A VARIANT ON MIRANDA-TALENTI ESTIMATE

GIUSEPPE DEVILLANOVA - FABRIZIO PUGLIESE

In this note we prove formula (1.1),which extends to functions in $W^{2,2}(\Omega)$ with zero normal derivative the analogous formula (1.2) by G. Talenti ([5]) on functions with zero trace. To prove (1.1) we use the technique introduced by C. Miranda in [3] and give a geometrical interpretation of his results (formula (2.17)).

1. Introduction.

Let $\Omega \subseteq \mathbb{R}^{n}$ be a C^{2}-smooth, bounded domain. Let $u \in W^{2,2}(\Omega)$ be such that

$$
u_{0}=\frac{\partial u}{\partial n}=\sum_{i=1}^{n} p_{i} X_{i}=0 \quad \text { on } \partial \Omega,
$$

where $\boldsymbol{n} \equiv\left(X_{1}, \ldots, X_{n}\right)$ is the unit outward normal to $\partial \Omega$ and $p_{i}=\frac{\partial u}{\partial x_{i}}$, $i=1, \ldots, n$. In this note we will show that for such functions u the following formula holds true:

$$
\begin{equation*}
\int_{\Omega} \sum_{i, k=1}^{n}\left(p_{i i} p_{k k}-p_{i k}^{2}\right) d x=-\int_{\partial \Omega} \sum_{i=1}^{n} p_{i}^{2} k_{n} d \sigma \tag{1.1}
\end{equation*}
$$

where k_{n} is the normal curvature of $\partial \Omega$ along the direction of ∇u, i.e. the curvature of the intersection of $\partial \Omega$ with the plane determined by n and ∇u (which, under our assumption on u_{0}, is tangent to $\partial \Omega$).

Entrato in Redazione il 21 dicembre 1998.

Formula (1.1) extends to functions of $W^{2,2}(\Omega)$ with zero normal derivative the well-known formula by G. Talenti ([5]), concerning functions in $W^{2,2}(\Omega)$ with zero trace on $\partial \Omega$:

$$
\begin{equation*}
\int_{\Omega} \sum_{i, k=1}^{n}\left(p_{i i} p_{k k}-p_{i k}^{2}\right) d x=-(n-1) \int_{\partial \Omega} \sum_{i=1}^{n} p_{i}^{2} H d \sigma, \tag{1.2}
\end{equation*}
$$

where H is the mean curvature of $\partial \Omega$ at x. We will derive (1.1) from a general formula due to Miranda (see (2.20) of [3]). Let us remark, however, that it remains unsolved the problem of finding the analogue of (1.1), (1.2) in the general case of a function $u \in W^{2,2}(\Omega)$ satisfying the condition $\frac{\partial u}{\partial l}=0$ on $\partial \Omega$, where $\boldsymbol{l} \equiv\left(Y_{1}, \ldots, Y_{n}\right)$ is an oblique unit vector field.

From (1.1),(1.2), assuming that Ω is convex, one can obtain the inequality:

$$
\begin{equation*}
\int_{\Omega} \sum_{i, k=1}^{n} p_{i k}^{2} d x \leq \int_{\Omega}(\triangle u)^{2} d x \tag{1.3}
\end{equation*}
$$

valid for every $u \in W^{2,2}$ such that $u=0$ or $\frac{\partial u}{\partial n}=0$ on $\partial \Omega$. (1.3) has been already proved by A. Maugeri ([2]) in the case $\frac{\partial u}{\partial n}=0$. It plays a fundamental role in the theory of "nearness" between operators, developed by S. Campanato ([1]) in order to study non-linear discontinuous elliptic and parabolic operators.

2. Proof of (1.1).

We can assume that $u \in C^{2}(\bar{\Omega}) \cap C^{3}(\Omega)$. In fact, once (1.1) has been proved in this special case, it can be extended to the case $u \in W^{2,2}$ by a wellknown approximation method.

Keeping in mind that

$$
\sum_{i, k=1}^{n}\left(p_{i i} p_{k k}-p_{i k}^{2}\right)=\sum_{i, k=1}^{n}\left[\frac{\partial}{\partial x_{k}}\left(p_{i i} p_{k}\right)-\frac{\partial}{\partial x_{i}}\left(p_{k} p_{i k}\right)\right],
$$

we obtain, by virtue of Gauss-Green formulas, the equality

$$
\int_{\Omega} \sum_{i, k=1}^{n}\left(p_{i i} p_{k k}-p_{i k}^{2}\right) d x=-\int_{\partial \Omega} \sum_{i, k=1}^{n} p_{i}\left(p_{i k} X_{k}-p_{k k} X_{i}\right) d \sigma
$$

According to the elegant technique used by Miranda ([3]) to evaluate the surface integral, let us introduce the operators:

$$
\delta_{i}: u \in C^{1}(\bar{\Omega}) \mapsto u_{i} \in C^{1}(\partial \Omega),
$$

where

$$
\begin{equation*}
u_{i} \stackrel{\text { def }}{=} p_{i}-u_{0} X_{i} \quad i=1, \ldots, n \tag{2.1}
\end{equation*}
$$

These scalar expressions are equivalent to the vectorial one:

$$
\begin{equation*}
\delta u=\nabla u-u_{0} \boldsymbol{n} \tag{2.2}
\end{equation*}
$$

where $\delta u \equiv\left(u_{1}, \ldots, u_{n}\right)$ is the projection of ∇u on the hyperplane $T_{x}(\partial \Omega)$, tangent to $\partial \Omega$ at x. Let us fix on $\partial \Omega$ a system of local, $C^{2}-$ smooth curvilinear coordinates t_{1}, \ldots, t_{n-1} :

$$
\left\{\begin{array}{l}
x_{1}=x_{1}\left(t_{1}, \ldots, t_{n-1}\right) \tag{2.3}\\
\ldots \ldots \ldots \ldots \ldots \ldots \\
x_{n}=x_{n}\left(t_{1}, \ldots, t_{n-1}\right)
\end{array}\right.
$$

with $\left(t_{1}, \ldots, t_{n-1}\right)$ varying in the domain $T \subseteq \mathbb{R}^{n-1}$. Let us also assume that such coordinates are orthogonal, i.e.:

$$
\frac{\partial \boldsymbol{x}}{\partial t_{i}} \cdot \frac{\partial \boldsymbol{x}}{\partial t_{j}}= \begin{cases}0 & i \neq j \tag{2.4}\\ E_{i}=\left\|\frac{\partial \boldsymbol{x}}{\partial t_{i}}\right\|^{2} & i=j\end{cases}
$$

for $i, j=1, \ldots, n-1$. From (2.2), (2.4) we obtain:

$$
\begin{align*}
\delta u & =\sum_{k=1}^{n-1} \frac{1}{E_{k}}\left(\delta u \cdot \frac{\partial \boldsymbol{x}}{\partial t_{k}}\right) \frac{\partial x}{\partial t_{k}}=\sum_{k=1}^{n-1} \frac{1}{E_{k}}\left(\nabla u \cdot \frac{\partial \boldsymbol{x}}{\partial t_{k}}\right) \frac{\partial \boldsymbol{x}}{\partial t_{k}}= \tag{2.5}\\
& =\sum_{k=1}^{n-1} \frac{1}{E_{k}} \frac{\partial u}{\partial t_{k}} \frac{\partial \boldsymbol{x}}{\partial t_{k}}
\end{align*}
$$

or, in cartesian coordinates:

$$
\begin{equation*}
u_{i}=\sum_{k=1}^{n-1} \frac{1}{E_{k}} \frac{\partial u}{\partial t_{k}} \frac{\partial x_{i}}{\partial t_{k}} \quad i=1, \ldots, n \tag{2.6}
\end{equation*}
$$

Let us remark that (2.5), (2.6) are still valid for functions defined only on $\partial \Omega$ (in fact $\delta u=\operatorname{grad}\left(\left.u\right|_{\partial \Omega}\right)$, where grad is the gradient operator on the riemannian manifold $\partial \Omega$, see [6]). Let us furtherly remark that δ_{i} has the following properties:

$$
\begin{align*}
(u+v)_{i} & =u_{i}+v_{i} \tag{2.7}\\
\quad(u v)_{i} & =u v_{i}+u_{i} v
\end{align*}
$$

i.e. it is a derivation of the algebra $C^{2}(\partial \Omega)$. Following [3], we will express "spatial" derivatives $p_{i j}$ in terms of "superficial" ones $u_{r s}=\left(u_{r}\right)_{s}$. First of all, let us evaluate $u_{0 r}=\left(u_{0}\right)_{r}$:

$$
\begin{align*}
u_{0 r} & =\left(\frac{\partial u}{\partial n}\right)_{r}=\left(\sum_{i=1}^{n} p_{i} X_{i}\right)_{r}=\sum_{i=1}^{n}\left(p_{i}\right)_{r} X_{i}+\sum_{i=1}^{n} p_{i} X_{i r}= \tag{2.8}\\
& =\sum_{i=1}^{n}\left(p_{i r}-\frac{\partial p_{i}}{\partial n} X_{r}\right) X_{i}+\sum_{i=1}^{n}\left(u_{i}+u_{0} X_{i}\right) X_{i r}= \\
& =\frac{\partial p_{r}}{\partial n}-\theta X_{r}+\sum_{i=1}^{n} u_{i} X_{i r},
\end{align*}
$$

where $\theta=\sum_{i=1}^{n} \frac{\partial p_{i}}{\partial n} X_{i}=\frac{\partial \nabla u}{n} \cdot \boldsymbol{n}$ and $u_{0} \sum_{i=1}^{n} X_{i r} X_{i}=0$ in virtue of the successive formula (2.13)

We can now evaluate, using (2.8), the "surface" second derivatives:

$$
\begin{aligned}
u_{r s} & =\left(p_{r}-u_{0} X_{r}\right)_{s}=p_{r s}-\frac{\partial p_{r}}{\partial n} X_{s}-u_{0 s} X_{r}-u_{0} X_{r s}= \\
& =p_{r s}-u_{0 r} X_{s}-\theta X_{r} X_{s}+\sum_{i=1}^{n} u_{i} X_{i r} X_{s}-u_{0 s} X_{r}-u_{0} X_{r s}
\end{aligned}
$$

Therefore:

$$
\begin{equation*}
p_{r s}=u_{r s}+u_{0 r} X_{s}+\theta X_{r} X_{s}-\sum_{i=1}^{n} u_{i} X_{s} X_{i r}+u_{0 s} X_{r}+u_{0} X_{r s} \tag{2.9}
\end{equation*}
$$

The $X_{r s}$ satisfy two remarkable relations. Firstly

$$
\begin{equation*}
X_{r s}=X_{s r} \tag{2.10}
\end{equation*}
$$

In fact, recalling Weingarten formulas:

$$
\begin{equation*}
\frac{\partial \boldsymbol{n}}{\partial t_{k}}=-\sum_{i=1}^{n-1} \frac{1}{E_{i}} D_{k i} \frac{\partial \boldsymbol{x}}{\partial t_{i}}, \quad k=1, \ldots, n-1 \tag{2.11}
\end{equation*}
$$

(where $D_{k i}=\frac{\partial^{2} \boldsymbol{x}}{\partial t_{i} \partial t_{k}} \cdot \boldsymbol{n}=-\frac{\partial \boldsymbol{x}}{\partial t_{k}} \cdot \frac{\partial \boldsymbol{n}}{\partial t_{i}}$ are the coefficients of the second quadratic form B on $\partial \Omega$), we get:

$$
\begin{equation*}
X_{r s}=\left(X_{r}\right)_{s}=\sum_{i=1}^{n-1} \frac{1}{E_{k}} \frac{\partial X_{r}}{\partial t_{k}} \frac{\partial x_{s}}{\partial t_{k}}=-\sum_{i, k=1}^{n-1} \frac{D_{k i}}{E_{i} E_{k}} \frac{\partial x_{s}}{\partial t_{k}} \frac{\partial x_{r}}{\partial t_{i}}, \tag{2.12}
\end{equation*}
$$

which proves (2.10).
The second useful relation involving the $X_{r s}$ is:

$$
\begin{equation*}
\sum_{r=1}^{n} X_{r s} X_{r}=\sum_{r=1}^{n} X_{s r} X_{r}=0 \tag{2.13}
\end{equation*}
$$

which is obtained by applying the operator δ_{s} to the right and left hand of the identity $\|\boldsymbol{n}\|^{2}=\sum_{r=1}^{n} X_{r}^{2}=1$.

Setting, for the sake of brevity:

$$
\Sigma=\left.\sum_{i, k=1}^{n} p_{i}\left(p_{i k} X_{k}-p_{k k} X_{i}\right)\right|_{\partial \Omega}
$$

we evaluate Σ by using relations (2.9), (2.10), (2.13). Firstly, from (2.9) we get:

$$
\begin{aligned}
\Sigma & =\sum_{i, k=1}^{n} p_{i}\left(u_{i k} X_{k}+u_{0 i} X_{k}^{2}-\sum_{r=1}^{n} u_{r} X_{k}^{2} X_{r i}+u_{0} X_{k} X_{i k}-u_{k k} X_{i}-\right. \\
& \left.-u_{0 k} X_{k} X_{i}+\sum_{r=1}^{n} u_{r} X_{k} X_{r k} X_{i}-u_{0} X_{k k} X_{i}\right)
\end{aligned}
$$

i.e., by (2.13) and the relation $\sum_{i=1}^{n} X_{i}^{2}=1$:

$$
\begin{aligned}
\Sigma & =\sum_{i=1}^{n} p_{i}\left(\delta u_{i} \cdot \boldsymbol{n}\right)+\nabla u \cdot \delta u_{0}-\sum_{r, i=1}^{n} p_{i} u_{r} X_{r i}- \\
& -u_{0} \sum_{k=1}^{n} u_{k k}-u_{0} \delta u_{0} \cdot \boldsymbol{n}-u_{0}^{2} \sum_{k=1}^{n} X_{k k}
\end{aligned}
$$

But $\delta u_{i}, \delta u_{0}$ are tangent to $\partial \Omega$, so $\delta u_{i} \cdot \boldsymbol{n}=\delta u_{0} \cdot \boldsymbol{n}=0$. Hence, reminding (2.2), we obtain at last:

$$
\begin{equation*}
\Sigma=\delta u_{0} \cdot \delta u-\sum_{i, r=1}^{n} p_{i} u_{r} X_{r i}-u_{0} \sum_{r=1}^{n} u_{r r}-u_{0}^{2} \sum_{k=1}^{n} X_{k k} \tag{2.14}
\end{equation*}
$$

This expresson can be furtherly simplified. Indeed, from (2.12), (2.13), (2.1) it follows that:
(2.15) $\sum_{i, r=1}^{n} p_{i} u_{r} X_{r i}=-\sum_{j, k=1}^{n-1} D_{k j}\left(\sum_{r=1}^{n} \frac{1}{E_{j}} \frac{\partial x_{r}}{\partial t_{j}} u_{r}\right)\left(\sum_{i=1}^{n} \frac{1}{E_{k}} \frac{\partial x_{i}}{\partial t_{k}} u_{i}\right)=$

$$
\begin{aligned}
& =-\sum_{j, k=1}^{n-1} D_{k j}\left(\frac{1}{E_{j}} \frac{\partial \boldsymbol{x}}{\partial t_{j}} \cdot \delta u\right)\left(\frac{1}{E_{k}} \frac{\partial \boldsymbol{x}}{\partial t_{k}} \cdot \delta u\right)= \\
& =-B(\delta u, \delta u)=-\|\delta u\|^{2} k_{n}(\delta u),
\end{aligned}
$$

where B denotes the second fundamental quadratic form on $\partial \Omega$ and by $k_{n}(\delta u)$ we mean the normal curvature of $\partial \Omega$ along the direction of δu (i.e. the curvature of the curve obtained intersecting $\partial \Omega$ with the plane containing vectors \mathbf{n} and $\delta u)$. Recall that $k_{n}(\delta u)$ is related to the principal curvatures $\lambda_{1}, \ldots, \lambda_{n-1}$ of $\partial \Omega$ at x by Euler's formula:

$$
k_{n}(\delta u)=\sum_{i=1}^{n} \lambda_{i} \cos ^{2} \phi_{i},
$$

where the ϕ_{i} 's are the angles between δu and the principal directions.
Principal curvatures and principal directions are the eigenvalues and the eigenvectors, respectively, of the shape operator \mathcal{L} on $\partial \Omega$, i.e. the linear symmetric operator on $T_{x}(\partial \Omega)$ defined by:

$$
\mathcal{L}(\boldsymbol{v}) \cdot \boldsymbol{w}=B(\boldsymbol{v}, \boldsymbol{w}) \quad \forall \boldsymbol{v}, \boldsymbol{w} \in T_{x}(\partial \Omega)
$$

Let us recall that the matrix of \mathcal{L} with respect to the base $\left\{\frac{\partial x}{\partial t_{1}}, \ldots, \frac{\partial x}{\partial t_{n-1}}\right\}$ is, reminding (2.4), $\left\|D_{i j} / E_{i}\right\|_{i, j=1, \ldots, n-1}$ (see [4]). Therefore, using once more (2.12) and (2.4), we get:
(2.16) $\sum_{k=1}^{n} X_{k k}=-\sum_{i, j=1}^{n-1} \frac{D_{i j}}{E_{i} E_{j}}\left(\sum_{k=1}^{n} \frac{\partial x_{k}}{\partial t_{i}} \frac{\partial x_{k}}{\partial t_{j}}\right)=-\sum_{i, j=1}^{n-1} \frac{D_{i j}}{E_{i} E_{j}} \delta_{i j} E_{j}=$

$$
=-\sum_{i=1}^{n-1} \frac{D_{i i}}{E_{i}}=-\operatorname{tr} \mathcal{L}=-(n-1) H,
$$

where H is the mean curvature of $\partial \Omega$ at x ([4]).
So we have found at last the following formula for Σ :

$$
\begin{equation*}
\Sigma=\delta u \cdot \delta u_{0}+\|\delta u\|^{2} k_{n}(\delta u)-u_{0} \sum_{r=1}^{n} u_{r r}+(n-1) u_{0}^{2} H \tag{2.17}
\end{equation*}
$$

Let us apply (2.17) to Dirichlet's and Neumann's boundary problems. In Dirichlet's case $\left(\left.u\right|_{\partial \Omega}=0\right)$ functions $u_{i}, u_{i j}$ identically vanish on $\partial \Omega$, so (2.17) becomes:

$$
\begin{equation*}
\Sigma_{D i r}=(n-1) u_{0}^{2} H, \tag{2.18}
\end{equation*}
$$

a result already found by Talenti ([5]). If Ω is a convex domain, then $H \leq 0$ on $\partial \Omega$, so in this case $\Sigma_{D i r}$ is negative on $\partial \Omega$, and hence (1.3) holds true.

In the case of Neumann's boundary condition $\left(u_{0}=0\right),(2.17)$ becomes:

$$
\begin{equation*}
\Sigma_{\text {Neum. }}=\|\delta u\|^{2} k_{n}(\delta u) \tag{2.19}
\end{equation*}
$$

In this case, too, convexity assumption for $\partial \Omega$ implies that $\Sigma_{\text {Neum }} \leq 0$ on the whole boundary, and therefore (1.3) holds true.

REFERENCES

[1] S. Campanato, On the condition of nearness between operators, Ann. Mat. Pura e Appl., 167 (1994), pp. 243-256.
[2] A. Maugeri, Il problema di derivata normale per equazioni paraboliche lineari, Le Matematiche, 27 (1972), pp. 87-93.
[3] C. Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui, Ann. Mat. Pura e Appl., 63 (1963), pp. 353-386.
[4] E. Sernesi, Geometria 2, Bollati-Boringhieri, Torino, 1997.
[5] G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti discontinui, Ann. Mat. Pura e Appl., 69 (1965), pp. 285-304.
[6] E. Vesentini - G. Gentili - F. Podestà, Lezioni di Geometria Differenziale, BollatiBoringhieri, Torino,1997.

> Dipartimento di Matematica e Informatica, D.M.I.
> Università degli Studi di Salerno,
> Via S. Allende,
> 84081 Baronissi, (SA) (ITALY)
> e-mail: pugliese@matna2.dma.unina.it

