APPROXIMATION THEOREMS FOR MODIFIED SZASZ-MIRAKJAN OPERATORS IN POLYNOMIAL WEIGHT SPACES

MONIKA HERZOG

In this paper we will study properties of Szasz-Mirakjan type operators A_n^{ν} , B_n^{ν} defined by modified Bessel function I_{ν} . We shall present theorems giving a degree of approximation for these operators.

1. Introduction.

Let us denote a set of all real-valued function continuous in $\mathbb{R}_0 := [0, +\infty)$ by $C(\mathbb{R}_0)$ and let $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. Similarly as in [2], define a polynomial weight function

(1)
$$w_p(x) = \begin{cases} 1 & p = 0, \\ \frac{1}{1 + x^p} & p \in \mathbb{N} \end{cases}$$

for $x \in \mathbb{R}_0$, and denote a polynomial weight space by C_p

(2) $C_p := \{ f \in C(\mathbb{R}_0) : w_p f \text{ is uniformly continuous and bounded in } \mathbb{R}_0 \}.$

Entrato in Redazione il 21 dicembre 1998.

1991 Mathematics Subject classification: 41A36.

Key words and phrases: Linear positive operators, Degree of approximation, Bessel function.

It can be proved that the formula

(3)
$$||f||_{C_p} := \sup_{x \in \mathbb{R}_0} w_p(x)|f(x)|$$

for $f \in C_p$ is a well-define norm in the space C_p . Let $\omega(f, C_p; t)$ be the modulus of continuity, defined by the formula

(4)
$$\omega(f, C_p; t) := \sup_{h \in [0, t]} \|\Delta_h f\|_{C_p},$$

where $f \in C_p$, $t \in \mathbb{R}_0$ and

$$\Delta_h f(x) := f(x+h) - f(x)$$

for $x, h \in \mathbb{R}_0$.

The approximation problem conected with Szasz-Mirakjan operators was studied in [1], [2], [3]. In papers [1], [3] the following Szasz-Mirakjan operators were investigated

$$S_n(f; x) = e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} f(\frac{k}{n}),$$

$$K_n(f;x) = e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} n \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) dt,$$

 $n \in \mathbb{N}$, $x \in \mathbb{R}_0$ for functions $f \in C_p$.

Note [2] was inspired by the results given in [1], [3] and operators of Szasz-Mirakjan type were defined

(5)
$$A_n(f;x) := \frac{1}{1 + sh(nx)} \Big\{ f(0) + \sum_{k=0}^{\infty} \frac{(nx)^{2k+1}}{(2k+1)!} f(\frac{2k+1}{n}) \Big\},$$

(6)
$$B_n(f;x) := \frac{1}{1 + sh(nx)} \left\{ f(0) + \sum_{k=0}^{\infty} \frac{(nx)^{2k+1}}{(2k+1)!} \frac{n}{2} \int_{\frac{2k+1}{n}}^{\frac{2k+3}{n}} f(t) dt \right\}$$

for $f \in C_p$ $(p \in \mathbb{N}_0)$, $n \in \mathbb{N}$ and $x \in \mathbb{R}_0$ where sh is the elementary hyperbolic function.

In this note we introduce in the space C_p $(p \in \mathbb{N}_0)$ a new modification of Szasz-Mirakjan operators as follows

(7)
$$A_n^{\nu}(f;x) := \begin{cases} \frac{1}{I_{\nu}(nx)} \sum_{k=0}^{\infty} \frac{(\frac{nx}{2})^{2k+\nu}}{\Gamma(k+1)\Gamma(k+\nu+1)} f(\frac{2k}{n}), & x > 0, \\ f(0), & x = 0, \end{cases}$$

(8)
$$B_n^{\nu}(f;x) := \begin{cases} \frac{1}{I_{\nu}(nx)} \sum_{k=0}^{\infty} \frac{(\frac{nx}{2})^{2k+\nu}}{\Gamma(k+1)\Gamma(k+\nu+1)} \frac{n}{2} \int_{\frac{2k}{n}}^{\frac{2k+2}{n}} f(t) dt, \\ \frac{n}{2} \int_{0}^{\frac{2}{n}} f(t) dt, \quad x = 0, \end{cases}$$

for $f \in C_p$ $(p \in \mathbb{N}_0)$, $n \in \mathbb{N}$, $\nu \in \mathbb{R}_0$, $x \in \mathbb{R}_0$ where Γ is the Γ -Euler function and I_{ν} a modified Bessel function defined by the formula ([4], p. 77)

(9)
$$I_{\nu}(z) := \sum_{k=0}^{\infty} \frac{(\frac{z}{2})^{2k+\nu}}{\Gamma(k+1)\Gamma(k+\nu+1)}.$$

Among other things we shall prove that A_n^{ν} , B_n^{ν} are well-defined, linear and positive operators for all $f \in C_p$ with every $p \in \mathbb{N}_0$. Moreover, we shall prove that these operators are bounded and transform the space C_p into C_p .

2. Auxiliary results.

In this section we show some preliminary properties of the operators A_n^{ν} , B_n^{ν} .

All proofs of properties for A_n^{ν} and B_n^{ν} are analogous so we prove only for the operator A_n^{ν} . By definitions (7) and (8) we obtain the following

Lemma 1. For each $n \in \mathbb{N}$, $v \in \mathbb{R}_0$ and $x \in \mathbb{R}_0$

$$A_{n}^{\nu}(1;x) = 1, \quad B_{n}^{\nu}(1;x) = 1,$$

$$A_{n}^{\nu}(t;x) = x \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}, \quad B_{n}^{\nu}(t;x) = A_{n}^{\nu}(t;x) + \frac{1}{n} = x \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + \frac{1}{n},$$

$$A_{n}^{\nu}(t^{2};x) = x^{2} \frac{I_{\nu+2}(nx)}{I_{\nu}(nx)} + x \frac{2}{n} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)},$$

$$B_{n}^{\nu}(t^{2};x) = A_{n}^{\nu}(t^{2};x) + \frac{2}{n} A_{n}^{\nu}(t;x) + \frac{1}{3} (\frac{2}{n})^{2} =$$

$$x^{2} \frac{I_{\nu+2}(nx)}{I_{\nu}(nx)} + x \frac{4}{n} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + \frac{1}{3} (\frac{2}{n})^{2}.$$

Remark. In Lemma 1 as well as in the rest part of this paper the equalities for x = 0 are to be understood in the asymptotic meaning with help of the equality

$$\lim_{z\to 0}\frac{I_{\nu}(z)}{(\frac{z}{2})^{\nu}}=\frac{1}{\Gamma(\nu+1)}.$$

Using Lemma 1 and basic properties of A_n^{ν} and B_n^{ν} we have

Lemma 2. For each $n \in \mathbb{N}$, $v \in \mathbb{R}_0$ and $x \in \mathbb{R}_0$

$$\begin{split} A_n^{\nu}(t-x;x) &= x(\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}-1), \quad B_n^{\nu}(t-x;x) = x(\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}-1) + \frac{1}{n}, \\ A_n^{\nu}((t-x)^2;x) &= x^2(\frac{I_{\nu+2}(nx)}{I_{\nu}(nx)}-2\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}+1) + x\frac{2}{n}\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}, \\ B_n^{\nu}((t-x)^2;x) &= x^2(\frac{I_{\nu+2}(nx)}{I_{\nu}(nx)}-2\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}+1) + x\frac{2}{n}(2\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}-1) + \frac{1}{3}(\frac{2}{n})^2. \end{split}$$

Lemma 3. For all $v \in \mathbb{R}_0$ there exists a positive constant M_v depending only on v such that

$$\left|\frac{I_{\nu+1}(z)}{I_{\nu}(z)}\right| \leq M_{\nu},$$

$$(11) z \left| \frac{I_{\nu+1}(z)}{I_{\nu}(z)} - 1 \right| \le M_{\nu}$$

for all $z \in \mathbb{R}_0$.

Proof. First we will prove inequality (10). For $z \in (0; 1)$ by definition (9) there exist $C_1(v)$, $C_2(v)$ positive constants such that

(12)
$$C_1(\nu)z^{\nu} \leq I_{\nu}(z) \leq C_2(\nu)z^{\nu}.$$

From these we obtain

$$A_{\nu}z \leq \frac{I_{\nu+1}(z)}{I_{\nu}(z)} \leq B_{\nu}z, \qquad z \in (0; 1)$$

where $A_{\nu}=\frac{C_1(\nu+1)}{C_2(\nu)}$, $B_{\nu}=\frac{C_2(\nu+1)}{C_1(\nu)}$. For that reason the quotient $\frac{I_{\nu+1}(z)}{I_{\nu}(z)}$ is bounded for $z\in(0;1)$.

Let $z \in (1; +\infty)$. According to paper [4], p. 203, we have the following property for modified Bessel function

$$\lim_{z \to +\infty} \frac{I_{\nu}(z)}{\frac{e^z}{(2\pi z)^{\frac{1}{2}}}} = 1, \qquad \nu \in \mathbb{R}_0.$$

Hence

$$\lim_{z \to +\infty} \frac{I_{\nu+1}(z)}{I_{\nu}(z)} = 1.$$

So, there exists a number a > 1 such that

$$\left|\frac{I_{\nu+1}(z)}{I_{\nu}(z)} - 1\right| < 1, \qquad z > a.$$

Therefore, the quotient $\frac{I_{\nu+1}(z)}{I_{\nu}(z)}$ is bounded in the interval $(a, +\infty)$. For $z \in [1; a]$ the existence of constant M_{ν} such that (10) holds is obvious. The proof of (10) is completed.

The proof of inequality (11) is similar to that of (10). If $z \in (0; 1)$ we have estimations (12) and from these we obtain

$$z(A_{\nu}z-1) \le z(\frac{I_{\nu+1}(z)}{I_{\nu}(z)}-1) \le z(B_{\nu}z-1), \qquad z \in (0;1).$$

Concluding we have

$$z\left|\frac{I_{\nu+1}(z)}{I_{\nu}(z)}-1\right| \leq M_{\nu}, \qquad z \in (0; 1).$$

Let $z \in (1; +\infty)$. According to paper [4], p. 203, we obtain an approximation of modified Bessel function

(13)
$$I_{\nu}(z) = \frac{e^{z}}{(2\pi z)^{\frac{1}{2}}} \left(\sum_{k=0}^{n} \frac{(-1)^{k}(\nu, k)}{(2z)^{k}} + O(\frac{1}{z^{n+1}}) \right)$$

for $n \in \mathbb{N}_0$, $\nu \in \mathbb{R}_0$ and z > 0 where

$$\begin{cases} (v,0) := 1, \\ (v,k) := \frac{\Gamma(v + \frac{1}{2} + k)}{k!\Gamma(v + \frac{1}{2} - k)}, & k = 1, 2, 3... \end{cases}$$

If we use formula (13) for n = 0 and z > 1 we get

$$z \left| \frac{I_{\nu+1}(z)}{I_{\nu}(z)} - 1 \right| = \frac{|h(z) - g(z)|}{|1 + \frac{g(z)}{z}|}$$

where h, g are bounded functions. Hence, there exist constants C_1 , C_2 such that

$$|h(z)| < C_1, \quad |g(z)| < C_2, \qquad z > 1.$$

Let $a > \max(1, 2C_2)$ be a fixed real number. For z > a we have

$$\frac{|g(z)|}{7} < \frac{1}{2}.$$

Now we will consider $z \in (a; +\infty)$. By the above remark we can write

$$z \left| \frac{I_{\nu+1}(z)}{I_{\nu}(z)} - 1 \right| \le 2(C_1 + C_2) = M.$$

For $z \in [1; a]$ inequality (11) is obvious. Therefore, the proof of inequality (11) is completed. \Box

Lemma 4. For all $v \in \mathbb{R}_0$ there exists a positive constant M_v depending only on v such that

(14)
$$|A_n^{\nu}(t-x;x)| \le \frac{M_{\nu}}{n}, \quad |B_n^{\nu}(t-x;x)| \le \frac{M_{\nu}}{n},$$

$$(15) \qquad |A_n^{\nu}((t-x)^2;x)| \leq M_{\nu}\frac{x+1}{n}, \quad |B_n^{\nu}((t-x)^2;x)| \leq M_{\nu}\frac{x+1}{n},$$

for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$.

Proof. By Lemma 2 we have

$$|A_n^{\nu}(t-x;x)| = x \left| \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1 \right|, \qquad n \in \mathbb{N}, \quad x \in \mathbb{R}_0.$$

We will try to prove that there exists a positive constant M_{ν} such that

(16)
$$nx \left| \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1 \right| \leq M_{\nu}.$$

Let us substitute nx = z, z > 0. Hence inequality (11) in Lemma 3 implies (16), so the proof of (14) is ended.

Using the first part of the proof we get

$$(nx)^{2} \left| \frac{I_{\nu+2}(nx)}{I_{\nu+1}(nx)} - 1 \right| \le nx M_{\nu+1},$$

$$(nx)^{2} \left| \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1 \right| \le nx M_{\nu}, \qquad x \in \mathbb{R}_{0}, \quad n \in \mathbb{N}.$$

Above inequalities, Lemma 2 and (10) imply the following estimation

$$|A_{n}^{\nu}((t-x)^{2};x)| = \left|x^{2} \frac{I_{\nu+2}(nx)}{I_{\nu}(nx)} + x \frac{2}{n} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 2x^{2} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + x^{2}\right|$$

$$\leq x^{2} \left|\frac{I_{\nu+2}(nx)}{I_{\nu+1}(nx)} - 1\right| \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} + x^{2} \left|\frac{I_{\nu+1}(nx)}{I_{\nu}(nx)} - 1\right| + x \frac{2}{n} \frac{I_{\nu+1}(nx)}{I_{\nu}(nx)}$$

$$\leq M_{\nu} \frac{x}{n} \leq M_{\nu} \frac{x+1}{n}$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$. Lemma 4 has been proved.

Lemma 5. For every fixed $p \in \mathbb{N}$ there exist positive numbers $a_{p,i}$, $b_{p,i}$ depending only on $p, i, 0 \le i \le p$ such that $a_{p,p} = 1$, $b_{p,p} = 1$, $b_{p,0} = \frac{1}{p+1}$ and for all $n \in \mathbb{N}$, $x \in \mathbb{R}_0$, $v \in \mathbb{R}_0$

(17)
$$A_n^{\nu}(t^p;x) = \frac{1}{I_{\nu}(nx)} (\frac{2}{n})^p \sum_{i=1}^p a_{p,i} (\frac{nx}{2})^i I_{\nu+i}(nx),$$

(18)
$$B_n^{\nu}(t^p; x) = \frac{1}{I_{\nu}(nx)} (\frac{2}{n})^p \sum_{i=0}^p b_{p,i} (\frac{nx}{2})^i I_{\nu+i}(nx)$$

hold.

Proof. In order to prove conection (17) we use the mathematical induction for $p \in \mathbb{N}$. If p = 1, 2 it is Lemma 1. Assuming (17) for $f(t) = t^j$, $j \in \mathbb{N}$ and $j \leq p$, we get from definition (7)

$$A_n^{\nu}(t^{p+1};x) = \frac{1}{I_{\nu}(nx)} \sum_{k=0}^{+\infty} \frac{(\frac{nx}{2})^{2k+\nu}}{\Gamma(k+1)\Gamma(k+\nu+1)} (\frac{2k}{n})^{p+1}$$
$$= \frac{1}{I_{\nu}(nx)} (\frac{2}{n})^{p+1} \sum_{k=1}^{\infty} \frac{(\frac{nx}{2})^{2k+\nu}}{\Gamma(k)\Gamma(k+\nu+1)} k^{p}$$

$$= \frac{1}{I_{\nu}(nx)} (\frac{2}{n})^{p+1} \sum_{k=0}^{\infty} \frac{(\frac{nx}{2})^{2k+\nu+2}}{\Gamma(k+1)\Gamma(k+\nu+2)} (k+1)^{p}$$

$$= \frac{1}{I_{\nu}(nx)} (\frac{2}{n})^{p+1} \sum_{s=0}^{p} {p \choose s} \sum_{k=0}^{\infty} \frac{(\frac{nx}{2})^{2k+\nu+2}}{\Gamma(k+1)\Gamma(k+\nu+2)} k^{s}$$

$$= \frac{1}{I_{\nu}(nx)} (\frac{2}{n})^{p+1} \frac{nx}{2} I_{\nu+1}(nx)$$

$$+ \frac{1}{I_{\nu}(nx)} (\frac{2}{n})^{p+1} \frac{nx}{2} \sum_{s=1}^{p} {p \choose s} \sum_{k=0}^{\infty} \frac{(\frac{nx}{2})^{2k+\nu+1}}{\Gamma(k+1)\Gamma(k+\nu+2)} k^{s}.$$

Using the inductive assumption, we obtain

$$A_{n}^{\nu}(t^{p+1};x) = \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \frac{nx}{2} I_{\nu+1}(nx)$$

$$+ \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \frac{nx}{2} \sum_{s=1}^{p} {p \choose s} \sum_{i=1}^{s} a_{s,i} \left(\frac{nx}{2}\right)^{i} I_{\nu+1+i}(nx)$$

$$= \frac{1}{I_{\nu}(nx)} \left(\frac{2}{n}\right)^{p+1} \left\{\frac{nx}{2} I_{\nu+1}(nx) + \sum_{s=1}^{p} {p \choose s} \sum_{k=2}^{s+1} a_{s,k-1} \left(\frac{nx}{2}\right)^{k} I_{\nu+k}(nx)\right\},$$

where $a_{s,s} = 1$.

Hence we have

$$A_n^{\nu}(t^{p+1};x) = \frac{1}{I_{\nu}(nx)} (\frac{2}{n})^{p+1} \sum_{i=1}^{p+1} a_{p+1,i} (\frac{nx}{2})^i I_{\nu+i}(nx)$$

and $a_{p+1, p+1} = 1$ for $p \in \mathbb{N}$.

Thus, by the mathematical induction, Lemma 5 is proved. \Box

Lemma 6. For every fixed $p \in \mathbb{N}_0$ and $v \in \mathbb{R}_0$ there exists a positive constant $M_{p,v}$ such that

(19)
$$\left\| A_n^{\nu}(\frac{1}{w_p(t)}; .) \right\|_{C_p} \le M_{p,\nu},$$

(20)
$$\left\| B_n^{\nu} \left(\frac{1}{w_p(t)}; . \right) \right\|_{C_p} \le M_{p,\nu}$$

for all $n \in \mathbb{N}$.

Proof. From (1), (3) and Lemma 1 we immediately obtain (19) for p=0 and p=1. Let $2 \le p \in \mathbb{N}$ be a fixed integer. Then, by (1) and Lemma 5, we have for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$

$$w_p(x)A_n^{\nu}(\frac{1}{w_p(t)};x) = w_p(x)\{A_n^{\nu}(1;x) + A_n^{\nu}(t^p;x)\}$$
$$= \frac{1}{1+x^p} + \sum_{i=1}^p a_{p,i}(\frac{2}{n})^p (\frac{n}{2})^i \frac{x^i}{1+x^p} \frac{I_{\nu+i}(nx)}{I_{\nu}(nx)}.$$

By Lemma 3 the quotient $\frac{I_{\nu+i}(nx)}{I_{\nu}(nx)}$ is bounded for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$ so we get

$$0 \le w_p(x) A_n^{\nu}(\frac{1}{w_p(t)}; x) \le M_{p,\nu},$$

where $M_{p,\nu}$ is a positive constant depending on p and ν . From these and by (3) we obtain (19).

Theorem 1. For every fixed $p \in \mathbb{N}_0$ and $v \in \mathbb{R}_0$ there exists a positive constant $M_{p,v}$ such that for every $f \in C_p$ and $n \in \mathbb{N}$

(21)
$$||A_n^{\nu}(f;.)||_{C_p} \le M_{p,\nu} ||f||_{C_p},$$

$$||B_n^{\nu}(f;.)||_{C_p} \le M_{p,\nu}||f||_{C_p}$$

hold.

Proof. By (1), (3) and (7) we can get

$$\begin{split} w_p(x)|A_n^{\nu}(f(t);x)| &\leq w_p(x)A_n^{\nu}(|f(t)|;x) \\ &= w_p(x)A_n^{\nu}(w_p(t)|f(t)|\frac{1}{w_p(t)};x) \leq \|f\|_{C_p}w_p(x)A_n^{\nu}(\frac{1}{w_p(t)};x) \end{split}$$

for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$.

Using Lemma 6 we obtain (21). \Box

Corollary 1. The operators A_n^{ν} , B_n^{ν} are linear and bounded from C_p into C_p .

Lemma 7. For every fixed $p \in \mathbb{N}_0$ and $v \in \mathbb{R}_0$ there exists a positive constant $M_{p,v}$ such that for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$

(23)
$$w_p(x)A_n^{\nu}(\frac{(t-x)^2}{w_n(t)};x) \le M_{p,\nu}\frac{x+1}{n},$$

(24)
$$w_p(x)B_n^{\nu}(\frac{(t-x)^2}{w_p(t)};x) \le M_{p,\nu}\frac{x+1}{n}$$

hold.

Proof. Inequalities (23) and (24) for p = 0 are proved in Lemma 4. For $p \ge 1$ from (1) and the linearity of the operator A_n^{ν} it follows that

(25)
$$A_n^{\nu}(\frac{(t-x)^2}{w_p(t)};x) = A_n^{\nu}((t-x)^2;x) + A_n^{\nu}(t^p(t-x)^2;x),$$

$$A_n^{\nu}(t^p(t-x)^2;x) = A_n^{\nu}(t^{p+2};x) - 2xA_n^{\nu}(t^{p+1};x) + x^2A_n^{\nu}(t^p;x).$$

According to Lemma 5 we get

$$\begin{split} w_{p}(x)A_{n}^{\nu}(t^{p}(t-x)^{2};x) &= \frac{x^{p+2}}{1+x^{p}} \Big\{ \frac{I_{\nu+p+2}(nx)}{I_{\nu}(nx)} - 2\frac{I_{\nu+p+1}(nx)}{I_{\nu}(nx)} + \frac{I_{\nu+p}(nx)}{I_{\nu}(nx)} \Big\} \\ &+ \frac{x^{p+1}}{1+x^{p}} \frac{2}{n} \Big\{ a_{p+2,p+1} \frac{I_{\nu+p+1}(nx)}{I_{\nu}(nx)} - 2a_{p+1,p} \frac{I_{\nu+p}(nx)}{I_{\nu}(nx)} + a_{p,p-1} \frac{I_{\nu+p-1}(nx)}{I_{\nu}(nx)} \Big\} \\ &+ \sum_{i=1}^{p} a_{p+2,i} (\frac{n}{2})^{i-(p+2)} \frac{x^{i}}{1+x^{p}} \frac{I_{\nu+i}(nx)}{I_{\nu}(nx)} \\ &- \sum_{i=1}^{p-1} 2a_{p+1,i} (\frac{n}{2})^{i-(p+1)} \frac{x^{i+1}}{1+x^{p}} \frac{I_{\nu+i}(nx)}{I_{\nu}(nx)} + \sum_{i=1}^{p-2} a_{p,i} (\frac{n}{2})^{i-p} \frac{x^{i+2}}{1+x^{p}} \frac{I_{\nu+i}(nx)}{I_{\nu}(nx)} \\ &\leq \frac{x^{p}}{1+x^{p}} x^{2} \Big| \frac{I_{\nu+p+2}(nx)}{I_{\nu+p+1}(nx)} - 1 \Big| \frac{I_{\nu+p+1}(nx)}{I_{\nu}(nx)} \\ &+ \frac{x^{p}}{1+x^{p}} x^{2} \Big| 1 - \frac{I_{\nu+p+1}(nx)}{I_{\nu+p}(nx)} \Big| \frac{I_{\nu+p}(nx)}{I_{\nu}(nx)} \\ &+ \frac{x^{p}}{1+x^{p}} x^{2} \Big| x A_{p} \Big| \frac{I_{\nu+p+1}(nx)}{I_{\nu+p}(nx)} - 1 \Big| \frac{I_{\nu+p}(nx)}{I_{\nu}(nx)} \end{split}$$

$$\begin{split} &+\frac{x^{p}}{1+x^{p}}\frac{2}{n}xB_{p}\Big|1-\frac{I_{\nu+p}(nx)}{I_{\nu+p-1}(nx)}\Big|\frac{I_{\nu+p-1}(nx)}{I_{\nu}(nx)}\\ &+(\frac{2}{n})^{2}\sum_{i=1}^{p}a_{p+2,i}(\frac{n}{2})^{i-p}\frac{x^{i}}{1+x^{p}}\frac{I_{\nu+i}(nx)}{I_{\nu}(nx)}\\ &-(\frac{2}{n})^{2}\sum_{i=2}^{p}2a_{p+1,i-1}(\frac{n}{2})^{i-p}\frac{x^{i}}{1+x^{p}}\frac{I_{\nu+i-1}(nx)}{I_{\nu}(nx)}\\ &+(\frac{2}{n})^{2}\sum_{i=3}^{p}a_{p,i-2}(\frac{n}{2})^{i-p}\frac{x^{i}}{1+x^{p}}\frac{I_{\nu+i-2}(nx)}{I_{\nu}(nx)} \end{split}$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$, where $a_{r,k}$, A_p , B_p are positive numbers. The quotient $\frac{I_{\nu+i}}{I_{\nu}}$ is bounded for all $x \in \mathbb{R}_0$, $n \in \mathbb{N}$ and $i \in \mathbb{N}_0$ so, by Lemma 3 we have

$$w_p(x)A_n^{\nu}(t^p(t-x)^2;x) \le M_{p,\nu}\frac{x+1}{n}, \qquad x \in \mathbb{R}_0, \quad n \in \mathbb{N}$$

which proves Lemma 7. □

3. Approximation theorems.

Theorem 2. Suppose that $p \in \mathbb{N}_0$, $v \in \mathbb{R}_0$ are fixed numbers and $g \in C_p^1$, where $C_p^1 := \{ f \in C_p : f' \in C_p \}$. Then there exists a positive constant $M_{p,v}^*$ such that

(26)
$$w_p(x)|A_n^{\nu}(g;x) - g(x)| \le M_{p,\nu}^* \|g'\|_{C_p} (\frac{x+1}{n})^{\frac{1}{2}},$$

(27)
$$w_p(x)|B_n^{\nu}(g;x) - g(x)| \le M_{p,\nu}^* \|g'\|_{C_p} (\frac{x+1}{n})^{\frac{1}{2}}$$

for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$.

Proof. Let us $x \in \mathbb{R}_0$ be fixed. For $t \in \mathbb{R}_0$ we have

$$g(t) - g(x) = \int_x^t g'(u) du.$$

By (7) and Lemma 1 we get

(28)
$$A_n^{\nu}(g(t); x) - g(x) = A_n^{\nu}(\int_x^t g'(u) \, du; x), \qquad n \in \mathbb{N}.$$

Since

$$\left| \int_{x}^{t} g'(u) \, du \right| \le \|g'\|_{C_{p}} \left| \int_{x}^{t} \frac{du}{w_{p}(u)} \right| \le \|g'\|_{C_{p}} \left(\frac{1}{w_{p}(x)} + \frac{1}{w_{p}(t)} \right) |t - x|$$

we get from (28)

$$w_p(x)|A_n^{\nu}(g;x) - g(x)| \le \|g'\|_{C_p} \{A_n^{\nu}(|t-x|;x) + w_p(x)A_n^{\nu}(\frac{|t-x|}{w_p(t)};x)\}.$$

But (7) and Cauchy's inequality imply

$$A_n^{\nu}(|t-x|;x) \le \{A_n^{\nu}((t-x)^2;x)\}^{\frac{1}{2}},$$

$$A_n^{\nu}(\frac{|t-x|}{w_p(t)};x) \leq \{A_n^{\nu}(\frac{1}{w_p(t)};x)\}^{\frac{1}{2}}\{A_n^{\nu}(\frac{(t-x)^2}{w_p(t)};x)\}^{\frac{1}{2}}.$$

From (15), Lemma 6 and Lemma 7 it follows that

$$A_n^{\nu}(|t-x|;x) \leq (M_{\nu}\frac{x+1}{n})^{\frac{1}{2}},$$

$$w_p(x)A_n^{\nu}(\frac{|t-x|}{w_p(t)};x) \le M_{p,\nu}(\frac{x+1}{n})^{\frac{1}{2}}$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$, $p \in \mathbb{N}_0$, $\nu \in \mathbb{R}_0$.

Combining these estimations we obtain (26).

Theorem 3. Suppose that $f \in C_p$, with fixed $p \in \mathbb{N}_0$ and $v \in \mathbb{R}_0$. Then there exists a positive constant $M_{p,v}$ such that

(29)
$$w_p(x)|A_n^{\nu}(f;x) - f(x)| \le M_{p,\nu}\omega(f,C_p;(\frac{x+1}{n})^{\frac{1}{2}}),$$

(30)
$$w_p(x)|B_n^{\nu}(f;x) - f(x)| \le M_{p,\nu}\omega(f,C_p;(\frac{x+1}{n})^{\frac{1}{2}})$$

for all $x \in \mathbb{R}_0$, $n \in \mathbb{N}$.

Proof. Let f_h be the Stieklov mean of $f \in C_p$, i.e.

$$f_h(x) = \frac{1}{h} \int_0^h f(x+t) dt, \qquad x \in \mathbb{R}_0, \quad h \in \mathbb{R}_+,$$

where $\mathbb{R}_+ := \{x \in \mathbb{R} : x > 0\}$. We have

$$f_h(x) - f(x) = \frac{1}{h} \int_0^h (f(x+t) - f(x)) dt,$$

$$f_h'(x) = \frac{1}{h} \{ f(x+h) - f(x) \}$$

for $x \in \mathbb{R}_0$, $h \in \mathbb{R}_+$. It is easy to notice that if $f \in C_p$ then $f_h \in C_p^1$ for every fixed $h \in \mathbb{R}_+$. Moreover, for $h \in \mathbb{R}_+$

$$(31) \quad \|f_h - f\|_{C_p} \le \sup_{x \in \mathbb{R}_0} \{ \frac{1}{h} \int_0^h w_p(x) |f(x+t) - f(x)| \, dt \} \le \omega(f, C_p; h),$$

(32)
$$||f'_h||_{C_p} \le \frac{1}{h} \omega(f, C_p; h)$$

hold. Since A_n^{ν} is a linear operator, we have

$$|w_p(x)|A_n^{\nu}(f;x) - f(x)| \le w_p(x)\{|A_n^{\nu}(f - f_h;x)| + |A_n^{\nu}(f_h;x) - f_h(x)| + |f_h(x) - f(x)|\}$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$ and $h \in \mathbb{R}_+$.

Using Theorem 1 and (31), we get

$$|w_p(x)|A_n^{\nu}(f-f_h;x)| \leq M_{p,\nu}||f-f_h||_{C_p} \leq M_{p,\nu}\omega(f,C_p;h).$$

From Theorem 2 and (32) it follows that

$$|w_{p}(x)|A_{n}^{\nu}(f_{h};x) - f_{h}(x)| \leq M_{p,\nu} ||f_{h}'||_{C_{p}} (\frac{x+1}{n})^{\frac{1}{2}}$$

$$\leq M_{p,\nu} \omega(f,C_{p};h) \frac{1}{h} (\frac{x+1}{n})^{\frac{1}{2}}.$$

From these and by (31) we obtain

(33)
$$w_p(x)|A_n^{\nu}(f;x) - f(x)| \le M_{p,\nu}\omega(f,C_p;h)\{1 + \frac{1}{h}(\frac{x+1}{n})^{\frac{1}{2}}\}$$

for $x \in \mathbb{R}_0$, $n \in \mathbb{N}$ and $h \in \mathbb{R}_+$. Setting, for every fixed $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$, $h = (\frac{x+1}{n})^{\frac{1}{2}}$ to (33), we get the desired estimation (29) for $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$.

Theorem 3 implies the following corollaries:

Corollary 2. If $f \in C_p$ with some $p \in \mathbb{N}_0$ and $v \in \mathbb{R}_0$, then

(34)
$$\lim_{n \to \infty} A_n^{\nu}(f; x) = f(x),$$

(35)
$$\lim_{n \to \infty} B_n^{\nu}(f; x) = f(x)$$

for all $x \in \mathbb{R}_0$.

Moreover, statements tm (34) and (35) hold uniformly on every interval [0, a], a > 0.

Corollary 3. If $f \in Lip(C_p, \alpha) := \{ f \in C_p : \omega(f, C_p; t) = 0(t^{\alpha}), t \to 0^+ \}$ with some $p \in \mathbb{N}_0$, $0 < \alpha \le 1$ and $v \in \mathbb{R}_0$, then there exists a positive constant $M_{p,v,\alpha}$ such that

$$w_p(x)|A_n^{\nu}(f;x)-f(x)| \leq M_{p,\nu,\alpha}(\frac{x+1}{n})^{\frac{\alpha}{2}},$$

$$w_p(x)|B_n^{\nu}(f;x) - f(x)| \le M_{p,\nu,\alpha}(\frac{x+1}{n})^{\frac{\alpha}{2}}$$

for all $x \in \mathbb{R}_0$ and $n \in \mathbb{N}$.

REFERENCES

- [1] M. Becker, Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27–1 (1978), pp. 127–142.
- [2] L. Rempulska M. Skorupka, *On approximation of functions by some operators of the Szasz-Mirakjan type*, Fasc. Math., 26 (1996), pp. 125–137.
- [3] V. Totik, *Uniform approximation by Szasz-Mirakjan operators*, Acta Math. Hung., 41–3 (1983), pp. 291–307.
- [4] G.N. Watson, *Theory of Bessel functions*, Cambridge Univ. Press, Cambridge, 1966.

Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Cracow (POLAND) e-mail: mherzog@usk.pk.edu.pl