THE CLASS OF HYPERGROUPS IN WHICH THE HEART IS THE SET OF IDENTITIES

VIOLETA LEOREANU

In this paper, the hypergroups, for which the heart is the set of identities, are studied.

Let us denote by ε the class of hypergroups H, for which the heart is the set of identities of H, that is $\omega_H = E_H$. We shall say that a hypergroup H is a ε -hypergroup, if $H \in \varepsilon$.

Theorem 1. Let $H \in \varepsilon$. Then H is flat, that means $\omega_H \cap K = \omega_K$, for each K, subhypergroup of H.

Proof. Since $\omega_H \cap K = E_H \cap K = \{e \in K \mid \forall x \in H : x \in xe \cap ex\} \subset \{e \in K \mid \forall x \in K : x \in xe \cap ex\} \subset \omega_K$, it remains to prove that $\omega_K \subset \omega_H \cap K$. Indeed, for each $x \in \omega_K$, and for each $e \in E_K$, we have $x\beta_K e$, then $\exists n \in N^*, \forall i \in \{1, 2, ..., n\}, a_i \in K$, such that $\{x, e\} \subset \prod_{i=1}^n a_i$. Since $e \in E_K$, it results $e \in I_p(H) = \{e' \in H \mid \exists x \in H : x \in xe' \cup e'x\} \subset \omega_H = E_H$. So, $E_H = \omega_H \supset \prod_{i=1}^n a_i$, and therefore $x \in \omega_H \cap K$. Then, $\omega_H \cap K = \omega_K$.

Remark 2. If $H \in \varepsilon$ and K is a subhypergroup of H, then $K \in \varepsilon$.

Entrato in Redazione il 30 ottobre 1998.

Indeed, we have $E_K \subset \omega_K = \omega_H \cap K = E_H \cap K$, and for each $a \in E_H \cap K$ and for each $x \in H$, we have $x \in xa \cap ax$, so $\forall x \in K, x \in ax \cap xa$, from which it results $a \in E_K$, so $E_H \cap K \subset E_K$. Then $E_K = E_H \cap K = \omega_K$.

Theorem 3. Let $f : H_1 \rightarrow H_2$ be a very good homomorphism between hypergroups, and let $H_2 \in \varepsilon$. Then

a) $f(\omega_{H_1}) = f(I_p(H_1)) = E_{H_2};$ b) $f(H_1)$ is a complete part of H_2 .

Proof. a) Let $i \in I_p(H_1)$, that is there is $x \in H_1$, such that $x \in xi$ or $x \in ix$. So, $f(x) \in f(x)f(i)$ or $f(x) \in f(i)f(x)$, from which $f(i) \in I_p(H_2) \subset \omega_{H_2} = E_{H_2}$.

Then $f(I_p(H_1)) \subset E_{H_2}$.

Conversely, let \overline{e} be an arbitrary element of E_{H_2} . So $f(x) \in f(x)\overline{e}$, for all $x \in H_1$; we have $\overline{e} \in f(x)/f(x) = f(x/x) \subset f(I_p(H_1))$, whence $f(I_p(H_1)) \supset E_{H_2}$. Therefore, $f(I_p(H_1)) = E_{H_2}$, so $f(I_p(H_1)) = \omega_{H_2}$.

On the other hand, we have $f(\omega_{H_1}) \subset \omega_{H_2}$.

Indeed, $\forall x \in \omega_{H_1}$, $\forall i \in I_p(H_1)$, we have $x\beta_{H_1}i$, so $f(x)\beta_{H_2}f(i)$ and since $f(i) \in \omega_{H_2} = E_{H_2}$, it results $f(x) \in \omega_{H_2}$.

Hence, $f(\omega_{H_1}) \subset \omega_{H_2} = f(I_p(H_1)) \subset f(\omega_{H_1})$ and we have the equality.

b) From a), the subhypergroup $f(H_1)$ contains ω_{H_2} , so it a complete part of H_2 .

Remark 4. The complete hypergroups form a subclass of ε . The are ε -hypergroups, which are not complete (see [1], Th. 266). 1-hypergroups are also ε -hypergroups.

Proposition 5. A K_H -hypergroup is a ε -hypergroup if and only if H is a ε -hypergroup.

Proof. " \Leftarrow " By Th.384, [1], we have $\omega_{K_H} = K(\omega_H) = K(E_H)$ and by Th. 377, [1], we have $K(E_H) = E(K_H)$, so $\omega_{K_H} = E(K_H)$, whence $K_H \in \varepsilon$. " \Rightarrow " We have $K(\omega_H) = \omega_{K_H} = E(K_H) = K(E_H)$, whence $K(\omega_H) = \bigcup_{x \in \omega_H} A(x) = \bigcup_{x \in E_H} A(x) = K(E_H)$.

If we suppose that there is $x_0 \in \omega_H - E_H$, then $A(x_0) \subset \bigcup_{x \in \omega_H} A(x) = \bigcup_{x \in E_H} A(x)$, so there is $x_1 \in E_H$, such that $A(x_0) = A(x_1)$, because $\forall (x, y) \in H^2, x \neq y \Rightarrow A(x) \cap A(y) = \emptyset$.

Hence, $x_0 = x_1 \in E_H$, that is false. Therefore, $\omega_H = E_H$, that is $H \in \varepsilon$.

Proposition 6. The direct product of ε -hypergroups is a ε -hypergroup.

Proof. Let $H = \prod H_i$. Let us notice that if $x = (x_i)_{i \in I}$ and $e = (e_i)_{i \in I}$, where $\{x_i, e_i\} \subset H_i \text{ and } e_i \in E_{H_i}, \text{ then } x \in xe = (x_ie_i)_{i \in I} \text{ and } x \in ex = (e_ix_i)_{i \in I}, \text{ that}$ means $e \in E_H$. We have $x\beta_n^H e$ if and only if $a^1 = (a_i^1)_{i \in I}, a^2 = (a_i^2)_{i \in I}, \dots, a^n = (a_i^n)_{i \in I}$ exist in *H*, such that $x \in \prod_{k=1}^{n} a^k \ni e$, that is if and only if $\forall i \in I, x_i \in \prod_{k=1}^{n} a_i^k \ni e_i$. So, $x_i \beta_n^H e_i$, that is $x_i \in \omega_{H_i} = E_{H_i}$, so $x \in E_H$. Hence $\omega_H = E_H$.

Definition 7. (see [6]). Let H be a hypergroup, G a group and $\{A_i\}_{i \in G}$ a family of nonempty sets, such that:

1) $A_1 = H$ (1 is the identity of G);

2) $\forall (i, j) \in G^2, i \neq j \Rightarrow A_i \cap A_j = \emptyset.$ Let us define on $K = \bigcup_{i \in G} A_i$ the following hyperoperation:

 $\forall (x, y) \in H^2, x \otimes y = xy;$ $\forall (x, y) \in A_i \times A_i, x \otimes y = A_k$, if $(i, j) \neq (1, 1)$ and ij = k. The hypergroup $\langle K, \otimes \rangle$ is called (H, G)-hypergroup.

Proposition 8. Let H be a hypergroup.

 $H = E_H$ if and only if any (H, G)-hypergroup is a ε -hypergroup.

Proof. Let us notice that $\omega_K = H$ and $\forall y \in A_1 = H$, $\forall x \in A_j$, $j \neq 1$, $x \in x \otimes y = y \otimes x$. So, $y \in E_K \Leftrightarrow y \in E_H$. Hence, $\omega_K = E_K \Leftrightarrow H = E_H$.

Remark 9. If $H \in \varepsilon$, then $\forall x \in H$, $i_l(x) = i_r(x)$, where

 $i_l(x) = \{x' \in H \mid E_H \cap x'x \neq \emptyset\} \text{ and } i_r(x) = \{x'' \in H \mid E_H \cap xx'' \neq \emptyset\}.$

Proof. Indeed, if $x' \in i_l(x)$, then $\exists e \in E_H$, such that $e \in x'x$, so $x'x \subset \omega_H =$ E_H . Hence $x' \in ex' \subset (x'x)x' = x'(xx')$, whence $xx' \cap I_p(H) \neq \emptyset$, so $xx' \subset \omega_H = E_H$, that means $x' \in i_r(x)$. Then $i_l(x) \subset i_r(x)$ and similarly, we have $i_l(x) \supset i_r(x)$. Therefore, $\forall x \in H$, $i_l(x) = i_r(x)$.

Proposition 10. If $H \in \varepsilon$, then $\forall x \in H$, $i_l(x) = C(x')$, where $x' \in i_l(x) =$ $i_r(x)$, and C(x') is the complete closure of x' in H.

Proof. Let $y \in i_l(x)$. So, $\exists e \in E_H : e \in yx$, whence $x' \in (yx)x' = y(xx') \subset$ $yE_H = C(y)$. Hence, $C(x') = C(y) \ni y$; then $i_l(x) \subset C(x')$. Conversely, if $z \in C(x')$, then $z \in x'E_H = E_H x'$, whence $zx \subset E_H(x'x) \subset E_H$, so $z \in i_l(x)$; then $i_l(x) \supset C(x')$. Therefore, $\forall x \in H, i_l(x) = C(x')$.

Let H be a hypergroup with identities and let us define on H the following relation:

$$xRy \Leftrightarrow \exists z \in H : xz \supset E_H \subset yz.$$

Remark 11. If H is a hypergroup with identities, then $\beta \supset R$.

Indeed, we have $x R y \Leftrightarrow \exists z \in H : xz \subset E_H \supset yz$. Let $z' \in i_r(z)$. Then $x \in xzz' \subset E_H z'$, whence C(x) = C(z') and similarly, we have C(y) = C(z'), so C(x) = C(y), that is $x\beta y$.

Theorem 12. Let H be a hypergroup with identities. $H \in \varepsilon$ if and only if $\beta = R.$

Proof. " \Rightarrow " We have to verify only the inclusion $\beta \subset R$. Let $\{x, y\} \subset H$, such that $x\beta y$. Then $C(x) = C(y) = i_l(y')$, where $y' \in i_l(y)$, because $H \in \varepsilon$ (see Prop. 10). So, $\{x, y\} \subset i_l(y')$, whence $\exists e_1 \in E_H$, such that $e_1 \in xy'$. Hence, $xy' \subset \omega_H = E_H$ and similarly, we have $yy' \subset E_H$. Therefore, xRy.

" \Leftarrow " Now, let us suppose $\beta = R$. We shall check that $\omega_H = E_H$. Let $x \in \omega_H$ and $e \in E_H$. We have $e\beta x$, whence eRx. So, $\exists z \in H : xz \subset E_H \subset ez \ni z$ and then $x \in xz \subset E_H$, that means $x \in E_H$. Therefore, $\omega_H = E_H$, that is $H \in \varepsilon$.

Definition 13. (see [1], 372). Let (H, \cdot) be a hypergroup. We define $\forall (x, y) \in$ $H^2, x \otimes y = C_H(xy)$. Then $\langle H, \otimes \rangle$ is a hypergroup, which we call the *completion* of $\langle H, \cdot \rangle$, and we shall denote $\Delta(H)$.

Theorem 14. Let (H, \cdot) be an arbitrary hypergroup. Then $\Delta(H) \in \varepsilon$.

Proof. Let us denote the group $\langle H/\beta, \cdot \rangle$ by H' and let us consider the following $K_{H'} \text{-hypergroup:} \quad K_{H'} = \bigcup_{\bar{x} \in H'} A(\bar{x}), \text{ where } A(\bar{x}) = \beta(x) \text{ and } \forall (a, b) \in K_{H'} \otimes K_{H'}, a \bullet b = \bigcup_{\bar{z} \in g(a)g(b)} A(\bar{z}), \text{ where } \forall a \in K_{H'}, g(a) = \bar{x} \Leftrightarrow a \in A(\bar{x}).$ We shall verify that $K_{H'} = H$ and $a \bullet b = C_H(ab)$, that means $\langle K_{H'}, \bullet \rangle$ is the completion of $\langle H, \cdot \rangle$. Since $g(a) = \bar{x} \Leftrightarrow a \in \beta(x) \Leftrightarrow \bar{a} = \bar{x}$, it results $a \bullet b = \bigcup_{\bar{z} \in \bar{a}\bar{b}} A(\bar{z})$. We have $K_{H'} = \bigcup_{\bar{x} \in H'} A(\bar{x}) = \bigcup_{x \in H} \beta(x) = H$ and $a \bullet b = \bigcup_{\bar{z} \in \bar{a}\bar{b}} A(\bar{z}) = \bigcup_{\bar{z} \in \bar{a}\bar{b}} \beta(z)$. Let $\varphi_H : H \to H/\beta = H'$ be the canonical projection.

By [1], Theorems 66, 67, we have:

$$\bar{z} \in \bar{a}\bar{b} \Leftrightarrow \varphi_H(z) \in \varphi_H(a)\varphi_H(b) = \varphi_H(ab) \Leftrightarrow z \in \varphi_H^{-1}\varphi_H(ab) = C_H(ab).$$

Then $a \bullet b = \bigcup_{z \in C_H(ab)} \beta(z) = \bigcup_{z \in C_H(ab)} \varphi_H^{-1} \varphi_H(z) = \bigcup_{z \in C_H(ab)} C_H(z) = C_H(ab).$ Therefore, $\langle K_{H'}, \bullet \rangle = \Delta(H)$

On the other hand, since H' is a group, it results it is a ε -hypergroup and by a preceding Proposition, every $K_{H'}$ -hypergroup is also a ε -hypergroup. Hence, $\Delta(H) \in \varepsilon$.

We can define a functor between the hypergroups category and the ε -hypergroups category.

Remark 15. There are ε -hypergroups H, such that $H \neq \Delta(H)$ and there are nontotal ε -hypergroups H, such that $H = \Delta(H)$.

Indeed, for proving the first part, we can consider the following example (see Examples 13, [1]): let $\langle G, \cdot \rangle$ be a group, and $\forall (x, y) \in G^2$, $x \circ y = \langle x, y \rangle$ be the subgroup generated by $\{x, y\}$. Then $\langle G, \circ \rangle$ is a ε -hypergroup, for which $\omega_G = G$, and so $\Delta(G)$ is the total hypergroup on G.

For proving the second part of the above remark, we can consider T a total hypergroup, and A a nonempty set, such that $A \cap T = \emptyset$. Let $H = A \cup T$ and

$$\forall (x, y) \in H^2, x \circ y = \begin{cases} A, & \text{if } (x, y) \in A \times T \cup T \times A \\ T, & \text{if } (x, y) \in A^2 \\ T, & \text{if } (x, y) \in T^2 \end{cases}$$

Then $\langle H, \circ \rangle$ is a ε -hypergroup, for which $H = \Delta(H)$.

Proposition 16. If *H* is a hypergroup, then $\omega_{\Delta H} = \omega_H$.

Proof. By the above Theorem, we have $\omega_{\Delta(H)} = E_{\Delta(H)}$. We have $e \in E_{\Delta(H)} \Leftrightarrow \forall a \in H$, $a \in e \otimes a \cap a \otimes e = C_H(ea) \cap C_H(ae)$. Let *a* be a partial identity of *H*, and we shall denote *a* by *i*. From $i \in C_H(ei) \cap C_H(ie) = C_H(e)$, it results $C_H(e) = C_H(i) = \omega_H$, that means $e \in \omega_H$. So, $E_{\Delta(H)} \subset \omega_H$. Conversely, if $x \in \omega_H$, then $\forall a \in H$, $C_H(ax) = ax\omega_H = a\omega_H = C_H(a) =$

Conversely, If $x \in \omega_H$, then $\forall a \in H$, $C_H(ax) = ax\omega_H = a\omega_H = C_H(a) = \omega_H a = \omega_H x a = C_H(xa)$, whence $\forall a \in H$, $a \in C_H(a) = C_H(ax) = C_H(ax) = C_H(xa) = a \otimes x \cap x \otimes a$, that is $x \in E_{\Delta(H)}$. Then, $\omega_{\Delta(H)} = E_{\Delta(H)} = \omega_H$.

Proposition 17. Let H_1 and H_2 be two hypergroups, and $f : \Delta(H_1) \to \Delta(H_2)$ a good homomorphism. Then $f(\omega_{H_1}) = \omega_{H_2}$.

Proof. $\forall (a, b) \in H_1^2$, we have $f(a \otimes b) = f(a) \otimes f(b)$, that is $f(C_{H_1}(ab)) = C_{H_2}(f(a)f(b))$. Let a and b be in ω_{H_1} . Then $C_{H_1}(ab) = \omega_{H_1}$ and from $a\beta_{H_1}b$, it results $f(a)\beta_{H_2}f(b)$, so $\{f(a), f(b)\} \subset \omega_{H_2}$, whence $C_{H_2}(f(a)f(b)) = \omega_{H_2}$. Then $f(\omega_{H_1}) = \omega_{H_2}$.

REFERENCES

- [1] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Italy, 1993.
- [2] P. Corsini, *Feebly canonical and 1-hypergroups*, Acta Universitas Carolinae, Math. et Phys. 24–2 (1983).

VIOLETA LEOREANU

- [3] F. De Maria, *Sulle potenze stabili delle identità di un ipergruppo finito*, Atti Soc. Pelor. Sci. Fis. Mat. Natur., Messina, 25 (1979).
- [4] F. De Maria, *Sulle potenze stabili delle identità di un ipergruppo finito*, II parte Atti Soc. Pelor. Sci. Fis. Mat. Natur., Messina, 25 (1980).
- [5] M. De Salvo, I K_H-ipergruppi, Atti Sem. Mat. Fis. Univ. Modena, 31 (1982).
- [6] M. De Salvo, *Gli* (*H*, *G*)-*ipergruppi*, Riv. Mat. Parma, (4) 10 (1984).

Faculti of Mathematics, "Al I. Cuza" University, 6600 Iasi (ROMANIA)