APPROXIMATION THEOREMS FOR
 MODIFIED SZASZ-MIRAKJAN OPERATORS IN POLYNOMIAL WEIGHT SPACES

MONIKA HERZOG

In this paper we will study properties of Szasz-Mirakjan type operators A_{n}^{ν}, B_{n}^{ν} defined by modified Bessel function I_{v}. We shall present theorems giving a degree of approximation for these operators.

1. Introduction.

Let us denote a set of all real-valued function continuous in $\mathbb{R}_{0}:=[0,+\infty)$ by $C\left(\mathbb{R}_{0}\right)$ and let $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. Similary as in [2], define a polynomial weight function

$$
w_{p}(x)= \begin{cases}1 & p=0 \tag{1}\\ \frac{1}{1+x^{p}} & p \in \mathbb{N}\end{cases}
$$

for $x \in \mathbb{R}_{0}$, and denote a polynomial weight space by C_{p}
(2) $\quad C_{p}:=\left\{f \in C\left(\mathbb{R}_{0}\right): w_{p} f\right.$ is uniformly continuous and bounded in $\left.\mathbb{R}_{0}\right\}$.

Entrato in Redazione il 21 dicembre 1998.
1991 Mathematics Subject classification: 41A36.
Key words and phrases: Linear positive operators, Degree of approximation, Bessel function.

It can be proved that the formula

$$
\begin{equation*}
\|f\|_{C_{p}}:=\sup _{x \in \mathbb{R}_{0}} w_{p}(x)|f(x)| \tag{3}
\end{equation*}
$$

for $f \in C_{p}$ is a well-define norm in the space C_{p}. Let $\omega\left(f, C_{p} ; t\right)$ be the modulus of continuity, defined by the formula

$$
\begin{equation*}
\omega\left(f, C_{p} ; t\right):=\sup _{h \in[0, t]}\left\|\Delta_{h} f\right\|_{C_{p}}, \tag{4}
\end{equation*}
$$

where $f \in C_{p}, t \in \mathbb{R}_{0}$ and

$$
\Delta_{h} f(x):=f(x+h)-f(x)
$$

for $x, h \in \mathbb{R}_{0}$.
The approximation problem conected with Szasz-Mirakjan operators was studied in [1], [2], [3]. In papers [1], [3] the following Szasz-Mirakjan operators were investigated

$$
\begin{aligned}
& S_{n}(f ; x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right), \\
& K_{n}(f ; x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} n \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) d t,
\end{aligned}
$$

$n \in \mathbb{N}, x \in \mathbb{R}_{0}$ for functions $f \in C_{p}$.
Note [2] was inspired by the results given in [1], [3] and operators of SzaszMirakjan type were defined

$$
\begin{equation*}
A_{n}(f ; x):=\frac{1}{1+\operatorname{sh}(n x)}\left\{f(0)+\sum_{k=0}^{\infty} \frac{(n x)^{2 k+1}}{(2 k+1)!} f\left(\frac{2 k+1}{n}\right)\right\}, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
B_{n}(f ; x):=\frac{1}{1+\operatorname{sh}(n x)}\left\{f(0)+\sum_{k=0}^{\infty} \frac{(n x)^{2 k+1}}{(2 k+1)!} \frac{n}{2} \int_{\frac{2 k+1}{n}}^{\frac{2 k+3}{n}} f(t) d t\right\} \tag{6}
\end{equation*}
$$

for $f \in C_{p}\left(p \in \mathbb{N}_{0}\right), n \in \mathbb{N}$ and $x \in \mathbb{R}_{0}$ where $s h$ is the elementary hyperbolic function.

In this note we introduce in the space $C_{p}\left(p \in \mathbb{N}_{0}\right)$ a new modification of Szasz-Mirakjan operators as follows

$$
A_{n}^{v}(f ; x):= \begin{cases}\frac{1}{I_{v}(n x)} \sum_{k=0}^{\infty} \frac{\left(\frac{n x}{2}\right)^{2 k+v}}{\Gamma(k+1) \Gamma(k+v+1)} f\left(\frac{2 k}{n}\right), & x>0, \tag{7}\\ f(0), & x=0,\end{cases}
$$

$$
B_{n}^{v}(f ; x):= \begin{cases}\frac{1}{I_{v}(n x)} \sum_{k=0}^{\infty} \frac{\left(\frac{n x}{2}\right)^{2 k+v}}{\Gamma(k+1) \Gamma(k+v+1)} \frac{n}{2} \int_{\frac{2 k}{n}}^{\frac{2 k+2}{n}} f(t) d t \tag{8}\\ & x>0 \\ \frac{n}{2} \int_{0}^{\frac{2}{n}} f(t) d t, \quad x=0,\end{cases}
$$

for $f \in C_{p}\left(p \in \mathbb{N}_{0}\right), n \in \mathbb{N}, v \in \mathbb{R}_{0}, x \in \mathbb{R}_{0}$ where Γ is the Γ-Euler function and I_{v} a modified Bessel function defined by the formula ([4], p. 77)

$$
\begin{equation*}
I_{v}(z):=\sum_{k=0}^{\infty} \frac{\left(\frac{z}{2}\right)^{2 k+v}}{\Gamma(k+1) \Gamma(k+v+1)} . \tag{9}
\end{equation*}
$$

Among other things we shall prove that A_{n}^{ν}, B_{n}^{v} are well-defined, linear and positive operators for all $f \in C_{p}$ with every $p \in \mathbb{N}_{0}$. Moreover, we shall prove that these operators are bounded and transform the space C_{p} into C_{p}.

2. Auxiliary results.

In this section we show some preliminary properties of the operators A_{n}^{v}, B_{n}^{v}.

All proofs of properties for A_{n}^{v} and B_{n}^{v} are analogous so we prove only for the operator A_{n}^{ν}. By definitions (7) and (8) we obtain the following

Lemma 1. For each $n \in \mathbb{N}, v \in \mathbb{R}_{0}$ and $x \in \mathbb{R}_{0}$

$$
\begin{gathered}
A_{n}^{v}(1 ; x)=1, \quad B_{n}^{v}(1 ; x)=1 \\
A_{n}^{v}(t ; x)=x \frac{I_{v+1}(n x)}{I_{v}(n x)}, \quad B_{n}^{v}(t ; x)=A_{n}^{v}(t ; x)+\frac{1}{n}=x \frac{I_{v+1}(n x)}{I_{v}(n x)}+\frac{1}{n}, \\
A_{n}^{v}\left(t^{2} ; x\right)=x^{2} \frac{I_{v+2}(n x)}{I_{v}(n x)}+x \frac{2}{n} \frac{I_{v+1}(n x)}{I_{v}(n x)} \\
B_{n}^{v}\left(t^{2} ; x\right)=A_{n}^{v}\left(t^{2} ; x\right)+\frac{2}{n} A_{n}^{v}(t ; x)+\frac{1}{3}\left(\frac{2}{n}\right)^{2}= \\
x^{2} \frac{I_{v+2}(n x)}{I_{v}(n x)}+x \frac{4}{n} \frac{I_{v+1}(n x)}{I_{v}(n x)}+\frac{1}{3}\left(\frac{2}{n}\right)^{2} .
\end{gathered}
$$

Remark. In Lemma 1 as well as in the rest part of this paper the equalities for $x=0$ are to be understood in the asymptotic meaning with help of the equality

$$
\lim _{z \rightarrow 0} \frac{I_{v}(z)}{\left(\frac{z}{2}\right)^{v}}=\frac{1}{\Gamma(v+1)}
$$

Using Lemma 1 and basic properties of A_{n}^{v} and B_{n}^{v} we have
Lemma 2. For each $n \in \mathbb{N}, v \in \mathbb{R}_{0}$ and $x \in \mathbb{R}_{0}$

$$
\begin{gathered}
A_{n}^{v}(t-x ; x)=x\left(\frac{I_{v+1}(n x)}{I_{v}(n x)}-1\right), \quad B_{n}^{v}(t-x ; x)=x\left(\frac{I_{v+1}(n x)}{I_{v}(n x)}-1\right)+\frac{1}{n}, \\
A_{n}^{v}\left((t-x)^{2} ; x\right)=x^{2}\left(\frac{I_{v+2}(n x)}{I_{v}(n x)}-2 \frac{I_{v+1}(n x)}{I_{v}(n x)}+1\right)+x \frac{2}{n} \frac{I_{v+1}(n x)}{I_{v}(n x)}, \\
B_{n}^{v}\left((t-x)^{2} ; x\right)=x^{2}\left(\frac{I_{v+2}(n x)}{I_{v}(n x)}-2 \frac{I_{v+1}(n x)}{I_{v}(n x)}+1\right)+x \frac{2}{n}\left(2 \frac{I_{v+1}(n x)}{I_{v}(n x)}-1\right)+\frac{1}{3}\left(\frac{2}{n}\right)^{2} .
\end{gathered}
$$

Lemma 3. For all $v \in \mathbb{R}_{0}$ there exists a positive constant M_{v} depending only on v such that

$$
\begin{gather*}
\left|\frac{I_{v+1}(z)}{I_{v}(z)}\right| \leq M_{v}, \tag{10}\\
z\left|\frac{I_{v+1}(z)}{I_{v}(z)}-1\right| \leq M_{v} \tag{11}
\end{gather*}
$$

for all $z \in \mathbb{R}_{0}$.
Proof. First we will prove inequality (10). For $z \in(0 ; 1)$ by definition (9) there exist $C_{1}(\nu), C_{2}(\nu)$ positive constants such that

$$
\begin{equation*}
C_{1}(v) z^{v} \leq I_{v}(z) \leq C_{2}(v) z^{v} . \tag{12}
\end{equation*}
$$

From these we obtain

$$
A_{\nu} z \leq \frac{I_{v+1}(z)}{I_{v}(z)} \leq B_{v} z, \quad z \in(0 ; 1)
$$

where $A_{v}=\frac{C_{1}(v+1)}{C_{2}(v)}, B_{v}=\frac{C_{2}(v+1)}{C_{1}(v)}$. For that reason the quotient $\frac{I_{v+1}(z)}{I_{v}(z)}$ is bounded for $z \in(0 ; 1)$.

Let $z \in(1 ;+\infty)$. According to paper [4], p. 203, we have the following property for modified Bessel function

$$
\lim _{z \rightarrow+\infty} \frac{I_{v}(z)}{\frac{e^{z}}{(2 \pi z)^{\frac{1}{2}}}}=1, \quad v \in \mathbb{R}_{0}
$$

Hence

$$
\lim _{z \rightarrow+\infty} \frac{I_{v+1}(z)}{I_{v}(z)}=1
$$

So, there exists a number $a>1$ such that

$$
\left|\frac{I_{v+1}(z)}{I_{v}(z)}-1\right|<1, \quad z>a
$$

Therefore, the quotient $\frac{I_{v+1}(z)}{I_{v}(z)}$ is bounded in the interval $(a,+\infty)$.
For $z \in[1 ; a]$ the existence of constant M_{v} such that (10) holds is obvious. The proof of (10) is completed.

The proof of inequality (11) is similiar to that of (10). If $z \in(0 ; 1)$ we have estimations (12) and from these we obtain

$$
z\left(A_{v} z-1\right) \leq z\left(\frac{I_{v+1}(z)}{I_{v}(z)}-1\right) \leq z\left(B_{v} z-1\right), \quad z \in(0 ; 1)
$$

Concluding we have

$$
z\left|\frac{I_{v+1}(z)}{I_{v}(z)}-1\right| \leq M_{v}, \quad z \in(0 ; 1)
$$

Let $z \in(1 ;+\infty)$. According to paper [4], p. 203, we obtain an approximation of modified Bessel function

$$
\begin{equation*}
I_{v}(z)=\frac{e^{z}}{(2 \pi z)^{\frac{1}{2}}}\left(\sum_{k=0}^{n} \frac{(-1)^{k}(v, k)}{(2 z)^{k}}+O\left(\frac{1}{z^{n+1}}\right)\right) \tag{13}
\end{equation*}
$$

for $n \in \mathbb{N}_{0}, v \in \mathbb{R}_{0}$ and $z>0$ where

$$
\left\{\begin{array}{l}
(v, 0):=1 \\
(v, k):=\frac{\Gamma\left(v+\frac{1}{2}+k\right)}{k!\Gamma\left(v+\frac{1}{2}-k\right)}, \quad k=1,2,3 \ldots
\end{array}\right.
$$

If we use formula (13) for $n=0$ and $z>1$ we get

$$
z\left|\frac{I_{v+1}(z)}{I_{v}(z)}-1\right|=\frac{|h(z)-g(z)|}{\left|1+\frac{g(z)}{z}\right|}
$$

where h, g are bounded functions. Hence, there exist constants C_{1}, C_{2} such that

$$
|h(z)|<C_{1}, \quad|g(z)|<C_{2}, \quad z>1
$$

Let $a>\max \left(1,2 C_{2}\right)$ be a fixed real number. For $z>a$ we have

$$
\frac{|g(z)|}{z}<\frac{1}{2}
$$

Now we will consider $z \in(a ;+\infty)$. By the above remark we can write

$$
z\left|\frac{I_{v+1}(z)}{I_{v}(z)}-1\right| \leq 2\left(C_{1}+C_{2}\right)=M
$$

For $z \in[1 ; a]$ inequality (11) is obvious. Therefore, the proof of inequality (11) is completed.

Lemma 4. For all $v \in \mathbb{R}_{0}$ there exists a positive constant M_{v} depending only on v such that

$$
\begin{equation*}
\left|A_{n}^{v}\left((t-x)^{2} ; x\right)\right| \leq M_{\nu} \frac{x+1}{n}, \quad\left|B_{n}^{v}\left((t-x)^{2} ; x\right)\right| \leq M_{\nu} \frac{x+1}{n}, \tag{15}
\end{equation*}
$$

for all $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$.
Proof. By Lemma 2 we have

$$
\left|A_{n}^{v}(t-x ; x)\right|=x\left|\frac{I_{v+1}(n x)}{I_{v}(n x)}-1\right|, \quad n \in \mathbb{N}, \quad x \in \mathbb{R}_{0}
$$

We will try to prove that there exists a positive constant M_{ν} such that

$$
\begin{equation*}
n x\left|\frac{I_{v+1}(n x)}{I_{v}(n x)}-1\right| \leq M_{v} \tag{16}
\end{equation*}
$$

Let us substitute $n x=z, z>0$. Hence inequality (11) in Lemma 3 implies (16), so the proof of (14) is ended.

Using the first part of the proof we get

$$
\begin{gathered}
(n x)^{2}\left|\frac{I_{v+2}(n x)}{I_{v+1}(n x)}-1\right| \leq n x M_{v+1}, \\
(n x)^{2}\left|\frac{I_{v+1}(n x)}{I_{v}(n x)}-1\right| \leq n x M_{v}, \quad x \in \mathbb{R}_{0}, \quad n \in \mathbb{N} .
\end{gathered}
$$

Above inequalities, Lemma 2 and (10) imply the following estimation

$$
\begin{gathered}
\left|A_{n}^{v}\left((t-x)^{2} ; x\right)\right|=\left|x^{2} \frac{I_{v+2}(n x)}{I_{v}(n x)}+x \frac{2}{n} \frac{I_{v+1}(n x)}{I_{v}(n x)}-2 x^{2} \frac{I_{v+1}(n x)}{I_{v}(n x)}+x^{2}\right| \\
\leq x^{2}\left|\frac{I_{v+2}(n x)}{I_{v+1}(n x)}-1\right| \frac{I_{v+1}(n x)}{I_{v}(n x)}+x^{2}\left|\frac{I_{v+1}(n x)}{I_{v}(n x)}-1\right|+x \frac{2}{n} \frac{I_{v+1}(n x)}{I_{v}(n x)} \\
\leq M_{v} \frac{x}{n} \leq M_{v} \frac{x+1}{n}
\end{gathered}
$$

for $x \in \mathbb{R}_{0}, n \in \mathbb{N}$. Lemma 4 has been proved.
Lemma 5. For every fixed $p \in \mathbb{N}$ there exist positive numbers $a_{p, i}, b_{p, i}$ depending only on $p, i, 0 \leq i \leq p$ such that $a_{p, p}=1, b_{p, p}=1, b_{p, 0}=\frac{1}{p+1}$ and for all $n \in \mathbb{N}, x \in \mathbb{R}_{0}, v \in \mathbb{R}_{0}$

$$
\begin{align*}
& A_{n}^{v}\left(t^{p} ; x\right)=\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p} \sum_{i=1}^{p} a_{p, i}\left(\frac{n x}{2}\right)^{i} I_{v+i}(n x), \tag{17}\\
& B_{n}^{v}\left(t^{p} ; x\right)=\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p} \sum_{i=0}^{p} b_{p, i}\left(\frac{n x}{2}\right)^{i} I_{v+i}(n x) \tag{18}
\end{align*}
$$

hold.

Proof. In order to prove conection (17) we use the mathematical induction for $p \in \mathbb{N}$. If $p=1,2$ it is Lemma 1. Assuming (17) for $f(t)=t^{j}, j \in \mathbb{N}$ and $j \leq p$, we get from definition (7)

$$
\begin{gathered}
A_{n}^{v}\left(t^{p+1} ; x\right)=\frac{1}{I_{v}(n x)} \sum_{k=0}^{+\infty} \frac{\left(\frac{n x}{2}\right)^{2 k+v}}{\Gamma(k+1) \Gamma(k+v+1)}\left(\frac{2 k}{n}\right)^{p+1} \\
=\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p+1} \sum_{k=1}^{\infty} \frac{\left(\frac{n x}{2}\right)^{2 k+v}}{\Gamma(k) \Gamma(k+v+1)} k^{p}
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p+1} \sum_{k=0}^{\infty} \frac{\left(\frac{n x}{2}\right)^{2 k+v+2}}{\Gamma(k+1) \Gamma(k+v+2)}(k+1)^{p} \\
=\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p+1} \sum_{s=0}^{p}\binom{p}{s} \sum_{k=0}^{\infty} \frac{\left(\frac{n x}{2}\right)^{2 k+v+2}}{\Gamma(k+1) \Gamma(k+v+2)} k^{s} \\
=\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p+1} \frac{n x}{2} I_{v+1}(n x) \\
+\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p+1} \frac{n x}{2} \sum_{s=1}^{p}\binom{p}{s} \sum_{k=0}^{\infty} \frac{\left(\frac{n x}{2}\right)^{2 k+v+1}}{\Gamma(k+1) \Gamma(k+v+2)} k^{s} .
\end{gathered}
$$

Using the inductive assumption, we obtain

$$
\begin{gathered}
A_{n}^{v}\left(t^{p+1} ; x\right)=\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p+1} \frac{n x}{2} I_{v+1}(n x) \\
+\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p+1} \frac{n x}{2} \sum_{s=1}^{p}\binom{p}{s} \sum_{i=1}^{s} a_{s, i}\left(\frac{n x}{2}\right)^{i} I_{v+1+i}(n x) \\
=\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p+1}\left\{\frac{n x}{2} I_{v+1}(n x)+\sum_{s=1}^{p}\binom{p}{s} \sum_{k=2}^{s+1} a_{s, k-1}\left(\frac{n x}{2}\right)^{k} I_{v+k}(n x)\right\},
\end{gathered}
$$

where $a_{s, s}=1$.
Hence we have

$$
A_{n}^{v}\left(t^{p+1} ; x\right)=\frac{1}{I_{v}(n x)}\left(\frac{2}{n}\right)^{p+1} \sum_{i=1}^{p+1} a_{p+1, i}\left(\frac{n x}{2}\right)^{i} I_{v+i}(n x)
$$

and $a_{p+1, p+1}=1$ for $p \in \mathbb{N}$.
Thus, by the mathematical induction, Lemma 5 is proved.
Lemma 6. For every fixed $p \in \mathbb{N}_{0}$ and $v \in \mathbb{R}_{0}$ there exists a positive constant $M_{p, v}$ such that

$$
\begin{align*}
& \left\|A_{n}^{v}\left(\frac{1}{w_{p}(t)} ; .\right)\right\|_{C_{p}} \leq M_{p, v}, \tag{19}\\
& \left\|B_{n}^{v}\left(\frac{1}{w_{p}(t)} ; .\right)\right\|_{C_{p}} \leq M_{p, v} \tag{20}
\end{align*}
$$

for all $n \in \mathbb{N}$.

Proof. From (1), (3) and Lemma 1 we immediately obtain (19) for $p=0$ and $p=1$. Let $2 \leq p \in \mathbb{N}$ be a fixed integer. Then, by (1) and Lemma 5, we have for all $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$

$$
\begin{aligned}
& w_{p}(x) A_{n}^{v}\left(\frac{1}{w_{p}(t)} ; x\right)=w_{p}(x)\left\{A_{n}^{v}(1 ; x)+A_{n}^{v}\left(t^{p} ; x\right)\right\} \\
& =\frac{1}{1+x^{p}}+\sum_{i=1}^{p} a_{p, i}\left(\frac{2}{n}\right)^{p}\left(\frac{n}{2}\right)^{i} \frac{x^{i}}{1+x^{p}} \frac{I_{v+i}(n x)}{I_{v}(n x)}
\end{aligned}
$$

By Lemma 3 the quotient $\frac{I_{v+i}(n x)}{I_{v}(n x)}$ is bounded for all $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$ so we get

$$
0 \leq w_{p}(x) A_{n}^{v}\left(\frac{1}{w_{p}(t)} ; x\right) \leq M_{p, v}
$$

where $M_{p, v}$ is a positive constant depending on p and ν. From these and by (3) we obtain (19).

Theorem 1. For every fixed $p \in \mathbb{N}_{0}$ and $v \in \mathbb{R}_{0}$ there exists a positive constant $M_{p, \nu}$ such that for every $f \in C_{p}$ and $n \in \mathbb{N}$

$$
\begin{equation*}
\left\|A_{n}^{v}(f ; .)\right\|_{C_{p}} \leq M_{p, v}\|f\|_{C_{p}} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\left\|B_{n}^{v}(f ; .)\right\|_{C_{p}} \leq M_{p, v}\|f\|_{C_{p}} \tag{22}
\end{equation*}
$$

hold.
Proof. By (1), (3) and (7) we can get

$$
\begin{gathered}
w_{p}(x)\left|A_{n}^{v}(f(t) ; x)\right| \leq w_{p}(x) A_{n}^{v}(|f(t)| ; x) \\
=w_{p}(x) A_{n}^{v}\left(w_{p}(t)|f(t)| \frac{1}{w_{p}(t)} ; x\right) \leq\|f\|_{C_{p}} w_{p}(x) A_{n}^{v}\left(\frac{1}{w_{p}(t)} ; x\right)
\end{gathered}
$$

for all $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$.
Using Lemma 6 we obtain (21).
Corollary 1. The operators A_{n}^{ν}, B_{n}^{ν} are linear and bounded from C_{p} into C_{p}.

Lemma 7. For every fixed $p \in \mathbb{N}_{0}$ and $v \in \mathbb{R}_{0}$ there exists a positive constant $M_{p, v}$ such that for all $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$

$$
\begin{equation*}
w_{p}(x) A_{n}^{v}\left(\frac{(t-x)^{2}}{w_{p}(t)} ; x\right) \leq M_{p, v} \frac{x+1}{n} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
w_{p}(x) B_{n}^{v}\left(\frac{(t-x)^{2}}{w_{p}(t)} ; x\right) \leq M_{p, v} \frac{x+1}{n} \tag{24}
\end{equation*}
$$

hold.
Proof. Inequalities (23) and (24) for $p=0$ are proved in Lemma 4. For $p \geq 1$ from (1) and the linearity of the operator A_{n}^{v} it follows that

$$
\begin{gather*}
A_{n}^{v}\left(\frac{(t-x)^{2}}{w_{p}(t)} ; x\right)=A_{n}^{v}\left((t-x)^{2} ; x\right)+A_{n}^{v}\left(t^{p}(t-x)^{2} ; x\right), \tag{25}\\
A_{n}^{v}\left(t^{p}(t-x)^{2} ; x\right)=A_{n}^{v}\left(t^{p+2} ; x\right)-2 x A_{n}^{v}\left(t^{p+1} ; x\right)+x^{2} A_{n}^{v}\left(t^{p} ; x\right) .
\end{gather*}
$$

According to Lemma 5 we get

$$
\begin{aligned}
& w_{p}(x) A_{n}^{v}\left(t^{p}(t-x)^{2} ; x\right)=\frac{x^{p+2}}{1+x^{p}}\left\{\frac{I_{v+p+2}(n x)}{I_{v}(n x)}-2 \frac{I_{v+p+1}(n x)}{I_{v}(n x)}+\frac{I_{v+p}(n x)}{I_{v}(n x)}\right\} \\
& +\frac{x^{p+1}}{1+x^{p}} \frac{2}{n}\left\{a_{p+2, p+1} \frac{I_{v+p+1}(n x)}{I_{v}(n x)}-2 a_{p+1, p} \frac{I_{v+p}(n x)}{I_{v}(n x)}+a_{p, p-1} \frac{I_{v+p-1}(n x)}{I_{v}(n x)}\right\} \\
& \quad+\sum_{i=1}^{p} a_{p+2, i}\left(\frac{n}{2}\right)^{i-(p+2)} \frac{x^{i}}{1+x^{p}} \frac{I_{v+i}(n x)}{I_{v}(n x)} \\
& -\sum_{i=1}^{p-1} 2 a_{p+1, i}\left(\frac{n}{2}\right)^{i-(p+1)} \frac{x^{i+1}}{1+x^{p}} \frac{I_{v+i}(n x)}{I_{v}(n x)}+\sum_{i=1}^{p-2} a_{p, i}\left(\frac{n}{2}\right)^{i-p} \frac{x^{i+2}}{1+x^{p}} \frac{I_{v+i}(n x)}{I_{v}(n x)} \\
& \leq \frac{x^{p}}{1+x^{p}} x^{2}\left|\frac{I_{v+p+2}(n x)}{I_{v+p+1}(n x)}-1\right| \frac{I_{v+p+1}(n x)}{I_{v}(n x)} \\
& \quad+\frac{x^{p}}{1+x^{p}} x^{2}\left|1-\frac{I_{v+p+1}(n x)}{I_{v+p}(n x)}\right| \frac{I_{v+p}(n x)}{I_{v}(n x)} \\
& \quad+\frac{x^{p}}{1+x^{p}} \frac{2}{n} x A_{p}\left|\frac{I_{v+p+1}(n x)}{I_{v+p}(n x)}-1\right| \frac{I_{v+p}(n x)}{I_{v}(n x)}
\end{aligned}
$$

$$
\begin{aligned}
&+ \frac{x^{p}}{1+x^{p}} \frac{2}{n} x B_{p}\left|1-\frac{I_{v+p}(n x)}{I_{v+p-1}(n x)}\right| \frac{I_{v+p-1}(n x)}{I_{v}(n x)} \\
&+\left(\frac{2}{n}\right)^{2} \sum_{i=1}^{p} a_{p+2, i}\left(\frac{n}{2}\right)^{i-p} \frac{x^{i}}{1+x^{p}} \frac{I_{v+i}(n x)}{I_{v}(n x)} \\
&-\left(\frac{2}{n}\right)^{2} \sum_{i=2}^{p} 2 a_{p+1, i-1}\left(\frac{n}{2}\right)^{i-p} \frac{x^{i}}{1+x^{p}} \frac{I_{v+i-1}(n x)}{I_{v}(n x)} \\
&+\left(\frac{2}{n}\right)^{2} \sum_{i=3}^{p} a_{p, i-2}\left(\frac{n}{2}\right)^{i-p} \frac{x^{i}}{1+x^{p}} \frac{I_{v+i-2}(n x)}{I_{v}(n x)}
\end{aligned}
$$

for $x \in \mathbb{R}_{0}, n \in \mathbb{N}$, where $a_{r, k}, A_{p}, B_{p}$ are positive numbers. The quotient $\frac{I_{v+i}}{I_{v}}$ is bounded for all $x \in \mathbb{R}_{0}, n \in \mathbb{N}$ and $i \in \mathbb{N}_{0}$ so, by Lemma 3 we have

$$
w_{p}(x) A_{n}^{v}\left(t^{p}(t-x)^{2} ; x\right) \leq M_{p, v} \frac{x+1}{n}, \quad x \in \mathbb{R}_{0}, \quad n \in \mathbb{N}
$$

which proves Lemma 7.

3. Approximation theorems.

Theorem 2. Suppose that $p \in \mathbb{N}_{0}, v \in \mathbb{R}_{0}$ are fixed numbers and $g \in C_{p}^{1}$, where $C_{p}^{1}:=\left\{f \in C_{p}: f^{\prime} \in C_{p}\right\}$. Then there exists a positive constant $M_{p, v}^{*}$ such that

$$
\begin{equation*}
w_{p}(x)\left|A_{n}^{v}(g ; x)-g(x)\right| \leq M_{p, v}^{*}\left\|g^{\prime}\right\|_{C_{p}}\left(\frac{x+1}{n}\right)^{\frac{1}{2}} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
w_{p}(x)\left|B_{n}^{v}(g ; x)-g(x)\right| \leq M_{p, \nu}^{*}\left\|g^{\prime}\right\|_{C_{p}}\left(\frac{x+1}{n}\right)^{\frac{1}{2}} \tag{27}
\end{equation*}
$$

for all $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$.
Proof. Let us $x \in \mathbb{R}_{0}$ be fixed. For $t \in \mathbb{R}_{0}$ we have

$$
g(t)-g(x)=\int_{x}^{t} g^{\prime}(u) d u
$$

By (7) and Lemma 1 we get

$$
\begin{equation*}
A_{n}^{v}(g(t) ; x)-g(x)=A_{n}^{v}\left(\int_{x}^{t} g^{\prime}(u) d u ; x\right), \quad n \in \mathbb{N} \tag{28}
\end{equation*}
$$

Since

$$
\left|\int_{x}^{t} g^{\prime}(u) d u\right| \leq\left\|g^{\prime}\right\|_{C_{p}}\left|\int_{x}^{t} \frac{d u}{w_{p}(u)}\right| \leq\left\|g^{\prime}\right\|_{C_{p}}\left(\frac{1}{w_{p}(x)}+\frac{1}{w_{p}(t)}\right)|t-x|
$$

we get from (28)

$$
w_{p}(x)\left|A_{n}^{v}(g ; x)-g(x)\right| \leq\left\|g^{\prime}\right\|_{C_{p}}\left\{A_{n}^{v}(|t-x| ; x)+w_{p}(x) A_{n}^{v}\left(\frac{|t-x|}{w_{p}(t)} ; x\right)\right\} .
$$

But (7) and Cauchy's inequality imply

$$
\begin{gathered}
A_{n}^{v}(|t-x| ; x) \leq\left\{A_{n}^{v}\left((t-x)^{2} ; x\right)\right\}^{\frac{1}{2}}, \\
A_{n}^{v}\left(\frac{|t-x|}{w_{p}(t)} ; x\right) \leq\left\{A_{n}^{v}\left(\frac{1}{w_{p}(t)} ; x\right)\right\}^{\frac{1}{2}}\left\{A_{n}^{v}\left(\frac{(t-x)^{2}}{w_{p}(t)} ; x\right)\right\}^{\frac{1}{2}} .
\end{gathered}
$$

From (15), Lemma 6 and Lemma 7 it follows that

$$
\begin{gathered}
A_{n}^{v}(|t-x| ; x) \leq\left(M_{v} \frac{x+1}{n}\right)^{\frac{1}{2}}, \\
w_{p}(x) A_{n}^{v}\left(\frac{|t-x|}{w_{p}(t)} ; x\right) \leq M_{p, v}\left(\frac{x+1}{n}\right)^{\frac{1}{2}}
\end{gathered}
$$

for $x \in \mathbb{R}_{0}, n \in \mathbb{N}, p \in \mathbb{N}_{0}, v \in \mathbb{R}_{0}$.
Combinig these estimations we obtain (26).
Theorem 3. Suppose that $f \in C_{p}$, with fixed $p \in \mathbb{N}_{0}$ and $v \in \mathbb{R}_{0}$. Then there exists a positive constant $M_{p, v}$ such that

$$
\begin{equation*}
w_{p}(x)\left|A_{n}^{v}(f ; x)-f(x)\right| \leq M_{p, v} \omega\left(f, C_{p} ;\left(\frac{x+1}{n}\right)^{\frac{1}{2}}\right), \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
w_{p}(x)\left|B_{n}^{\nu}(f ; x)-f(x)\right| \leq M_{p, v} \omega\left(f, C_{p} ;\left(\frac{x+1}{n}\right)^{\frac{1}{2}}\right) \tag{30}
\end{equation*}
$$

for all $x \in \mathbb{R}_{0}, n \in \mathbb{N}$.

Proof. Let f_{h} be the Stieklov mean of $f \in C_{p}$, i.e.

$$
f_{h}(x)=\frac{1}{h} \int_{0}^{h} f(x+t) d t, \quad x \in \mathbb{R}_{0}, \quad h \in \mathbb{R}_{+}
$$

where $\mathbb{R}_{+}:=\{x \in \mathbb{R}: x>0\}$. We have

$$
\begin{aligned}
f_{h}(x)-f(x) & =\frac{1}{h} \int_{0}^{h}(f(x+t)-f(x)) d t \\
f_{h}^{\prime}(x) & =\frac{1}{h}\{f(x+h)-f(x)\}
\end{aligned}
$$

for $x \in \mathbb{R}_{0}, h \in \mathbb{R}_{+}$. It is easy to notice that if $f \in C_{p}$ then $f_{h} \in C_{p}^{1}$ for every fixed $h \in \mathbb{R}_{+}$. Moreover, for $h \in \mathbb{R}_{+}$
(31) $\left\|f_{h}-f\right\|_{C_{p}} \leq \sup _{x \in \mathbb{R}_{0}}\left\{\frac{1}{h} \int_{0}^{h} w_{p}(x)|f(x+t)-f(x)| d t\right\} \leq \omega\left(f, C_{p} ; h\right)$,

$$
\begin{equation*}
\left\|f_{h}^{\prime}\right\|_{C_{p}} \leq \frac{1}{h} \omega\left(f, C_{p} ; h\right) \tag{32}
\end{equation*}
$$

hold. Since A_{n}^{ν} is a linear operator, we have

$$
\begin{aligned}
w_{p}(x)\left|A_{n}^{v}(f ; x)-f(x)\right| & \leq w_{p}(x)\left\{\left|A_{n}^{v}\left(f-f_{h} ; x\right)\right|\right. \\
& \left.+\left|A_{n}^{v}\left(f_{h} ; x\right)-f_{h}(x)\right|+\left|f_{h}(x)-f(x)\right|\right\}
\end{aligned}
$$

for $x \in \mathbb{R}_{0}, n \in \mathbb{N}$ and $h \in \mathbb{R}_{+}$.
Using Theorem 1 and (31), we get

$$
w_{p}(x)\left|A_{n}^{\nu}\left(f-f_{h} ; x\right)\right| \leq M_{p, v}\left\|f-f_{h}\right\|_{C_{p}} \leq M_{p, \nu} \omega\left(f, C_{p} ; h\right)
$$

From Theorem 2 and (32) it follows that

$$
\begin{aligned}
w_{p}(x)\left|A_{n}^{v}\left(f_{h} ; x\right)-f_{h}(x)\right| & \leq M_{p, v}\left\|f_{h}^{\prime}\right\|_{C_{p}}\left(\frac{x+1}{n}\right)^{\frac{1}{2}} \\
& \leq M_{p, v} \omega\left(f, C_{p} ; h\right) \frac{1}{h}\left(\frac{x+1}{n}\right)^{\frac{1}{2}}
\end{aligned}
$$

From these and by (31) we obtain

$$
\begin{equation*}
w_{p}(x)\left|A_{n}^{\nu}(f ; x)-f(x)\right| \leq M_{p, \nu} \omega\left(f, C_{p} ; h\right)\left\{1+\frac{1}{h}\left(\frac{x+1}{n}\right)^{\frac{1}{2}}\right\} \tag{33}
\end{equation*}
$$

for $x \in \mathbb{R}_{0}, n \in \mathbb{N}$ and $h \in \mathbb{R}_{+}$. Setting, for every fixed $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$, $h=\left(\frac{x+1}{n}\right)^{\frac{1}{2}}$ to (33), we get the desired estimation (29) for $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$.

Theorem 3 implies the following corollaries:

Corollary 2. If $f \in C_{p}$ with some $p \in \mathbb{N}_{0}$ and $v \in \mathbb{R}_{0}$, then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} A_{n}^{v}(f ; x)=f(x), \tag{34}\\
& \lim _{n \rightarrow \infty} B_{n}^{v}(f ; x)=f(x) \tag{35}
\end{align*}
$$

for all $x \in \mathbb{R}_{0}$.
Moreover, statements tm (34) and (35) hold uniformly on every interval $[0, a], a>0$.

Corollary 3. If $f \in \operatorname{Lip}\left(C_{p}, \alpha\right):=\left\{f \in C_{p}: \omega\left(f, C_{p} ; t\right)=0\left(t^{\alpha}\right), t \rightarrow 0^{+}\right\}$ with some $p \in \mathbb{N}_{0}, 0<\alpha \leq 1$ and $v \in \mathbb{R}_{0}$, then there exists a positive constant $M_{p, v, \alpha}$ such that

$$
\begin{aligned}
& w_{p}(x)\left|A_{n}^{v}(f ; x)-f(x)\right| \leq M_{p, v, \alpha}\left(\frac{x+1}{n}\right)^{\frac{\alpha}{2}} \\
& w_{p}(x)\left|B_{n}^{v}(f ; x)-f(x)\right| \leq M_{p, v, \alpha}\left(\frac{x+1}{n}\right)^{\frac{\alpha}{2}}
\end{aligned}
$$

for all $x \in \mathbb{R}_{0}$ and $n \in \mathbb{N}$.

REFERENCES

[1] M. Becker, Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27-1 (1978), pp. 127-142.
[2] L. Rempulska - M. Skorupka, On approximation of functions by some operators of the Szasz-Mirakjan type, Fasc. Math., 26 (1996), pp. 125-137.
[3] V. Totik, Uniform approximation by Szasz-Mirakjan operators, Acta Math. Hung., 41-3 (1983), pp. 291-307.
[4] G.N. Watson, Theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1966.

Institute of Mathematics, Cracow University of Technology,

Warszawska 24,
31-155 Cracow (POLAND)
e-mail: mherzog@usk.pk.edu.pl

