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A VARIANT ON MIRANDA-TALENTI ESTIMATE

GIUSEPPE DEVILLANOVA - FABRIZIO PUGLIESE

In this note we prove formula (1.1),which extends to functions in
W 2,2(�) with zero normal derivative the analogous formula (1.2) by G. Ta-
lenti ([5]) on functions with zero trace. To prove (1.1) we use the technique
introduced by C. Miranda in [3] and give a geometrical interpretation of his
results (formula (2.17)).

1. Introduction.

Let � ⊆ R
n be a C2-smooth, bounded domain. Let u ∈W 2,2 (�) be such

that

u0 =
∂u

∂n
=

n�

i=1

pi Xi = 0 on ∂�,

where n ≡ (X1, ..., Xn) is the unit outward normal to ∂� and pi = ∂u
∂ xi

,
i = 1, ..., n. In this note we will show that for such functions u the following
formula holds true:

(1.1)

�

�

n�

i,k=1

�
pii pkk − p2

ik

�
dx = −

�

∂�

n�

i=1

p2
i kn dσ,

where kn is the normal curvature of ∂� along the direction of ∇u, i.e. the
curvature of the intersection of ∂� with the plane determined by n and ∇u
(which, under our assumption on u0, is tangent to ∂�).
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Formula (1.1) extends to functions of W 2,2 (�) with zero normal derivative
the well-known formula by G. Talenti ([5]), concerning functions in W 2,2 (�)

with zero trace on ∂�:

(1.2)

�

�

n�

i,k=1

�
pii pkk − p2

ik

�
dx = − (n − 1)

�

∂�

n�

i=1

p2
i H dσ,

where H is the mean curvature of ∂� at x . We will derive (1.1) from a
general formula due to Miranda (see (2.20) of [3]). Let us remark, however, that
it remains unsolved the problem of �nding the analogue of (1.1), (1.2) in the
general case of a function u ∈W 2,2 (�) satisfying the condition ∂u

∂l
= 0 on ∂�,

where l ≡ (Y1, ..., Yn ) is an oblique unit vector �eld.
From (1.1),(1.2), assuming that � is convex, one can obtain the inequality:

(1.3)

�

�

n�

i,k=1

p2
ik dx ≤

�

�

(�u)2 dx ,

valid for every u ∈ W 2,2 such that u = 0 or ∂u
∂n

= 0 on ∂�. (1.3) has been

already proved by A. Maugeri ([2]) in the case ∂u
∂n

= 0. It plays a fundamental
role in the theory of �nearness� between operators, developed by S. Campanato
([1]) in order to study non-linear discontinuous elliptic and parabolic operators.

2. Proof of (1.1).

We can assume that u ∈ C2
�
�

�
∩ C3 (�). In fact, once (1.1) has been

proved in this special case, it can be extended to the case u ∈ W 2,2 by a well-
known approximation method.

Keeping in mind that

n�

i,k=1

�
pii pkk − p2

ik

�
=

n�

i,k=1

�
∂

∂xk
(pii pk) −

∂

∂xi
(pk pik)

�

,

we obtain, by virtue of Gauss-Green formulas, the equality

�

�

n�

i,k=1

�
pii pkk − p2

ik

�
dx = −

�

∂�

n�

i,k=1

pi (pik Xk − pkk Xi ) dσ

According to the elegant technique used by Miranda ([3]) to evaluate the
surface integral, let us introduce the operators:

δi : u ∈C1
�
�

�
�→ ui ∈C

1 (∂�) ,
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where

(2.1) ui
def
= pi − u0Xi i = 1, . . . , n.

These scalar expressions are equivalent to the vectorial one:

(2.2) δu = ∇u − u0n,

where δu ≡ (u1, . . . , un) is the projection of ∇u on the hyperplane Tx (∂�),
tangent to ∂� at x . Let us �x on ∂� a system of local, C2−smooth curvilinear
coordinates t1, . . . , tn−1:

(2.3)

� x1 = x1 (t1, . . . , tn−1)

. . . . . . . . . . . . . . . . . . . . .
xn = xn (t1, . . . , tn−1)

with (t1, ..., tn−1) varying in the domain T ⊆ R
n−1 . Let us also assume that

such coordinates are orthogonal, i.e.:

(2.4)
∂ x

∂ ti
·
∂ x

∂ tj
=

�
0 i �= j

Ei =

�
�
� ∂x

∂ ti

�
�
�

2

i = j
,

for i, j = 1, . . . , n − 1. From (2.2), (2.4) we obtain:

δu =

n−1�

k=1

1

Ek

�

δu ·
∂x

∂ tk

�
∂x

∂ tk
=

n−1�

k=1

1

Ek

�

∇u ·
∂x

∂ tk

�
∂x

∂ tk
=(2.5)

=

n−1�

k=1

1

Ek

∂u

∂ tk

∂x

∂ tk

or, in cartesian coordinates:

(2.6) ui =

n−1�

k=1

1

Ek

∂u

∂ tk

∂xi

∂ tk
i = 1, . . . , n.

Let us remark that (2.5), (2.6) are still valid for functions de�ned only
on ∂� (in fact δu = grad (u|∂�), where grad is the gradient operator on the
riemannian manifold ∂�, see [6]). Let us furtherly remark that δi has the
following properties:

(u + v)i = ui + vi(2.7)

(uv)i = uvi + uiv,
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i.e. it is a derivation of the algebra C2 (∂�). Following [3], we will express
�spatial � derivatives pi j in terms of �super�cial� ones urs = (ur )s . First of all,
let us evaluate u0r = (u0)r :

u0r =

�
∂u

∂n

�

r

=

�
n�

i=1

pi Xi

�

r

=

n�

i=1

(pi )r Xi +

n�

i=1

pi Xir =(2.8)

=

n�

i=1

�

pir −
∂pi

∂n
Xr

�

Xi +

n�

i=1

(ui + u0Xi) Xir =

=
∂pr

∂n
− θXr +

n�

i=1

ui Xir ,

where θ =
n�

i=1

∂pi
∂n
Xi = ∂∇u

n
· n and u0

n�

i=1

Xir Xi = 0 in virtue of the successive

formula (2.13).
We can now evaluate, using (2.8), the �surface� second derivatives:

urs = (pr − u0Xr )s = prs −
∂pr

∂n
Xs − u0s Xr − u0Xrs =

= prs − u0r Xs − θXr Xs +

n�

i=1

ui Xir Xs − u0s Xr − u0Xrs

Therefore:

(2.9) prs = urs + u0r Xs + θXr Xs −

n�

i=1

ui XsXir + u0s Xr + u0Xrs

The Xrs satisfy two remarkable relations. Firstly

(2.10) Xrs = Xsr

In fact, recalling Weingarten formulas:

(2.11)
∂n

∂ tk
= −

n−1�

i=1

1

Ei
Dki

∂ x

∂ ti
, k = 1, . . . , n − 1

(where Dki = ∂ 2x
∂ ti∂ tk

· n = − ∂ x
∂ tk

· ∂ n
∂ ti

are the coef�cients of the second quadratic
form B on ∂�), we get:

(2.12) Xrs = (Xr)s =

n−1�

i=1

1

Ek

∂Xr

∂ tk

∂xs

∂ tk
= −

n−1�

i,k=1

Dki

Ei Ek

∂xs

∂ tk

∂xr

∂ ti
,
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which proves (2.10).
The second useful relation involving the Xrs is:

(2.13)

n�

r=1

Xrs Xr =

n�

r=1

Xsr Xr = 0,

which is obtained by applying the operator δs to the right and left hand of the

identity �n�2 =
n�

r=1

X 2
r = 1.

Setting, for the sake of brevity:

� =

n�

i,k=1

pi (pik Xk − pkk Xi ) |∂�,

we evaluate � by using relations (2.9), (2.10), (2.13). Firstly, from (2.9) we get:

� =

n�

i,k=1

pi

�
uik Xk + u0i X

2
k −

n�

r=1

ur X
2
k Xri + u0XkXik − ukk Xi −

− u0k Xk Xi +

n�

r=1

ur XkXrk Xi − u0Xkk Xi

�
,

i.e., by (2.13) and the relation
�n

i=1 X
2
i = 1 :

� =

n�

i=1

pi (δui · n) + ∇u · δu0 −

n�

r,i=1

piur Xri −

− u0

n�

k=1

ukk − u0δu0 · n − u2
0

n�

k=1

Xkk

But δui , δu0 are tangent to ∂�, so δui · n =δu0 · n = 0. Hence, reminding
(2.2), we obtain at last:

(2.14) � = δu0 · δu −

n�

i,r=1

piur Xri − u0

n�

r=1

urr − u2
0

n�

k=1

Xkk

This expresson can be furtherly simpli�ed. Indeed, from (2.12), (2.13),
(2.1) it follows that:

n�

i,r=1

piur Xri = −

n−1�

j,k=1

Dkj

�
n�

r=1

1

Ej

∂xr

∂ tj
ur

��
n�

i=1

1

Ek

∂xi

∂ tk
ui

�

=(2.15)
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= −

n−1�

j,k=1

Dkj

�
1

Ej

∂x

∂ tj
· δu

��
1

Ek

∂x

∂ tk
· δu

�

=

= −B (δu, δu) = −�δu�2 kn (δu) ,

where B denotes the second fundamental quadratic form on ∂� and by kn (δu)
we mean the normal curvature of ∂� along the direction of δu (i.e. the curvature
of the curve obtained intersecting ∂� with the plane containing vectors n and
δu). Recall that kn (δu) is related to the principal curvatures λ1, . . . , λn−1 of ∂�

at x by Euler�s formula:

kn (δu) =

n�

i=1

λi cos2 φi ,

where the φi �s are the angles between δu and the principal directions.
Principal curvatures and principal directions are the eigenvalues and the

eigenvectors, respectively, of the shape operator L on ∂�, i.e. the linear
symmetric operator on Tx (∂�) de�ned by:

L (v) · w = B (v, w) ∀v, w ∈ Tx (∂�)

Let us recall that the matrix of L with respect to the base
�

∂ x
∂ t1

, . . . , ∂ x
∂ tn−1

�

is, reminding (2.4),
�
�Dij/Ei

�
�
i, j=1,...,n−1

(see [4]). Therefore, using once more

(2.12) and (2.4), we get:

n�

k=1

Xkk = −

n−1�

i, j=1

Dij

Ei Ej

�
n�

k=1

∂xk

∂ ti

∂xk

∂ tj

�

= −

n−1�

i, j=1

Dij

Ei Ej
δi j Ej =(2.16)

= −

n−1�

i=1

Dii

Ei
= −tr L = − (n − 1) H,

where H is the mean curvature of ∂� at x ([4]).
So we have found at last the following formula for � :

(2.17) � = δu · δu0 + �δu�2 kn (δu) − u0

n�

r=1

urr + (n − 1) u2
0H

Let us apply (2.17) to Dirichlet�s and Neumann�s boundary problems. In
Dirichlet�s case (u|∂� = 0) functions ui , ui j identically vanish on ∂�, so (2.17)
becomes:

(2.18) �Dir = (n − 1) u2
0H,
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a result already found by Talenti ([5]). If � is a convex domain, then H ≤ 0 on
∂�, so in this case �Dir is negative on ∂�, and hence (1.3) holds true.

In the case of Neumann�s boundary condition (u0 = 0), (2.17) becomes:

(2.19) �Neum. = �δu�2 kn (δu)

In this case, too, convexity assumption for ∂� implies that �Neum ≤ 0 on
the whole boundary, and therefore (1.3) holds true.
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