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A VARIANT ON MIRANDA-TALENTI ESTIMATE

GIUSEPPE DEVILLANOVA - FABRIZIO PUGLIESE

In this note we prove formula (1.1),which extends to functions in
W?22() with zero normal derivative the analogous formula (1.2) by G. Ta-
lenti ([5]) on functions with zero trace. To prove (1.1) we use the technique
introduced by C. Miranda in [3] and give a geometrical interpretation of his
results (formula (2.17)).

1. Introduction.

Let  C R”" be a C?-smooth, bounded domain. Let u € W2 (2) be such
that

ou
= — = X; =0 onodf2,
Ho on ;p
where n = (X4, ..., X,;) is the unit outward normal to 92 and p; = %,

i =1, ..., n. In this note we will show that for such functions u the followirig
formula holds true:

(1.1) /Z pii Prk = Pix) /BQszk do,

i,k=1

where k, is the normal curvature of 92 along the direction of Vu, i.e. the
curvature of the intersection of 9<2 with the plane determined by » and Vu
(which, under our assumption on u, is tangent to 9€2).
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Formula (1.1) extends to functions of W>? () with zero normal derivative
the well-known formula by G. Talenti ([5]), concerning functions in W2 ()
with zero trace on 9:

(12) fZ Pii Pk — Diy) (n—l)faQZp,Hdo—

i,k=1

where H is the mean curvature of 92 at x. We will derive (1.1) from a
general formula due to Miranda (see (2.20) of [3]). Let us remark, however, that
it remains unsolved the problem of finding the analogue of (1. 1) (1.2) in the
general case of a function u € W22 (Q) satisfying the condltlon =0on a2,
where I = (Y7, ..., ¥;;) is an oblique unit vector field.

From (1.1),(1.2), assuming that €2 is convex, one can obtain the inequality:

(1.3) / Zplk dx <f (Au)? dx,

i,k=1

valid for every u € W>?2 such that u = 0 or a_z = 0 on 9. (1.3) has been

already proved by A. Maugeri ([2]) in the case = 0. It plays a fundamental
role in the theory of “nearness” between operators developed by S. Campanato
([1]) in order to study non-linear discontinuous elliptic and parabolic operators.

2. Proof of (1.1).

We can assume that u € C? () N C* (). In fact, once (1.1) has been
proved in this special case, it can be extended to the case u € W2 by a well-
known approximation method.

Keeping in mind that
iEk:l (pii Pk — Piz) i§k:1i |:8xk (pii Pr) ox, (pkplk)] ,

we obtain, by virtue of Gauss-Green formulas, the equality

/Z Dii Pkk — Plk ) dx = — / Zpi (pix X — puXi) do

i,k=1 i,k=1

According to the elegant technique used by Miranda ([3]) to evaluate the
surface integral, let us introduce the operators:

$itueC (Q) > ueC (d9),
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where

2.1) wi i —ueX, i=1,...,n.
These scalar expressions are equivalent to the vectorial one:
2.2) éu =Vu —ugn,

where éu = (uy, ..., u,) is the projection of Vu on the hyperplane 7, (3€2),
tangent to 92 at x. Let us fix on 3 a system of local, C>—smooth curvilinear
coordinates tq, ..., t,_1:

xp=x1(t1, ... tam1)
2.3)
Xp = Xp (tlv ey tn—l)
with (¢, ..., t,_;) varying in the domain 7 C R"~!. Let us also assume that
such coordinates are orthogonal, i.e.:
(2.4) ox ax_ 0 ) i
' o, o1 Ei:|% i=j’

fori, j =1,...,n— 1. From (2.2), (2.4) we obtain:

n—1 n—1

1 0x\ dx 1 ox\ ox

2 ! ; E < ! 3tk> Otk ; Ey < * Btk) Gl
n—1

1 ou dx

E; ot 0ty

k=1
or, in cartesian coordinates:

n—1
1 ou dx;

(2.6) w=S
— E; ot ot

Let us remark that (2.5), (2.6) are still valid for functions defined only
on 92 (in fact Su = grad (u|3q), where grad is the gradient operator on the
riemannian manifold 9€2, see [6]). Let us furtherly remark that §; has the
following properties:

(27) (M + U)i =u; +v;

(uv); = uv; 4+ u;v,
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i.e. it is a derivation of the algebra C? (32). Following [3], we will express
spatial ” derivatives p;; in terms of “superficial” ones u,; = (u, ). First of all,
let us evaluate ug, = (ug),:

8” n n n
(2.8)  wuo = <%) = (Zpixi> =Y (), Xi+ Y piXir =
r i=1 - i=1
n 8p n
= Z <pir - 8_’1er) Xi + Z (u; +uoX;) Xir =
i=1

i=1
ap,

n
= n —0X, +Zuixir,

i=1

S

n
where 0 = )
i=1

formula (2.13).
We can now evaluate, using (2.8), the ”surface” second derivatives:

p . n
‘?n’Xi =2 . pandug Y. X;X; = 0 in virtue of the successive
i=1

=5

ap,

Ups = (pr - MOXr)s = DPrs — _nXs - MOer - MOer ==

n
= prs — Uy Xs —0X, X5 + Zuixirxs — uos X — uo Xy

i=1

Therefore:

(2.9) Prs = Ups +uo Xy +0X, X — ZMiXinr + uos X + uo Xy
i=1

The X, satisfy two remarkable relations. Firstly

(2.10) Xrs = Xgr

In fact, recalling Weingarten formulas:

an 1 ax
2.11 —_— == —Dy—, k=1,...,n—1
1D e ; E; oy
(where Dy; = ;2—3"& -n = —g—t’z . g—t” are the coefficients of the second quadratic

form B on 9€2), we get:

n—1 n—1

1 90X, dx; . Z Dy; 0x, 0x,

(212) X5 = (Xr)s = s
= E, 0t ot 1El'Ek dat; 0t

TR=
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which proves (2.10).
The second useful relation involving the X, is:

(213) Xn:erXr = Xn:XsrXr =0,
r=1 r=1

which is obtained by applying the operator §; to the right and left hand of the
n
identity || n||> = > X2 =1.

r=1
Setting, for the sake of brevity:

n
Y= Z pi (P Xk — pucXi) lag,
ik=1

we evaluate ¥ by using relations (2.9), (2.10), (2.13). Firstly, from (2.9) we get:

n

n
Y= Z Di (Mika + MOiX]% - ZMrX]%Xri +uo X Xix —up Xi —
ik=1 =1

n
—upr Xk X; + ZMererXi - MOkaXi),
r=1

i.e., by (2.13) and the relation Y, X? =1

Y = Xn:pi (bu; - n) +Vu - dug — Xn:piurX” —

i=1 ri=l1

But du;, duy are tangent to 9€2, so du; - n =d8ugy - n = 0. Hence, reminding
(2.2), we obtain at last:

(2.14) > = 8ug - Su — Z pitty X i —uOZn:u,, —ugixkk
r=1 k=1

i,r=1

This expresson can be furtherly simplified. Indeed, from (2.12), (2.13),
(2.1) it follows that:

n n—1 n n
1 ox, 1 dx;
(2.15) E piuan'z—E Dy; ——1u ——u; | =
/ —~ E; 3t — Ey 1

i,r=1 Jj.k=1
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! 1 ax 1 ax
Z—Zij —— bu || =—— 0u)=
Ej atj E, 0t

J.k=1
= —B (8u, Su) = — ||6ull* k, (Su),

where B denotes the second fundamental quadratic form on 92 and by k,, (§u)
we mean the normal curvature of <2 along the direction of §u (i.e. the curvature
of the curve obtained intersecting <2 with the plane containing vectors n and
du). Recall that k,, (5u) is related to the principal curvatures Aq, ..., A,_1 of 9Q
at x by Euler’s formula:

kn (Bu) =) i cos’ g,
i=1

where the ¢;’s are the angles between du and the principal directions.

Principal curvatures and principal directions are the eigenvalues and the
eigenvectors, respectively, of the shape operator £ on 0€2, i.e. the linear
symmetric operator on T, (9€2) defined by:

L) -w=B(,w) Vo, weT,(082)

Let us recall that the matrix of £ with respect to the base {a—” dx }

aty’ "t 0t
is, reminding (2.4), | D;;/E; | __, (see [4]). Therefore, using once more
(2.12) and (2.4), we get:

d — Dy [~ 8x; 0x — D
216) Y Xu=— )y —= SRR = oY 2L E =
( ) ; kk Z ElEJ (k_l 8tl~ atj Z ElE/ J =

i, j=1 i,j=1

ij=1,..,

n—1 Djj
=-) —=-trL=—(n-1H,
o Ei

where H is the mean curvature of <2 at x ([4]).
So we have found at last the following formula for X :

(2.17) 2 = 8u - Sug + 118ull® ky (Su) —uo Yty + (n — D ugH

r=1

Let us apply (2.17) to Dirichlet’s and Neumann’s boundary problems. In
Dirichlet’s case (u|3q = 0) functions u;, u;; identically vanish on 9€2, so (2.17)
becomes:

(2.18) Tpir = (n — D ujH,
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a result already found by Talenti ([S]). If 2 is a convex domain, then H < 0 on
0€2, so in this case X p,;, is negative on 02, and hence (1.3) holds true.

In the case of Neumann’s boundary condition (#y = 0), (2.17) becomes:

(2.19) % Newn. = 18ull* ky, (8u)

In this case, too, convexity assumption for 02 implies that X y,,,, < 0 on

the whole boundary, and therefore (1.3) holds true.

(2]

(3]

(4]
(5]

(6]
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