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THE CLASS OF HYPERGROUPS IN WHICH

THE HEART IS THE SET OF IDENTITIES

VIOLETA LEOREANU

In this paper, the hypergroups, for which the heart is the set of identities,
are studied.

Let us denote by ε the class of hypergroups H , for which the heart is the
set of identities of H , that is ωH = EH . We shall say that a hypergroup H is a
ε-hypergroup, if H ∈ ε .

Theorem 1. Let H ∈ ε . Then H is �at, that means ωH ∩ K = ωK , for each K ,
subhypergroup of H .

Proof. Since ωH ∩ K = EH ∩ K = {e ∈ K | ∀x ∈ H : x ∈ xe∩ ex} ⊂ {e ∈ K |

∀x ∈ K : x ∈ xe ∩ ex} ⊂ ωK , it remains to prove that ωK ⊂ ωH ∩ K . Indeed,
for each x ∈ ωK , and for each e ∈ EK , we have xβK e, then ∃n ∈ N∗, ∀ i ∈

{1, 2, . . . , n}, ai ∈ K , such that {x , e} ⊂
n�

i=1

ai .

Since e ∈ EK , it results e ∈ Ip(H ) = {e� ∈ H | ∃ x ∈ H : x ∈ xe� ∪ e�x} ⊂ ωH =

EH . So, EH = ωH ⊃
n�

i=1

ai , and therefore x ∈ ωH ∩ K .

Then, ωH ∩ K = ωK .

Remark 2. If H ∈ ε and K is a subhypergroup of H , then K ∈ ε .
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Indeed, we have EK ⊂ ωK = ωH ∩K = EH ∩K , and for each a ∈ EH ∩K
and for each x ∈ H , we have x ∈ xa ∩ ax , so ∀x ∈ K , x ∈ ax ∩ xa, from which
it results a ∈ EK , so EH ∩ K ⊂ EK .

Then EK = EH ∩ K = ωK .

Theorem 3. Let f : H1 → H2 be a very good homomorphism between
hypergroups, and let H2 ∈ ε . Then

a) f (ωH1
) = f (Ip(H1)) = EH2

; b) f (H1) is a complete part of H2.

Proof. a) Let i ∈ Ip(H1), that is there is x ∈ H1, such that x ∈ xi or x ∈ ix .
So, f (x)∈ f (x) f (i) or f (x)∈ f (i) f (x), from which f (i) ∈ Ip(H2) ⊂ ωH2

=

EH2
.

Then f (Ip(H1)) ⊂ EH2
.

Conversely, let e be an arbitrary element of EH2
. So f (x) ∈ f (x)e, for all

x ∈ H1; we have e ∈ f (x)/ f (x) = f (x/x) ⊂ f (Ip(H1)), whence f (Ip(H1)) ⊃

EH2
. Therefore, f (Ip(H1)) = EH2

, so f (Ip(H1)) = ωH2
.

On the other hand, we have f (ωH1
) ⊂ ωH2

.

Indeed, ∀x ∈ ωH1
, ∀ i ∈ Ip(H1), we have xβH1

i , so f (x)βH2
f (i) and since

f (i) ∈ ωH2
= EH2

, it results f (x) ∈ ωH2
.

Hence, f (ωH1
) ⊂ ωH2

= f (Ip(H1)) ⊂ f (ωH1
) and we have the equality.

b) From a), the subhypergroup f (H1) contains ωH2
, so it a complete part of H2.

Remark 4. The complete hypergroups form a subclass of ε . The are ε-
hypergroups, which are not complete (see [1], Th. 266). 1-hypergroups are
also ε-hypergroups.

Proposition 5. A KH -hypergroup is a ε-hypergroup if and only if H is a ε-
hypergroup.

Proof. �⇐� By Th.384, [1], we have ωK H
= K (ωH) = K (EH) and by

Th. 377, [1], we have K (EH) = E(KH ), so ωK H
= E(KH), whence KH ∈ ε .

�⇒� We have K (ωH ) = ωK H
= E(KH ) = K (EH), whence K (ωH ) =�

x∈ωH

A(x) =
�

x∈EH

A(x) = K (EH).

If we suppose that there is x0 ∈ ωH −EH , then A(x0) ⊂
�

x∈ωH

A(x) =
�

x∈EH

A(x),

so there is x1 ∈ EH , such that A(x0) = A(x1), because ∀(x , y)∈ H 2, x �= y ⇒

A(x) ∩ A(y) = ∅.

Hence, x0 = x1 ∈ EH , that is false. Therefore, ωH = EH , that is H ∈ ε .

Proposition 6. The direct product of ε-hypergroups is a ε-hypergroup.
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Proof. Let H =
�

i∈I

Hi . Let us notice that if x = (xi )i∈I and e = (ei )i∈I , where

{xi , ei} ⊂ Hi and ei ∈ EHi
, then x ∈ xe = (xiei )i∈I and x ∈ ex = (ei xi )i∈I , that

means e ∈ EH .
We have xβH

n e if and only if a1 = (a1
i )i∈I , a2 = (a2

i )i∈I , . . . , an = (an
i )i∈I

exist in H , such that x ∈
n�

k=1

ak � e, that is if and only if ∀ i ∈ I, xi ∈
n�

k=1

ak
i � ei .

So, xiβ
H
n ei , that is xi ∈ ωHi

= EHi
, so x ∈ EH . Hence ωH = EH .

De�nition 7. (see [6]). Let H be a hypergroup, G a group and {Ai }i∈G a family
of nonempty sets, such that:
1) A1 = H (1 is the identity of G);
2) ∀(i, j ) ∈ G2, i �= j ⇒ Ai ∩ Aj = ∅.

Let us de�ne on K = ∪
i∈G

Ai the following hyperoperation:

∀(x , y) ∈ H 2, x ⊗ y = xy ;
∀(x , y) ∈ Ai × Aj , x ⊗ y = Ak , if (i, j ) �= (1, 1) and i j = k.
The hypergroup �K , ⊗� is called (H, G)-hypergroup.

Proposition 8. Let H be a hypergroup.
H = EH if and only if any (H, G)-hypergroup is a ε-hypergroup.

Proof. Let us notice that ωK = H and ∀ y ∈ A1 = H , ∀x ∈ Aj , j �= 1,
x ∈ x ⊗ y = y ⊗ x . So, y ∈ EK ⇔ y ∈ EH . Hence, ωK = EK ⇔ H = EH .

Remark 9. If H ∈ ε , then ∀x ∈ H , il (x) = ir (x), where

il (x) = {x � ∈ H | EH ∩ x �x �= ∅} and ir (x) = {x �� ∈ H | EH ∩ xx �� �= ∅}.

Proof. Indeed, if x � ∈ il (x), then ∃e ∈ EH , such that e ∈ x �x , so x �x ⊂ ωH =

EH . Hence x � ∈ ex � ⊂ (x �x)x � = x �(xx �), whence xx � ∩ Ip(H ) �= ∅, so
xx � ⊂ ωH = EH , that means x � ∈ ir (x). Then il (x) ⊂ ir (x) and similarly, we
have il (x) ⊃ ir (x). Therefore, ∀x ∈ H , il (x) = ir (x).

Proposition 10. If H ∈ ε , then ∀x ∈ H, il (x) = C(x �), where x � ∈ il (x) =

ir (x), and C(x �) is the complete closure of x � in H .

Proof. Let y ∈ il (x). So, ∃e ∈ EH : e ∈ yx , whence x � ∈ (yx)x � = y(xx �) ⊂

yEH = C(y). Hence, C(x �) = C(y) � y ; then il (x) ⊂ C(x �).
Conversely, if z ∈ C(x �), then z ∈ x �EH = EH x �, whence zx ⊂ EH (x �x) ⊂ EH ,
so z ∈ il (x); then il (x) ⊃ C(x �). Therefore, ∀x ∈ H, il(x) = C(x �).

Let H be a hypergroup with identities and let us de�ne on H the following
relation:

x Ry ⇔ ∃ z ∈ H : x z ⊃ EH ⊂ yz.

Remark 11. If H is a hypergroup with identities, then β ⊃ R.
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Indeed, we have x Ry ⇔ ∃ z ∈ H : x z ⊂ EH ⊃ yz. Let z� ∈ ir (z). Then
x ∈ x zz� ⊂ EH z� , whence C(x) = C(z� ) and similarly, we have C(y) = C(z�),
so C(x) = C(y), that is xβy .

Theorem 12. Let H be a hypergroup with identities. H ∈ ε if and only if
β = R.

Proof. �⇒� We have to verify only the inclusion β ⊂ R. Let {x , y} ⊂ H ,
such that xβy . Then C(x) = C(y) = il (y �), where y � ∈ il (y), because H ∈ ε

(see Prop. 10). So, {x , y} ⊂ il (y �), whence ∃e1 ∈ EH , such that e1 ∈ xy �.
Hence, xy � ⊂ ωH = EH and similarly, we have yy � ⊂ EH . Therefore, x Ry .
�⇐� Now, let us suppose β = R. We shall check that ωH = EH . Let x ∈ ωH

and e ∈ EH . We have eβx , whence eRx . So, ∃ z ∈ H : x z ⊂ EH ⊂ ez � z and
then x ∈ x z ⊂ EH , that means x ∈ EH . Therefore, ωH = EH , that is H ∈ ε .

De�nition 13. (see [1], 372). Let �H, ·� be a hypergroup. We de�ne ∀(x , y)∈

H 2, x ⊗ y = CH (xy). Then �H, ⊗� is a hypergroup, which we call the
completion of �H, ·�, and we shall denote �(H ).

Theorem 14. Let �H, ·� be an arbitrary hypergroup. Then �(H ) ∈ ε.

Proof. Let us denote the group �H/β, ·� by H � and let us consider the following
KH � -hypergroup: KH � =

�

x̄∈H �

A(x̄), where A(x̄ ) = β(x) and ∀(a, b) ∈

KH � ⊗ KH �, a • b =
�

z̄∈g(a)g(b)

A(z̄), where ∀a ∈ KH � , g(a) = x̄ ⇔ a ∈ A(x̄).

We shall verify that KH � = H and a • b = CH (ab), that means �KH �, •� is the
completion of �H, ·�.
Since g(a) = x̄ ⇔ a ∈ β(x) ⇔ ā = x̄ , it results a • b =

�

z̄∈āb̄

A(z̄).

We have KH � =
�

x̄∈H �

A(x̄) =
�

x∈H

β(x) = H and a • b =
�

z̄∈āb̄

A(z̄) =
�

z̄∈āb̄

β(z).

Let ϕH : H → H/β = H � be the canonical projection.
By [1], Theorems 66, 67, we have:

z̄ ∈ āb̄ ⇔ ϕH(z) ∈ ϕH (a)ϕH (b) = ϕH (ab) ⇔ z ∈ ϕ−1
H ϕH(ab) = CH (ab).

Then a • b =
�

z∈CH (ab)

β(z) =
�

z∈CH (ab)

ϕ−1
H ϕH(z) =

�

z∈CH (ab)

CH (z) = CH (ab).

Therefore, �KH �, •� = �(H ).
On the other hand, since H � is a group, it results it is a ε-hypergroup and by a
preceding Proposition, every KH � -hypergroup is also a ε-hypergroup. Hence,
�(H ) ∈ ε .

We can de�ne a functor between the hypergroups category and the ε-hy-
pergroups category.
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Remark 15. There are ε-hypergroups H , such that H �= �(H ) and there are
nontotal ε-hypergroups H , such that H = �(H ).

Indeed, for proving the �rst part, we can consider the following example
(see Examples 13, [1]): let �G, ·� be a group, and ∀(x , y)∈ G2, x ◦ y = �x , y�

be the subgroup generated by {x , y}. Then �G, ◦� is a ε-hypergroup, for which
ωG = G , and so �(G) is the total hypergroup on G .
For proving the second part of the above remark, we can consider T a total
hypergroup, and A a nonempty set, such that A ∩ T = ∅. Let H = A ∪ T and

∀(x , y) ∈ H 2, x ◦ y =

�
A, if (x , y) ∈ A × T ∪ T × A
T , if (x , y) ∈ A2

T , if (x , y) ∈ T2

Then �H, ◦� is a ε-hypergroup, for which H = �(H ).

Proposition 16. If H is a hypergroup, then ω�H = ωH .

Proof. By the above Theorem, we have ω�(H ) = E�(H ). We have e ∈ E�(H ) ⇔

∀a ∈ H , a ∈ e ⊗ a ∩ a ⊗ e = CH (ea) ∩ CH (ae). Let a be a partial identity of
H , and we shall denote a by i . From i ∈ CH (ei) ∩ CH (ie) = CH (e), it results
CH (e) = CH (i) = ωH , that means e ∈ ωH . So, E�(H ) ⊂ ωH .

Conversely, if x ∈ ωH , then ∀a ∈ H , CH (ax) = axωH = aωH = CH (a) =

ωH a = ωH xa = CH (xa), whence ∀a ∈ H , a ∈ CH (a) = CH (ax) =

CH (xa) = a ⊗ x ∩ x ⊗ a, that is x ∈ E�(H ).
Then, ω�(H ) = E�(H ) = ωH .

Proposition 17. Let H1 and H2 be two hypergroups, and f : �(H1) → �(H2)

a good homomorphism. Then f (ωH1
) = ωH2

.

Proof. ∀(a, b) ∈ H 2
1 , we have f (a ⊗ b) = f (a)⊗ f (b), that is f (CH1

(ab)) =

CH2
( f (a) f (b)). Let a and b be in ωH1

. Then CH1
(ab) = ωH1

and from aβH1
b,

it results f (a)βH2
f (b), so { f (a), f (b)} ⊂ ωH2

, whence CH2
( f (a) f (b)) =

ωH2
. Then f (ωH1

) = ωH2
.
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