and € > 0, P and P, denote the open sets

defined by
Pt ={xeR":dist(x,P) <€}, P” ={xeP: dist(x,dP) > €.
If x, belongs to R” and r is in ]0, +o0[, denote
B.(x,) = {x eR": |x —x,| < r}.

Let o be a nonnegative function in C2°(R"), whit support contained in
B1(0), such that fRn a(y)dy =1 and let u be in L! (R"). For every € > 0 set

loc
a©(y) = e "a(y/€), y in R", and define the e-regularization u. of u by

(1.10) u(x) = / a9 —yuly)dy, xeR.
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If ¢ satisfies (0.2), set
on(x) = @(hx) VxeR", VheN.

By virtue of the Sobolev embedding theorem, Wll)’cp R" c C°(R" with
continuous injection, for p € ]Jn, +0c]. Then, for every bounded open subset 2
of R", h e N, and p in ]n, 400], consider the following functionals on C°(R"):

f(hx, Duydx ifue W PR,

loc

(1.11) FP(Q,u) = |Du(x)| < y(x) for ae. x in Q,

+o00 otherwise on C°(R"),

/f(hx,Du)dx ifu e C'(RY),
Q

(1.12)  F(Q,u) = |Du(x)| < @ (x) for ae. x in Q,

+00 otherwise on C°(R").

For every bounded open subset 2 of R” and for every p in ]n, +0o0] or
p ='cl’ set

F'P(Q,u) =T (C°(Q)) lhimian,f’(Q, u), YueC°R"),
—+00

(1.13)
F'"P(Q,u) = T~(C°(Q) limsup F/(Q,u), YueCR".
h——+o00
If
F'? (Q,u)=F""(Q,u) YueC°(R"),

set

(1.14) FP(Q,u) = F_(C°(Q))hlilf F/(Q,u) YueC°(R").
—+00

Moreover, set

F'? (2, u) =T (C°(Q)) 1him+ian,{’(Q, u), YueC°RY,
—+00
(1.15)
F'P (2, u) =T~ (C2(Q)) limsup F/ (R, u), YueC°RM).
h— 400
If
F? (Q,u) = F/'P(2, u) Yu e C°(R"),
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set

(1.16) F Q) =T (C2(Q) lim F(Q.u). VYueCR".

By virtue of (0.2), for every u in C°(R") and for every p in |n, +00]
or p = ’'cl’, the above set functions F'?(-,u) and F"P(-,u) are increasing.
Consequently define F_'? (2, u) and F_"? (2, u) by (1.9) written with G =
F'P(-,u) and G = F"P(-, u) respectively.

For every p in ]n, +o00] or p ='c1’, the following properties hold:

(1.17) F'P(Q,u) < F"P(, u) for every bounded open subset 2 of R”
and u in C°(R").

(1.18) FP(Q,u+c) = F'P(Q,u)and F"?(Q,u+c) = F'"P(Q,u)
for every bounded open subset  of R*, u in C°(R") and ¢ in R.

(1.19) F'P(Q,u)) = F'P(Q,up) and F"P(Q,u;) = F"7(Q, uy)

for every bounded open subset 2 of R” and 1, u, in C° (R") withu; = u, in Q.

For every function g : R" —]—o00, 0ol wesetdomg = {zeR" : g(2) <
—+o0}.

The following results yield some properties of the function f,? = defined in
0.4).

Proposition 1.6. Let f and ¢ be functions satisfying (0.2), (0.8), o be the
constant given in (0.8) and, for p in In,4+oc] or p = 'cl, let £ be the
Jfunction defined in (0.4).
Then
i) dom fh’;m is a convex subset of R" ;
ii) fP . is a convex function on R";
iii) 0 € domf,?
iv) 0 belongs to (domfh’;m)" if (domfh':m)O is not empty;
V) domfh’;m is bounded if f and ¢ satisfy (0.7) too;
Vi) fh’;m is bounded on B, (0), if B,(0) is included in dom fh'(’)m ;

vii) fP () = inf{ / f(hx,z4 Dv)dx :ve Wyl (Y) (Cp,(Y) if p = 1),
Y

|z + Dv| < ¢, a.e. inY} VzeR" heN.
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Proof. The statements i), ii) and iii) immediately follow from Definition (0.4).
Prove now iv) for p in ]n, 400[. The proof is similar in the other cases.
Since (dom £” )° is not empty, there exist z, in R” and r in ]0, 4+-o0[ such

hom

that
(1.20) B,(z,) € domf? .

Let o be the constant given in (0.8) (observe that it is not restrictive to
assume « in 0, 1[) and verify that

(1.21) By (azo) S domf . B, (—az,) € domf! .

Let z be in By, (@z,) (resp. By, (—az,)), then éz belongs to B, (z,) (resp. —;—z
belongs to B, (z,)). Consequently, by virtue of (1.21),

Jw; e WhP(Y) 1 |z 4+ Dw| < ap ae. in Y (resp. Jw, € WLP(Y) :

per per

|z+ D(—wy)| = | —z+ Dwy| < agpae. inY),

from which it follows that, z+ Dw; (y) (resp. z—Dw; (y)) belongs to the convex
envelope of the set { + ﬁaw(y)ej} for a.e. y in Y. Consequently, since
j=1,...n

« is in 0, 1[, Definition (0.4) and assurﬁptions (0.2), (0.8) provide that
hom (2) < / .2+ Dwdy <> {/ [, +/nag(y)e) dy +
Y , Y
j=1

+/Yf(y, —ﬁaw(y)ej)dy} < 400,

fiF L@ < /Yf(y, z—Dwy)dy <y { /y F O, +v/nap(y)e) dy +
j=1

+/Yf(y, —x/ﬁwp(y)ej)dy} < 00,

i.e. (1.21). By virtue of i), the statement iv) follows from (1.21).

Regarding the proof of v), first observe that (0.7) and (0.8) provide that ¢
isin L'(Y). If z is in dom £, . there exists u in Wple’rp(Y)(C;er(Y) if p="cl’)
such that

(1.22) |z4+ Du| < p ae.inY, /Dudy:O.
Y
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Consequently

|Z|:)/(Z+Du)dy)§/|z+DM|dy§/¢dy<+OOv
Y Y Y

that is
domf” C {zeR” 1zl §/<pdy}.
Y

To prove vi) observe that if z belong to B, (0), then éz is in B, (0). Then
by virtue of our assumption,

Y)if p='cl'):|z+ Dw| < ag a.e.inY,

cr

Jw e Wl(Y) (C,

per

from which it follows that z + Dw belong to the convex envelope of the set

{ + \/r_lozgo(y)ej}' 1 forae. yinY.
j=1,...n
Consequently, since we can assume « less than 1, Definition (0.4) and assump-

tions (0.2), (0.8) provide that
hom (2) < / fO,z+Dwydy <
Y

=X [ f0ntRapg)dy <400 Ve B0,
=1

The proof of vii) is achieved arguing in the same way of Theorem 7.6 in
[17]. (]

For every x in R", p in ]n, +00] or p =’cl’, define

(1.23) K'7(x) = {zeR" CFP(I, 1) < 400

for some neighbourhood 7, of x }

(1.24) K'?(x) = {z eR": F'P(I,, u,) < +00
for some neighbourhood I, of x }

where, for a fixed zin R*, u, : x e R" — zx e R.
The following result is proved in Lemma 2.1 of [18]:
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Lemma 1.7. [18]. Let f and ¢ be functions satisfying (0.2), (0.8), for p in
In, 400l or p ='cl', let fF  be the function defined in (0.4) and, for every x
inR", K'?(x), K'P(x), be the sets defined in (1.23) and (1.24). Then

(1.25) domfP =KP(x)=K"P(x) VxeR"
Let g : R" —] — 00, +00] be a convex function such that 0 belongs to
dom g. Then the limit
(1.26) 2(2) = tlirﬂ g(tz) zeR"
exists for every z in R”.
The following result is proved in [26]:

Lemma 1.8. [26]. Let g : R" —] — 00, 400] be a convex function such that 0
belongs to dom g and let g be the function defined in (1.26).
Then g is convex and
(1.27) 8(z) <g(2) VzeR",
(1.28) g0 =gk VzeR"\ ddomg.

Moreover, if O belongs to (dom g)°, g is lower semicontinuous on R".

Definition 1.9. Let f and ¢ be functions satisfying (0.2), (0.8) and, for p in
In, 400l or p ="'cl, let £,  be the function defined in (0.4). Since f' isa
convex function and 0 belongs to dom ;" = [see i) and iii) of Proposition 1.6],
define fiom by

(1.29) Too(2) = lim fi0,(12) zeR".

hom

Lemma 1.10. Let f and ¢ be functions satisfying (0.2), (0.8), « be the constant
given in (0.8), Q be a bounded measurable subset of R" and {my},ecn be a
sequence of measurable vectorial functions on 2 such that

(1.30) Jdh,eN: Vh(eN) > h, |mp(x)| < ap,(x) a.e. in Q.
Then we have
limsup/ flhx, my(x))dx < c|L],
Q

h—+o00

where

(1.31) c=> { /Y fO. Vnagp(y)e) dy +
i=1

+f fO, —ﬁa¢(y)ei)dy} < 400.
Y
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Proof. By virtue of (1.30), for every integer number & > h, and for a.e. x in
Q, my(x) belongs to the convex envelope of the set { + nag,(x)e; }
Consequently assumptions (0.2) and (0.8) provide that

.....

lim sup/ flhx, my(x))dx <

h—+o00

< Z hmsup/ f(hx, /nag,(x)e;) dx +

+ lim sup/ f(hx, —ﬁawh(x)ei)dx} =
Q

h—+o00

=121 | [ £o.vaagmendy + | fv. —vapmendy}. O
i=1 Y Y

The following result is proved in Lemma 1.3 of [20].

Lemma 1.11. [20]. Let f and ¢ be functions satisfying (0.2), let 2 be a
bounded open subset of R" and, for p in In,4+o00] or p = 'cl, let F'P be
defined in (1.13). Then,

(1.32) F'P(Q,tu) <tFP(Q,u)+ Q1 — t)f f(y,0)dy
Y

forevery u in C°(R") and t in [0, 1].
Similar inequalities hold for F*, F'? | F ? in place of F'P.

We prove through the following examples that the function £ really
depends on p.

Remark 1.12. Let n = 1, f be a function satisfying (0.2) and K be a closed
set suchthat K C Y, |[K| = 2, K ¢ and ¢ = X

For p in n, +oo] or p ="cl’, let fh';m be the function defined in (0.4).
Then, in [20] it is proved that there exists c € R, depending on f such that

?l[:om(z) = h[())m(z) =c< ?E(l)m(z) hom(Z)

forevery z € R such that 0 < |z] < % and for every p in |n, +00].
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Remark 1.13. Let w be the function on R? defined by

by
w(xy, xp) = — Tl _4einP =] -1, 1[2, w — x1 P-periodic.
max{|xi|, [x2|}

Let q in 11, 2[ and define the function
f:(x,2)eR?x R* = f(x,2) = |det[Dw(x), z]| + |z]9.

For p in [1, +00], set

A |
(2 =inf{mfpf(y,z+Dv) : veWI}e’r”(P)}, ze R,

In [19], Section 6, it is proved that
(1.33) P () =zl + 1219, Yz = (z1,22) €R?, p > 2,

(1.34) P () <cglzl?, Yz =(z1,22) €R?, 1 < p <2,

where ¢, is a positive constant only depending on g.
Fix now 7 in the non empty open set A = {z eR?: |z] + 214 > cqlzlq}
and consider the function

X . L
X1, x) = ——— ae.in P =] —1, 1[2, ¢ — u, P-periodic.
max{|x|, [x2|}

For p in [1, 400], set
i 1
fitm (@) = mf{mfpf(y,H Dv) :ve Wyl (P, |z + Dl < Dyl
zeR".
From (1.33) it follows that
On the other hand, arguing as in (6.12) in [19], it results that
(1.36) fh';;n(f) <zl <l + 217, 1<p' <2
Combining (1.35) with (1.36), it follows that

fh[())m(z) <fh[())m(z)’ 1 Sp/§2<p§+00.
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2. Some properties of I'-limits.

In this section we adapt some results on the sub-additivity of I'-limits
proved in [18].

Let f and ¢ be function satisfying (0.2), (0.8), « is the constant given in
(0.8) and for p in Jn, +00] or p ='cl’, let fh’(’)m be the function defined in (0.4).
If (dom f? )° £ @, iv) of Proposition 1.6 provides that

hom
2.1) 35€(0, 1) : Byas(0) € domf? .

Obviously é depends on p.
By arguing as in Lemma 2.3 in [18], it is easy to prove the following result:

Lemma 2.1. Let f and ¢ be functions satisfying (0.2), (0.8) and, for p in
In, 400l or p = 'cV', let P be the function defined in (0.4). Assume that
(dom h’;m)" %+ (0 and let § be the constant given in (2.1).

Then there exists a constant M dependent only on n, and ¢ such that
for every bounded open subset Q of R" and for every compact subset B of
R" included in Q2 there exist a sequence {Vy}nen in Wol’p(Q)(Lipo(Q) if
p = +0o,CHQ) if p = 'cl’) and ¥ in WHP(Q)(Lip,(RQ) if p = +o0 or
if p="cl’") with

(2.2) 0<vyn<1 inQVheN;
(2.3) Yp =1 in B,YheN;
24) Vn —> ¥ strongly in L*(2), as h — +o0;

(2.5) | Dy | < ae. inQ, VYhelN.

5dist(B, 0%2) "

The proofs of Proposition 2.2 and Proposition 2.3 essentially follow the
same outlines of the proofs of Proposition 2.4 and Proposition 2.5 in [18].
In our case, to complete proofs we make use of (2.5), of Lemma 2.1 and of
Lemma 1.10.

Proposition 2.2. Let f and ¢ be functions satisfying (0.2), (0.8) and, for
p in In,4+00] or p = 'cl’, let h’;m be the function defined in (0.4),
F'P F"P F!P_F!P be the functionals defined in (1.13), (1.15). Assume that
(dom fi0,.)° # 0.

Then
(2.6) FP(Q,u) = F"(Q,u) = F7(Q,u),
F'P(Q,u)=F"(Q,u) = F."(Q, u),

for every bounded open subset Q of R" and for every u in C°(R") such that
u=0o0n9dR.
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Proof. The proof is performed only for p in ]n, +00[. In the other cases the

proof is similar.

Let © be a bounded open subset of R” and u in C°(R") such that u = 0

on 0%2.

Prove (2.6) for the functionals F'? and F_.”. The proof for F'? and F.” is

analogous.

Let {€;}ren be a sequence of positive numbers such that ¢, — 071 as
k — 400 and, for every k in N, let x; be the real function defined by

0 if tel0, €],
et —e)? if rele.2¢l,
@7 ) =1 2, ,
I —5€ if te[2¢, +ool,
—xk(—1) if te]—o00,0[.
For every k in N let Q; CC €2 be such that
€k
(2.8) sup fu(x)| < =, 12\ % < &.
e\ 2
Prove that
(2.9) FIP(Q,u) < F(Q,u).

To this aim assume that F:”(Q, u) < +oo. Then for every k in N
there exists a sequence {le,}hezv in WIL’C” (R"™) such that u’,‘l — u in C°(2%)
as h — +oo and there exists r; in N such that r, > &,

(2.10) |Duk| < ¢, ae. in Qy,
and
(2.11) F'P(S%, u) > limsup

h—4o00 J

Vh >y

f(hx, Dul,‘l) dx.

For every k in N, let be s; in N such that s; > ry,

f(hx, Duk)dx Vh > s,
h

" 1
(2.12) F'P(Qu, 1))+~ >
k= Jo,
and
€
(2.13) lu — 1l o < 7" Vh > 5.
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For h sufficiently large, set k;, = max{k € N : s < h} and define the
functions u;, and uj, by

(2.14) w(X) = uy (x) W) = xg, (up(x)) x €R”.
Since h > ry, , from (2.10) it follows that
(2.15) |Duy| < ¢y a.e. in 4, for h sufficiently large,
moreover from (2.13) and (2.8) it follows that
(2.16) uy = 0 on 3<%, for i sufficiently large.
Still denote by uj, the function defined by

- Eh in Qkh
“n=10 in R\ Q.

Then by virtue of (2.7), (2.13) and (2.14) it results that

(2.17) [tp(x) —u(x)| < [up(x) —up(x)| + |up(x) —ulx)| <

1 7
< 3¢, + Eek” = Eek” in €, , for h sufficiently large,

and by (2.8) that

2.18) |up(x) —ux)| = lux)| < %Ekh in 2\ €2, , for & sufficiently large.
Consequently, from (2.17) and (2.18) it follows that
(2.19) Uy, — uin C2(2)
and, from (2.7) and (2.15), that
(2.20) |Duy| < ¢y ae. in 2, for h sufficiently large.

Let B, and B, be two open subsets of R" such that By CC By CC 2,
for h large enough, let {y,}, < W!-P(B,) be the sequence given by Lemma 2.1

whit B = B; and set

(2.21) wy = Yu, + (1 — Yp)uy, VxeQ.
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Obviously w, — u in C2(2). Moreover, for every ¢ in [0, 1[, by virtue of
(2.15), (2.20), Lemma 2.1, and (2.19) it results

(2.22) t|Dwy| <ty Duy + (1 — ) Duy + Dy (uy, — up)| <
< t(vnon + (= ) + IDYlluy — 1) <

M
T —— up, —upllco <
5 dist(B,. 832)%” n—upllc (Q)) < ¢n

a.e. in Q, for h sufficiently large.

§t<(ﬂh+

By using the convexity of f(x, -), it results

(2.23) / f(hx, tDwy) dx < t(/ ¥ f (hx, Duy) dx +
Q Q

+/Q(1 —wh)f(hx,Dﬁh)dx)—l—(l —t)fo(hx, ! t(uh—ﬁh)Dz//h)dx <

1 _
< t( U f(hx, Dupydx + | (1 = wp) f(hx, DTy dx +
Q,

Qkh

+/ (l—wh)f(hx,O)dx)—i—(l—t)/f(hx, !
o\, Q I —1

Vvt €0, 1[ for & sufficiently large.

(up, — up) Dy ) dx,

Hence, by definitions (2.14),

(2.24) f f(hx,tDwy)dx <
Q
<t( [ e Duydx+ | (=), ) fhx, Duy) d+
Qkh Qkh
+ =y = x, @) fhx, 0) dx +/ Fhx, 0y dx) +
2, 2\,

t _
+( —t)f f(hx, T — ) DY) dx,
o _
Vvt € [0, 1] for h sufficiently large,

from which, by virtue of the properties of {Y}nen, {Xk, }k,en and (2.11), it
follows that

(2.25) / f(hx,tDwy)dx <
Q
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< t( f(hx, Duy) dx +2 f(hx,O)dx)—I—

, Q\B,
t
1 —1¢

+ —t)/ f(hx, (up —up) DYy) dx <
Q

p 1
< 1(F'7(Qu, 0 + w2, f(hx,0) dx) +
1
(n —T) DY dx+ | Fhx,0) dx),
1—1t Q\B>

vVt €0, 1[, for A sufficiently large.

+a-o( fox,

Since
up, —u, — 0in C°(B,) as h — +o00,

by virtue of (2.5) of Lemma 2.1 Vt € [0, 1[3h, e N:Vh(eN) > i,

} t

— M
——(u, ~ TV | < Tl —

u o e <
= 1-1 nlle B2 s dist(B,. 9By " =
< ag, a.e. in Q,

where « is the constant given in (0.8). Consequently, Lemma 1.10 provides that

t
(2.26)  lim sup/ f(hx, (up —up)Dyry) dx < c|By| Vtel0, 1],
Q

h—+o00 1—1t

where ¢ is the constant defined in (1.31). Hence by (2.25) and (2.26), as
h — +oo,

(2.27) F;’f’(sz,m)5zFL”’(sz,u)+2t|sz\Bl|/f(y,0)dy+(1—z)|Q|-
Y
-(c+ff(y,0)dy), Viel0, 1.
Y

Since u = 0 on 92 it follows that fu — u in C_(S2).Therefore by (2.27)
ast — 17 and as B; converges to 2 we deduce that

(2.28) F'P(Q,u) < F'P(Q, u).
On the other side,since always

(2.29) F'’(Q,u) < F'P(Q,u) < F/'"(Q, u),
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the conclusion follows from (2.28) and (2.29). [l

Proposition 2.3. Let f and ¢ be functions satisfying (0.2), (0.8), for p in
In, +00] or p = 'cl, let fh’;m be the function defined in (0.4), F'?,F"? be
the functionals defined in (1.13) and let 2, Q, Q25 be bounded open subsets of
R".

IfQ] NQy =¢ and 21 U Ry C Q, then

(2.30) FP(Q,u) > FP(Q,u) + F?(Q,,u) YueC°[R".
If 2 C QUQ, and (dom £ )° # ¢, then

(2.31) F'P(Q,u) < F'P(Q,u) + F'P (%, u) YueC’RY.

Proof. The proof is performed only for p in ]n, +o00[. In the other cases the
proof is similar.

Inequality (2.30) follows directly from the definition of F'”.

To prove (2.31), it sufficies to consider the case in which Q CC 2, U @,
and prove that

(2.32) F"P(Q,u) < F"P(Q,u) + F"P(Q2,u) VueC°R").

Fix u in C°(R") and assume that the right hand side of (2.32) is finite.
Consequently, for i = 1, 2 there exists a sequence {uﬁf)}he N in W]LLP (R™), such
that u;f) — u in C°(2;) as h — oo, |Du§f)| < @y a.e. in ; for h sufficiently
large and

(2.33) F"P(;, u) > lim sup / f(hx, Du\") dx.
Q;

h—+o00

Since €2 CC €2; U £2,, for € small enough it result that 2 CC €2, U €2,.

Let {¥,}reny be a sequence in W)P(Q) satisfying Lemma 2.1 with
B =cl(f2 ) and set

(2.34) wp = Yl + (1= W)u®.

Observe that w, — u in C°(£2). Moreover, as in (2.22), for every ¢ in
[0, 1] it results | Dw,| < ¢, a.e. in €2, for h sufficiently large.
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By making use of the convexity of f(x, -) we have

(2.35) F'"P(, tu) < lim sup/ f(hx,tDwy)dx <
Q

h—+o00

< tlimsup/ Y f (hx, Du\") dx —i—tlimsup/(l — ) f (hx, D) dx+
Q Q

h—+400 h— 400

t
+(1 — 1) lim sup/ f(hx, ﬁ(ui,” —u\? Dyy) dx <
Q _

h—~+00
<tlimsup [ f(hx, Du\’ dx + t lim sup f f(hx, Du?) dx +
h—4o00 JQ1 h— 400 Q\S—Z;e
t
1—1¢

4 (1 =1)lim sup/ £ (hx, (uy” — u?)Dyy) dx +
an@\e;,)

h—+o00

—|—(1—t)limsup/ f(hx,0)dx, VtelO,l1].
Q\(@\Q; )

h—+00
Since 2N (2] \ Q) S Q N2,
w? — 0 in C°(QN(Q\ Q) as h — +oo.
Then, by virtue of (2.5) of Lemma 2.1, it results that
Vtel0,1[,3h, eN: Vh(eN) > h,

(1)
U, —

| 9 ! 1 () M
:(u;) — uﬁl))Di/fh) < :Iluﬁl) — . Nles@n@ne; n 5790 = @@
ae. in QN (Q\ Q7 ),

where « is the constant given in (0.8). Consequently, Lemma 1.10 provides that

t
(236)  limsup / f(hx, ul” —uP)YDyy) dx <
n@i\e;,)

h—+o00 1—1t
=cl| Vrel0, 1],

where c is the constant defined in (1.31).
Combining (2.33) with (2.35) and (2.36) it results

(237)  F"P(Q,tu) <tF"P(Q,u) +tF"P(Q,u) + (1 —t)c|Q| +
—l-(l—t)lQI/f(y,O)dy Vi elO0, 1.
Y

Finally, passing to the limit, as ¢ — 17, in (2.37), inequality (2.32) is
proved. (]
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3. Finiteness conditions.

Let f and ¢ be functions satisfying (0.2), (0.8) and, for p in ]n, +00] or
p ='cl’, let F"? be the functional defined in (1.13). In this section, following
the some outlines of cap.3 in [18], we give sufficient conditions on 2 and u
in order to get finiteness of F”?(2, u). To this purpose we first prove some
lemmas.

Lemma 3.1. Let f and ¢ be functions satisfying (0.2), (0.8) and for p in
In, 400l or p ="cl, let 1, be the function defined in (0.4).
Let ¥ > 0,z be in dom £ and v in Wyef (Y) (in CL, (Y) if p = 'cl’)

such that |z + Dv| < @ a.e. in Y and fl (2) +9 > fy f(&,z+ Dv)dy and,
forevery h in N and x in R", set v, (x) = %v(hx).

Then
3.1 |z 4+ Dv,| < gpae inR", VheN
and
(3.2) 1QI(from(@) + ) > hEwaQ f(hx,z+ Duvy)dx

for every bounded open subset Q of R".

Proof. Inequality (3.1) follows immediately by the assumptions on v and ¢.
Fix a bounded open subset 2 of R". By the periodicity of f(-, Dv(-)), the
limit in (3.2) exists and

(3.3) lim /f(hx,z+Dvh)dx: lim /f(hx,z—i—(Dv)(hx))dx:
h—+o00 Jo h—+o00 Jo

= IQI/ fO,z+Dv)ydy < 1Q(fon(@ +9). O
Y

Lete > Oandlet Py, ..., P, be subsets of R". Denote by v.(Py, ..., Py,)
the function defined by
(3.4) ve(Py, ..., Py)(x) = cardinality of the set

{Pe{P,..., P,} dist(x, P) <€}, xeR"

By making use of Lemma 2.1 and by arguing as in Lemma 3.2 in [18], it is
easy to prove the following result:
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Lemma 3.2. Let f and ¢ be functions satisfying (0.2), (0.8) and, for p in
In,+00] or p = 'cl, let fF  be the function defined in (0.4). Assume
(dom £P Yo = ¢. Let 8 be the constant fixed in (2.1) and M be the constant

hom
given in Lemma 2.1.
Then for every finite family {21, . .., Q,,} of bounded disjoint open subsets
of R", e > O sufficiently small and j in {1, ..., m}, there exist a sequence

{V;’j}heN c Wol’p(Q;;)(Lipo(Q;;) if p = ~o00,C} (Q;fe) if p="cl') and y{
in Wt}’p(Q;;)(Lipo(Q;;) if p=+oo or p ='cl’) such that

(3.5) 0<y'<1 in Lmjﬁ VheN;
i=1

(3.6) vl=1 in Q. VheN;
(3.7) iy;’i(x) =1 in Lmjﬁ VheN;

i=1 i=1
(3.8) y;’j — y<  stronglyin Loo(Lmjﬁi), ash — —+o0;

i=1

(3.9) Dy ()] = ?535 V@1, ) (DP(0)

a.e.in Uﬁi, VheN.
i=1

For every function u = ) (u; + ;) xp, in PA(R") and € > 0, set
j=1

oc(u) = sup ve(Py, ..., Ppy)(x),
xeR”
where v.(Py, ..., P,)(x) is defined in (3.4). Observe that there exist €(u) > 0

and o (1) in N such that
(3.10) o.(u) =om) Veel0,em)|.

Lemma 3.3. Let f and ¢ be functions satisfying (0.2), (0.8), o be the constant
given in (0.8), for p in In, +oo] or p ='cl’, let £ be the function defined in

hom

(0.4) and F"? be the functional defined in (1.13). Assume (dom fh’(’)m)O #+ ¢. Let
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8 be the constant fixed in (2.1) and let M be the constant given in Lemma 2.1.
Then

(3.11) F"P(Q, tu) < t/ i (Du)dx + (1 —1)|Q| f f(y,0)dy
Q Y
for every bounded open subset Q2 of R", every piecewise affine function u and

oS . .
for every t € (0, 02(u)(8+M(2|\Du|\Loo(Q)+1)))’ where o (u) is given by (3.10) (recall
that we can assume o < 1).

Proof. The proof is performed only for p in ]n, +00[. In the other cases the
m

proof is similar. Let 2 and ¢ be as above, letu = Y (u;, +s5;) Xs be a piecewise
=1 /

affine function and, for every j in {1,...,m}, set Q; = QN Igj. In order to

prove (3.11) assume that

(3.12) th’;m(zj)lﬂ N Igjl :/ P (Du)dx < 4o0.
j=1 ¢

Inequality (3.12) provides that z; belongs to dom f,” = for every j in
{1, ..., m}. Hence, for every fixed ¥ in (0, 400) and j in {1, ..., m}, there
exists a function v/ (depending on ) in W,ﬁgﬁ’ (Y) such that

lzj + Dv/| < ¢ ae.inY and h[:)m(Zj) + 0 > / fO.zj + Dv’) dy.
Y

Consequently, by setting v;{ x) = %v/ (hx) for every x in R" and % in N, from
Lemma 3.1 it follows that

(3.13) lz; + Dv]| < ¢» ae. inR", VheN
and, for every € > 0,

(3.14) (rom @ +NNQOQS | > lim | f(hx,zj + Dv})dx.
QN
€

For € in [0, e(u)[ (see (3.10)) and for every j in {1, ..., m}, let {yhe’j}heN
in Whr(Qf ) and yf in W)P(Q,) be given by Lemma 3.2 with y,;/ = 1 in
Q/_e For every € in [0, € (u)[, let {wj}, },en be the sequence defined by

(3.15) wh =Y (g, + 55+ vy

j=1
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From Lemma 3.2, it results

m
(3.16) w;, — ny(uzj + ;) = w* uniformly on Q, as h — +oo.
j=1

m .
Observe now that, to taking into account (3.7), > Dy;”’ = 0 ae. in
=1
Q and that for ae. x in R” card {j € {1,...,m} : ;7 (x) # 0} < o(u)
and card{j € {1,...,m} : Dy,’(x) # 0} < o(u). Moreover for every j in

{1,...,m},since u = u; +s; on €2;, it results that
(3.17) sup [uz, (x) + s; + vj (x) — u(x)| < QlIDul L~ + De
xeQt
j.€

for h sufficiently large. Hence by (3.9), (3.10), (3.13) and (3.17) it follows that
m . .
(3.18) (D] < 0| 3 (D s, +55 + v +
j=1

m
+th(ZJ+DUh) ) I’Z Dy;’/(uzj+Sj+U{l—M)+
j=1

+yl g+ Dv,{>)} < rZ (IDy; | sup fug, (x) + 55 + v} (x) — u(x)]) +

xeQt
j.€

m Ny ; ) M
Z vi'lzj + Dvj|) < to (M)E(Ph(x)(anM”Lm(Q) + De +

+towe, = taz(u)(—(2||DM||Loo<m + 1)+ oy < gy
a.e. in 2, for & sufficiently large. Taking into account the convexity of f(x, -),

Lemma 3.2, (3.16), (3.18) and recalling that 37" | Dy, = 0 ae. in Q, it
results that

(3.19) F'P(Q, tw®) < limsup/ f(hx, tDw;)dx <

< thmsup/ f(hx, Zy,ff(z, +Dvh))dx+
j=1
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+ (1 —t)limsup/ f(hx,
o Ja

Z 1msup/ ve! f(hx, z + Dv}) dx +

f(hx

lim sup/ flhx, z; + Dv,{) dx +
] h QN

m

+ (1 —¢) limsup

Dy (uy, + 55+ v] —

@\

M=

<t

~.
Il

—|—(1—t)limsupZ/ f(hx,0)dx +
oY

h

T , ~
—|—(1—t)limsup/ f(hx,—ZDy,f’/(qu—l-sj—i-v{,
Q\U;":]Qi; 1 —1 Jj=1

On the other hand Lemma 3.2 and (3.17) provide that

(3.20) I_I}ZDW/(MZ +s/+vh—u)}

IA

t . .
ijmﬁf g, + s + v, —ul <
j=1

m
€,j J
Tt2:|Dyh | sup |ug +s;+ vy —ul <
=1 mm

t
<o (u)—(ph(X)(2||DM||L°°<s2) + De =

t
- rffZ(u)—(anuanm) + Doy < agy

m
t . .
l_t E D)/;’](uzj"i_sj"i_vljz_u))dxf
j=1

u)) dx <

— u)) dx.

ae. in Q\ U Q. forh large enough.

From Lemma 1.10 and (3.20) it follows that

(3.21) limsup/ f(hx,
h QU Q-

J=1""j.€

o e ;
l_tZDyh’J(uzj —|-sj—|-vz-u))dx <
j=1
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m
< ce\Uarn
i=1

where c is the constant defined in (1.31). Then, by combining (3.19) with (3.14)
and (3.21) and by making use of the periodicity of f (-, 0), it results

(3.22) F'P(Q,tw) <t Y 1N QL |(fh, () + 0) +
j=1

+a=niel [ fo.0dy+a-nee\Usr
Y i=1

As in (3.17), it results

m
sup’we —u| = sup| ny(uzj + 55 —u)’ <
Q Q

j=1

m
<Y sup |yflluy + 55— ul < 0@ QIDull @ + De.
j:l QﬂQ;;

Consequently
(3.23) w"—u in C°(Q)ase — 0.

Then, from (3.22), (3.23) and the C°(£2) —lower semicontinuity of F"'?($2, -)
it results

(3.24) F'7(Q, 1) < lim inf F"P(Q, tw°) <
€e—

<13 11 fom(@) +0) +
j=1

+ -2 fy (O, 0)dy+ (1 — t)c)Q _ (m] an).
j=1
By passing to the limit in (3.24), as # — 0T, and by recalling that
i 191 /2 . (z) = fQ Srom(Du) dx and that [ N U9 P;| =0,
j=1
inequality (3.11) is proved. (]

Arguing as in Lemma 3.4 in [18], the Lemma 3.3 and the Proposition 1.6
provide the following result:
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Lemma 34. Let f and ¢ be functions satisfying (0.2), (0.7), (0.8), for p in
In, 400l or p ='cl', let fi¥ = be the function defined in (0.4) and F'P be the
functional defined in (1.13). Assume (dom h’;m)" # ¢. Let § be the constant

fixed in (2.1) and M be the constant given in Lemma 2.1. Then there exists a
costant c, such that

(3.25) F"P(Q, tu) < t/ fh[z)m(Du) dx + (1 —1)|Q| / f(y,0)dy
Q Y

for every bounded open subset Q of R", every u in C'(R") and every t in

5
(O’ C(5+M(2HDMHLOO(Q)+1)))'
Arguing as in Lemma 3.5 in [18], Lemma 3.4 and Proposition 1.6 provide
the following result:

Proposition 3.5. Let f and ¢ be functions satisfying (0.2), (0.7), (0.8), for p in
In, 400l or p ='cl', let f,L  be the function defined in (0.4) and F'? be the
functional defined in (1.13). Assume (dom f," )° # ¢. Let § be the constant
fixed in (2.1) and M be the constant given in Lemma 2.1.

Then there exist two positive costants r in [0, 8] and c in [0, +00[ such
that

(3.26) u € Lipioe, || Dulli~@) <r = FIP(Q,u) < c|Q| < o0

for every bounded open subset 2 of R".

4. A representation result on the class of the affine functions.

In this section we give a representation result of F7(£2, -) on the class of
the affine functions.
Recall that, for a given z in R”, u, denotes the function defined by

u,:x eR" - xzeR.

Lemma 4.1. Let f and ¢ be functions satisfying (0.2), for p in ]n, +00] or
p="cl',let f f:om be the function defined in (1.29) and F''? be the functional
defined in (1.13). Then

(4.1) F'’(Q,u.) < Q0 (2)

for every bounded open subset 2 of R" and for every z in R”".
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Proof. Let €2 be a bounded open subset of R" and z € R".
In order to prove (4.1), assume that f ﬁom(z) < 4o00. Then, for every
€ > 0 there exists 0 < 7. < 1 such that for every ¢ in ]¢., 1[ there exists v in

Wyl (V) (veCl,, (V)if p ='cl’) such that |tz + Dv| < ¢ a.e. in Y and

“2) 7 @D tex f £l 12+ Dv) dy.
Y

Set v,(x) = %v(hx),x e R", h e N. Then v, — 0 in C°(2) and
|tz + Dvy| < ¢y a.e. in Q. Consequently, by virtue of (4.2), it results

4.3) F"P(Q2, tu,) < lim sup/ f(hx,tz+ Dvy)dx =
h Q
= || /f(y, tz+ Dv)dy < |Q|(From(@) + ).
Y

Ast — 17 and € — 0, the thesis follows from (4.3). [l

In order to prove the reverse inequality in (4.1) recall the following result
proved in Lemma 3.2 in [20].

Lemma 4.2. [20]. Let f and ¢ be functions satisfying (0.2) and for p in
In, +o0] or p ='cl’, let F'P be the functional defined in (1.13). Then

(4.4) ri"F'P(xy+nY,u) =r;"F'P(x2 + Y, uy),
Vxi,x €R" Vr,rnel0, +oo[, VzeR".

Proposition 4.3. Let f and ¢ be functions satisfying (0.2), (0.8), for p in
In, +o00] or p = 'cl, let fgom be the function defined in (1.29) and F'P be
the functional defined in (1.13). Assume that (dom fh’;m)c’ #+ ¢. Then

(4.5) 1QIFL,.(2) < F'P(Q2,u,)

for every bounded open subset 2 of R" and for every z € R".

Proof. First assume 2 = Y and fix z in R".

In order to prove (4.5) assume that F'?(Y, u,) < +oo. Then, by virtue of
Lemma 1.7, z belongs to dom £,” . Consequently, Proposition 1.6 provide that
¢tz belongs to dom fh’(’m[l for every ¢ in [0,1]. Hence for every ¢ in [0,1] there

exists v e W,}gﬁ’(Y)(c},e, (Y) if p ='cl’) such that |tz + Dv| < g ae.in Y.
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For every h in N, set v, (x) = lzv(hx), x in R”. Obviously
(4.6) v, > 0inC°(Y) ash — oo and |tz + Dv,| < ¢, ae. inY.
Since F'P(Y,u,) < +oo, by virtue of Lemma 1.11, F'?(Y, tu,) < 400
too. Hence there exist {u;}nen in WIL’CP(R”) (C'(R") if p = 'c1’) and a

subsequence {f}rey of N such that u, — tu; in C°(Y), |Duy,| < ¢, ae.
in Y and

4.7 F'P(Y, tu,) > li]{n/ S (hgx, Duy,) dx.
Y

Let " and Q" be open subsets of R” such that Q" cc Q" cC Y, let
(Wnlnen in WEP(Q)(Lipo(Q") if p = +00, CL(Q") if p = 'c1’) be given by
Lemma 2.1 with ¥, = 1 in Q' and set
4.8) Wy = thuhk + (1 — \I/hk)(vhk + tMZ).

Obviously wy — fu is in Wyl (Y)(C!

pe,(Y) if p ='cl),w, — tu, in
C°(Y) and

(4.9) t|Dwi| < t(Yneon, + (1 — Y ) @n, + N, — vi, — tuzllcoory DY, |) <

< t(fﬂhk + llun, — vg, (Phk) vVt e[0, 1].

tu| i
Hlem S disusy, 99
From (4.6) and (4.9) it follows that
(4.10) t|Dwi| < ¢y, , Vtel0, 1] and k large enough depending on 7.
Consequently, vii) of Proposition 1.6 provides that
“4.11) f f(hyx, tDwy)dx >
Y
> inf{ / fux, 2+ Dvydx :ve WP (Y) (C,,, (V) if p =cl’),
Y
|t?z + Dv| < ¢, ae. in Y} = £l (t*2).

By (4.11) and the convexity of f(x, -) it follows that

4.12) P (1%2) < t/ f (hex, Y, Dug, + (1 — Y, ) (D, + 12)) dx+
Y
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t
1—t¢

+( - t)/ f(ix, (tp, — Vi, — tuy) Dy, ) dx <
Y

< t/ Y, f(hix, Duy,) dx —i—t/(l — Yn,) f(hx, Dvy, 4+ tz) dx+
Y Y

t
1—t¢

+(1 — t)/ f(hyx, (up, — Vi, — tuz) Dy, ) dx <
Y

< / f(hgx, Duy,) dx + f(hx, Dv(hgx) +tz)dx +
Y Y\

t
+(1 - t)/yf(hkx, :(uhk — vy, —tu))Dyy, ) dx  Vi€l0, 1[.
Since
up, — vy, —tu; = 0in C°(Y) as k — 400,

by virtue of (2.5) of Lemma 2.1

Viel0,1] 3k eN:Vk(eN) >k

(uhk - Uhk - tMZ)thk S 1 —t
M

adist(€2’, a2")

t
1—1t

lten, —vn, — tugllcoqyy -

¢n, <oy, ae.in Y,
where « is the constant given in (0.8). Consequently Lemma 1.10 provides that

t
(4.13) limsup/ f(hkx, 1—(th — vy, — tuZ)thk)dx <
k—+o00 JY —1

<c|Q|, Vte][0, 1],

where c is the constant defined in (1.31). Hence, by passing to the limit in (4.12)
as k - +00, (0.2), (4.7) and (4.13) provide that

h’;m(tzz) < F'P(Y, tu,)+|Y\'| /f(y, tz+Dv)dy+(1—1t)c|2|, Vte[0, 1],
Y
from which, by virtue of Lemma 1.11,

4.14) 2 (122 < tFP (Y, u) + (1 1) / £ 0 dy +
Y

+|Y\Q’|/f(y,tZ+Dv)dy+(1—t)c|Q|, Vi elO0, 1.
Y
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As ' increases to Y and ¢t — 1, from (4.14) it follows that
(4.15) oo (2) < F'(Y, uy).

Consider now the general case with Q2 a bounded open subset of R”. For every
kinN,let O, Bf, j =1,...,my, be cubes of type x 4 rY such that

my my

oinoi=9¢ ifi#j, Uofca 12\UO0ol <1,

(4.16) /=t | /=t

Bf cC Qf, |0f\Bf|l<-— Vje{l,...,m}.
kmk

From (4.16) and (2.30) of Proposition 2.3 it follows that

mg
(@.17) FP(@,u) = FP(@,u0 = F7(|J 0f ue) =
j=1

> i} FP(Qf u) > i} F'"(Bf, u.).
j=1 j=1
On the other hand, Lemma 4.2 and (4.15) provide that
(4.18) F'P(Bf,u;)=|Bf|F'"(Y,u;) > |ij|?§om(z), j=1,...mg, YkeN.
Combining (4.17) with (4.18) and (4.16) it results

(4.19) FP(2,u) 2 Y 1B From(@ =

j=1
my i 2 _

= |UB[Trn(@ = (121 = ) Fron(@-
j=1

As k — oo in (4.19), inequality (4.5) is proved. U

Combining Lemma 4.1 with Proposition 4.3, we obtain the following
result:

Corollary 4.4. Let f and ¢ be functions satisfying (0.2), (0.8), for p in
In, 400] or p ="'cl’, let ff;om be the function defined in (1.29) and F'P, F''P
be the functionals defined in (1.13). Assume that (dom f," )° # ¢. Then

(4.20) F'P(Q,u) = F'"(Q,u,) = |Q| fin(2)

for every bounded open subset 2 of R" and for every z in R".
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5. Some abstract results.

1

For every u in L,

L} .(R") defined by
(5.1 wx)=ulx—y) VxeR".
Let U be a vector subspace of L. (R") such that u” € U for every u in U

I
and for every y in R”, and, for every bo(c)unded open subset 2 of R”, let T be a
topology on U.

Moreover let V be a subspace of U tq-dense for every bounded open subset
Q of R”.

For every bounded open subset 2 of R", consider a functional G(£2, -)
satisfying
(5.2) G(,):U — [0, 4o00],

G (L, -) convex and To-lower semicontinuous,

(R™) and for every y in R” denote by u” the function in

and define the following relaxed functional of G(£2, -) on U
(5.3) (s¢ (t10)G)(R2,u) = inf{lin}linfG(Q, up) :

{uptnen SV, up S u), uel.
Moreover for every bounded open subset 2 of R” define

5.4 (s¢ (t0)G)_(2,u) = sup (sc (ta)G)(A,u), uel.
AccQ

In [26], by mean of a Jensen type inequality (see Proposition 4.1, in [40]),
the following result is proved, in order to give sufficient conditions to deduce
the identity of G_(2, u) and (sc™ (1q)G)_ (L2, u).

Proposition 5.1. Let G be as in (5.2). Assume that G (-, u) is increasing for
every u in U and
(5.5) G(2,u’) < G(Q, u)
for every bounded open subset 2 of R*, u € U, r > 0 and for every y € R"
with |y| <r
and that

(5.6) for every u € U if u. is the regularized function of u as in (1.10), then

u. €V for every € > 0 and u. Su for every bounded open subset Q of
R”,

Then

(5.7) (s¢(t)G)-(2,u) = G_(R2, u)
for every bounded open subset Q2 of R*",ueU.
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6. A representation result on Wlf)’cl R™ N C°(R").

In this section, following the same outlines of cap. 5 in [20], we give first
a representation result of F¥ on C!, where F” is defined in (1.14). Then, we
obtain a representation result of F” on Wll)’cl R™y N C°(R").

Lemma 6.1. [20]. Let f and ¢ be functions satisfying (0.2), (0.8), for p in
In, +ool or p ='cl’, let fﬁom be the function defined in (1.29) and F''? be the
functional defined in (1.13). Assume that (dom f;” )° # ¢.

Then

(6.1) F'P(Q,u) > f T o (Du) dx
Q

for every bounded open subset Q2 of R" and for every piecewise affine function
u.

Proof. Let Q be a bounded open subset of R" and let u = Z(“z, + sj)x be

Jj=
a piecewise affine function. For every j in {1,...,m} set ; = QN P? and

for e sufficiently small, let QF, ..., 2, be open subsets of R" with €27 CC Q;,
[€2; \ Qj.l < € forevery jin {1, ..., m}.

Since the functional F'”(-, u) is increasing, from Proposition 2.3, (1.18),
Corollary 4.4 and (1.19) it follows that

(6.2) FPQu) = FP( . u =Y F(@.u) >
j=1 j=1

= 3R e) = 10 Tt = [ TP
= = U 9
Inequality (6.1) is obtained by passing to the limit, as € — 0, in (6.2).

Lemma 6.2. [20]. Let f and_ @ be functions satisfying (0.2), (0.7), (0.8), for p
in n, 400] or p ='cl, let ff;om be the function defined in (1.29) and F"P be
the functional defined in (1.13). Assume that (dom fh'(’,m)O #* .

Then

(6.3) FP(Q,u) < / Trom(Dut) dx
Q

for every bounded open subset Q of R" and for every u in C'(R").
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Proof. Let Q be a bounded open subset of R” and u € C'(R"). Let § be
the constant fixed in (2.1), let r be in 0, §[ and let ¢ be the constant given by
Proposition 3.5.

First assume that Du(x) belongs to (domfﬁom)" for every x in Q.

For every v in N let {Q}};en be a sequence of open cubes of R* with

(9]
sidelenght % such that |R" \ | Q;l =0and Q; N Q]V = ¢ if i # j. Denote
j=1
x; the center of Q} and set zj = Du(x}). Moreover, for every € > 0, let Q"
be the cube with center in x; and faces parallel to the ones Q; and sidelenght
% +e€.
Since u is in C'(R"), it turns out that dist( U Du(x), 8(dom?lfom)) > 0.
xe
Hence there exists 7, in ]O, 1[ such that %Du(x) belongs to (dom?fom)f’ for
every x in Q.
Let Q" CC  and let us choose v € N and the cubes Qj‘.’ so that Qj‘.’ cC

forevery j ={1,...,m,}, @ CC (U;":l E;) and

(6.4)

1
sup |Du(x)—z | < Er vje{l,...,m}.

o er'

Let €, > 0 be such that 0" CC € for every j in {1,...,m,} and, by
(6.4),

(6.5)

sup |Du(x)—z |<r Vje{l,...,m}, Ve€]0,¢€,l.

o xEQ

From (6.5) and Proposition 3.5 it follows that

6.6) F'"(Q)°, (—uz)) <l Q) LVjefl,...,m}, Ve el0, el

1—1,

Proposition 2.3, the convexity of F”? and (6.6) provide that

6.7) FIP(@,uy < FP([J 00 u) <Y FP(00 )
j=1 j=1
Uu—uy

Z //p +(1—t) t)<
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u—uy
Zj

Z t.F'"(0 4 —) + (1 —t)F'"(Q)", ) <

to 1—1
m,
=3 e

uzy
© )+ (= 1)l 0)).

[e]

Combining (6.7) with Corollary 4.4, it results

68 @0 =) (610 FA(L) + (1 = )el0) ).

j=1

As e — 0in (6.8), since for j =1, ..., m,, % belongs to dom?lfom,
m,, Zl)
v P j
(6.9) F'P(Qu) < tOX; |Qj|foo(f) + (1 — t,)c|Q|.
J:

Now, since u belongsto C' (R") and Du(x) C (domf "ye,and F¥
Q 00 hom
xXe

is continuous on (dom?f:om)", as v — oo itresults
(6.10) hmz 10} |fh0m f From( Du(x)) dx < +o0.

Therefore, if Du(x) belongs to (domfgo)c’ for every x in €2, inequality (6.3)
is obtained from (6.9), (6.10), taking into account the continuity of ?go on
(dom?go)c’ and passing to the limit for €’ increasingto Q and 7, — 1~

On the other hand, if there exists £ C 2 such that |E| > 0 and

Du(x)gcl(dom f,,. ), Vx€E,

then
/ ?ﬁom (Du) dx = +o0
Q

and (6.3) holds. Therefore assume that

(6.11) Du(x) ecl(domf,, ) VxeQ.
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(6.11) and Lemma 1.8 provide that 7 Du(x) belongs to (domfﬁom)", for every ¢
in ]0, 1] and x in Q. Consequently, by applying (6.3) with the function ru, it
results

(6.12) FL”’(Q,m)g/?ﬁom(tDu)dx Vielo, 1[.
Q
Hence, by virtue of the convexity of Tﬁom, it follows
(6.13) Fﬁp(sz,m)5:/?{fom(Du)der(l—t)|sz|fh’;m(0) Vielo, 1[.
Q

Finally, by passing to liminf for # — 17 in (6.13), the semicontinuity of
F"P(Q, ) provides (6.3). O

We prove, now the representation result of F” on C!'(R").

Proposition 6.3. [20]. Let f and ¢ b_e the functions satisfying (0.2), (0.7), (0.8).

For p inln,4o00] or p = "cl’, let fﬁom be the function defined in (1.29) and

F'P, F"P be the functionals defined in (1.13). Assume that (domfh’:)m)D %+ ¢.
Then

(6.14) FL”(Q,M):FL”’(Q,M):/Tﬁom(Du)dx
Q

for every bounded open subset Q of R" and for every u in C'(R").

Proof. Let Q be a bounded open subset of R” and u in C' (R").
Prove that

(6.15) F'P(Q,u) > / oo (Du)dx.
Q

Assume FP(§2,u) < +oo. Denote Gg the restriction of F7(S, ) to
W1(Q). Obviously u is in domGg.

If u, denotes the function defined by u.(x) = 0 for every x in R",
Proposition 3.5 provides that u, belongs to (domGg)°, where the interior is
taken in the W!>°(Q)-topology. Consequently tu belongs to (domGg)° for
every ¢ in O, 1] (see, for example [31], pag. 413) and therefore

(6.16) Gq is W (Q)-continuous at fu for every t € ]0, 1.

For every ¢ in ]O, 1[ let { u;l }nen be asequence of piecewise affine functions such
that u} — ru in Wh®(Q) as h — 400 (see for example [32], pag. 309). Then
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from (6.16), Lemma 6.1, Fatou’s Lemma and the 1.s.c. of Tﬁom (see Lemma
1.8), it follows that

(6.17) Go(tu) =lim Go(u;) = lim FP(Q,ul) >

zlimhinf/ oo (Dul) dx Z/?ﬁom(mu)dx, Vrelo, 1[.
Q Q

On the other hand, by virtue of Lemma 1.11, it results that
(6.18) Gao(tu) <tGou) + (1 — t)IQI/ f(y,0)dy Vi e]0, 1[.
Q

Hence, combining (6.17) with (6.18) it follows that
(6.19) /Tffom(tDu) dx <tFP(Q,u)+ (1 —1)|Q ff(y, 0)dy, Yt €10, 1[.
Q Q

Ast — 17 in (6.19), Fatou’s lemma and Lemma 1.8 provide (6.15).
The conclusion follows from (6.15) and Lemma 6.2. [l

To extend (6.14) on Wll)cl (R™) N C°(R™), we recall two lemmas. For the
proof of these lemmas compare the proof of the Lemma 5.5 and Lemma 5.6 in
[20].

For every u in C°(R") and y in R”", define the function #” as in (5.1).

Lemma 6.4. [20]. Let f and ¢ be functions satisfying (0.2) and, for p in
In, 400 or p ='cl/, let F""?, F'P be the functionals defined in (1.13). Then

(6.20) FP(Q ,u’) < FP(Qu)  F'"(Q,u) < F'7(Q,u)

for every bounded open subset Q of R", for every u € C°,r > 0,y € R" such
that |y| <r.

Let f and ¢ be functions satisfying (0.2), (0.8) and, for p in Jn, +00]
or p' = cl',let ;"  be the function defined in (0.4) and o hom D€ the function
defined in (1.29). For every bounded open subset 2 of R", define the functionals

(6.21) FP (Q,9): uergcl(R”)e/fhom(Du)dx,

(6.22) (Q,):uew-'®rY - ? (Du) dx.
hom loc hom

Moreover let (sc¢™(C°(£2)) hOm)(Q -) be defined by (5.3) with G = F/

hom?
U= Wﬁ,j(R")mC%R") V =C'(R"), let (sc(C2()) hom)(Q ) be defined
by (5.3) with G = U= wt@nc @R, v =C! (Q) and let

hom ’

(sc7(C°(£2)) hom) (€2, -) be defined by (5.4). Analogously for F’

hom*
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Lemma 6.5. [20]. Let f and ¢ be functions satisfying (0.2), (0.7), (0.8) and for

pinln, ool or p ='cl, let Ff Fﬁom be the functionals defined in (6.21),
(6.22). Assume that (dom fhom) #* ¢.
Then

(6.23) fﬁom(Q, u) = (sc (C° (Q))Fﬁom) (Q,u) =
= (s (C° () Fop) - (2, u)

for every bounded open subset Q2 of R" and for every u in Wl1 "R N C°(RM),

(624)  Fr (R, u) = (s¢ (C(Q)F ) (R, u) =
= (s¢™(CJ(Q) Flo ) (R, u)

for every bounded open subset 2 of R" with Lipschitz boundary and for every
u in WHH(Q) N C°(RM).

Prove now the representation result.

Proposition 6.6. [20]. Let f and (p be functions satisfying (0.2), (0.7), (0.8),
for peln, +oolor p ='cl’, let fhom be the function defined in (1.29) and F'?,

F"'P be the functionals defined in (1.13). Assume that (dom fh[;m) # ¢.
Then

(6.25) (F'P)_(Q,u) = (F"")_(Q,u) = fg?ﬁom(m)dx

for every bounded open subset Q2 of R" and for every u in Wl1 LR N Co(R).

Proof. By virtue of Lemma 6.4, the functlonals F'P and F'P satlsfy the
assumptions of Proposition 5.1 with U = loc "R N Co(RY), V =C'(RY),

o = C°(2). Then, by virtue of Proposition 5.1 it results
(6.26)

{ (F'P)_(2,u) = (F'P)-) (2, u) = (s¢” (C° () (F')-)- (L2, ),
(F"P)_(Q, u) = (F"P))-(Q, u) = (sc™ (C*(Q)(F")-) (L2, ),

for every bounded open subset 2 of R” and u in Wll)’cl R™ N C°(R™).

Finally, combining (6.26) with Proposition 6.3 and the first equality of
(6.23), the representation result (6.25) holds. [l
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7. The convergence of minimun points.

Let ¢ in ]n,+oo[ and p > ¢ or p = ‘cl’. For every bounded open
subset 2 of R", denote sc™ (CJ(2))”9 the operator defined by (5.3) with
U=W'Q) and V = WhP(Q) (V = C'(RY) if p ="cl’).

Moreover denote u, the function defined by u,(x) = O for every x in R".

Theorem 7.1. Let f and ¢ be functions satisfying (0.2), (0.7), (0. 8) For p
in In, +o00) or p ="cl', let £, be the function defined in (0.4), fhom be the
function defined in (1.29), F) be the functionals defined in (1.11) and F  be
the functional defined in (6. 21) For every p in In, +00] or p ='cl’, for every
bounded open subset Q of R" with Lipschitz boundary and B in L' (Q) define

(7.1) m;j(sz,ﬁ):inf{/ f(hx,Du)dx—l—f,Budx:
Q Q
ue WP Q)ueCl(Q) ifp ='cl’), |Du(x)| < p(hx) fora.e.x in Q}

and, by denoting Argmin(G) the set of minimum points of a functional G, for
every p > q or p ='cl’ (where q is given in (0.7)) define

(1.2) MR, ) = Argmin{sc_(Cg(Q))l”qF,f’(Q, u) +

+f,8udx: uEWol’q(Q)}.
Q

Assume (dom fhom) #* .
Then, for every n < p < q, mZ(Q, B) = mZ (2, B) and the sequence
{mZ} converges, as h — +00, to

(1.3) mq(Q,ﬂ):inf{/ thom(Du)dx—l-/ ﬂudx:ueWol’q(Q)} -
Q Q
= min {/ ?ﬁom(Du) dx —|—/ Budx :ue Wol’q(Q)} =
Q Q

— min {sc (C2(Q)) hom(Q,u)—i-/ ,Budx:uer’q(Q)}
Q

and every sequence {u}pen Such that uy, € MZ for every h in N is compact in
C°(2) and the subsequences that converge in C°(S2) converge to solutions of
problems in (7.3).
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Moreover, for every p in lq,+o0] or p = 'cl’, the sequence {m} }en
converges, as h — 400, to

(7.4) m”(sz,ﬁ)zinf{/ fh’(’)m(Du)dx—i—/,Budx:uEWOl’q(Q)} -
Q Q
= min {/ Tﬁom(Du) dx —I—/ Budx :ue Wol’q(Q)} =
Q Q
= min {s¢” (CS () Flp (@, 1) +f pudx :ue W)
Q

where WP (Q) in the first equality of (7.4) has to be replaced by C!(2) when
p = 'cl'. Every sequence {up}nen such that u; € Mf for every h in N is
compact in C°(2) and the subsequences that converge in C°(S2) converge to
minimum points solutions of minimum problems in (7.3).

Assume (dom f;’ )° = ¢.

Then u, is the only solution of m? (<2, B) and the sequence {up}pen
converges in C°(2) to u,. Moreover, if in addition we assume that

(7.5) f(»,0)= nelii?r”l f(y,z) forae.yinY,

it turns out that the sequence {m;’:(Q, B)}nen converges to m? (2, B) and that
(@) =12) [ £(.0)dy.
Y

Proof. Assume (domf,> )° # ¢.

Let Q2 be a bounded open subset of R" with Lipschitz boundary and B
in L'(2). The functional u € Wli)’cq R") — [, Bu is C°()-continuous on
Wli)’cq (R™). Moreover, by virtue of (0.7), the functionals F} (2, ) + [, B(-) are

equicoercive on W17(Q) in the topology of C°(2). Therefore Theorem 1.5,
Proposition 2.2 and Proposition 6.6 provide that

(7.6) li}{an(Q, B) =m?(Q, B) forevery p > gorp ='cl’.

The last equalities in the right hand sides of (7.3) and (7.4) follow by (6.24) of
Lemma 6.5. The convergence of solutions follows from the equicoerciveness
of functionals F}” in the same way. If (dom f,” )° = ¢, the thesis follows by
arguing as in Theorem 5.2 in [18]. (]

Concerning to the Lavrentieff phenomenon, in Theorem 7.1 the minimum
values m! effectively depend on p. Recall the following examples given in
[20]:
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Example 7.2. Let n = 1, f be function satisfying (0.2) and K be closed set
suchthat K C Y, |K| = % K= ¢ and ¢ = xy and K, be a subset of K such
that | K| = 3—‘. Letg >nandlet B=0,Q=Y and f(x,z) = xx, (x)|z—1]9.
For p inln,+o0]or p ='cl’, let m,’l’, h e N, m? be as in Theorem 7.1. Then f
and ¢ satisfy assumption of Theorem 7.1 and for every p in |n, +00]

cl 1

1
mP =mj) =0 < 7= M =m" forevery heN.
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