
LE MATEMATICHE
Vol. LIV (1999) � Fasc. I, pp. 99�122

A COVARIANT APPROACH TO SYMMETRIZABLE

AND CONSTRAINED HYPERBOLIC SYSTEMS

SEBASTIANO PENNISI

A hyperbolic system with a convex extension is usually transformed in
the symmetric form by taking the components of the main �eld as independent
variables. However, the symmetric form can be obtained also in the original
independent variables, which may have more physical meaning, by multiply-
ing the system on the left by a suitable matrix P . Here the two methods are
compared, showing also how to �nd the matrix P . The experience gained in
this way, allows us to �nd also a new method to treat the systems with al-
gebraic and differential constraints, without losing manifest covariance. The
particular case of Lagrangian systems is also considered.

1. Introduction.

The problem of symmetrizing hyperbolic differential equations has been
object of much interest in the literature; see, for example, [1]�[5], [10]�
[13], [17], [18], [23], concerning some particular systems of equations of
mathematical physics. The general case has also been considered, but at the
cost of losing manifest covariance or of using independent variables which are
not usually used in Physics; see [12], [13], [14], [15] for a little survey. To
eliminate these drawbacks, we may proceed as follows. Let us consider the
following system of M equations, in the N independent variables UB ,

(1.1) ∂αA
α
A = f A,
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which is equivalent to

(1.2) A
α∂αU = f ,

with

(1.3) A
α
AB =

∂A
α
A

∂UB
.

Let us suppose, �rstly, that M = N . The case M > N will be considered in the
other sections.
System (1.2) is hyperbolic in the time-direction tα (such that tαtα = −1) if and
only if the following two conditions hold
1) Det (Aα

AB tα) �= 0,
2) for any four-vector nα such that nα tα = 0, nαnα = 1, the eigenvalue

problem

(1.4)

N�

B=1

A
α
AB (nα − λtα)δU

B = 0

has real eigenvalues λ and N linearly independent eigenvectors δUB .
Obviously, these conditions are surely satis�ed if thematrices A

α are symmetric
and the matrix A

α tα is positive-de�nite. More generally, they are satis�ed if
two invertible matrices P and Q exist such that PA

αQ are symmetric and
PA

αQtα is positive-de�nite. In fact, in this case we have Det (PA
αQtα) =

(Det P) (Det Aα tα) (Det Q) �= 0 thus assuring condition 1); moreover system
(1.4) can be multiplied on the left by the matrix P and transformed in

(1.5)

N�

B=1

(PA
αQ)AE (nα − λtα)δW

E = 0 ,

with δW E de�ned by δUB = QBEδW E . Obviously, problem (1.5) has real
eigenvalues λ and N linearly independent eigenvectors δW E , then assuring the
same property also for system (1.4). These considerations suggest the following
statement.

Statement 1. System (1.2) is equivalent to a symmetric one, if two invertible
matrices P and Q exist, such that PA

αQ is a symmetric matrix.



A COVARIANT APPROACH TO SYMMETRIZABLE. . . 101

The property of positive-de�niteness of A
α tα will be considered in Theo-

rem 3 below.

Now, if Statement 1 is satis�ed, then also A
αS is symmetric with S =

Q(P−1)T ; in fact, A
αS = P−1

�
PA

αQ
�
(P−1)T holds. This yields the

following theorem.

Theorem 1. System (1.2) is equivalent to a symmetric one, if and only if an
invertible matrix S exists, such that A

αS is a symmetric matrix.

The necessary condition has been already proved above, the suf�cient
condition is obvious, because Statement 1 is a particular case of that in Theorem
1, with Q = S and P = I , the identity matrix.

A more restrictive statement has been usually used in many applications in
literature [11], [12], [3], [23], [25], [10], [17], [18], [1], that is,

Statement 2. System (1.2) is equivalent to a symmetric one, if it takes the
symmetric form with a suitable change of independent variables.

In other words, it is required that the invertible functions UB = UB (W )

exist, such that the matrix

A
α
AB

∂UB

∂W E

is symmetric; the new variables W E are called �main �eld�.

Obviously, this is a particular case of that in Theorem 1, when S is a Jacobian
matrix; moreover, being more restrictive, it may guarantee more analitical
properties. For example, it allows the study of weak solutions, since the original
system of balance laws and the system symmetrized by premultiplication of
some matrix (no longer containing balance laws) are equivalent only under
differentiability conditions.

Starting from Statement 2, Friedrichs and Lax [12] conceived an idea which we
adopt also using the less restrictive statement in Theorem 1 as starting point.
More clearly, if A

αS is symmetric, then (S−1)T (AαS)S−1 = (S−1)T A
α is

symmetric too; therefore, the statement in the following theorem is satis�ed

Theorem 2. System (1.2) is equivalent to a symmetric system if and only if an
invertible matrix B exists, such that BA

α is symmetric.

This result follows from Theorem 1 with B = (S−1)T . Vice versa, if it is
satis�ed, then Statement 1 follows too with P = B , Q = I . This property
is very interesting, because it shows how system (1.2) can be transformed
into symmetric form, no matter how the independent variables are chosen;
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for example, we may choose independent variables which have more physical
meaning than the main �eld. In fact, system (1.2) is equivalent to

BA
α∂αU = B f ,

where BA
α is a symmetric matrix. In Section 2 it is shown how the matrix B

can be determined, when system (1.1) satis�es a supplementary conservation
law. An apparent disadvantage of this technique is that the new system has
not the divergence form; however, it is equivalent to the original system having
the divergence form, because they can be obtained each from the other with a
multiplication on the left by an invertible matrix. Therefore, all the analitical
properties of the original system are preserved; for example, if the original
system satis�es Statement 2, the above mentioned differentiability condition
holds and, consequently, also the new system has the same weak solutions
and schocks. In any case, the original system and the new one have the same
eigenvalues and eigenvectors, which may be more easily found from the system
in the symmetric form.
Another interesting aspect of this methodology is that it can be applied suc-
cesfully to systems with constraints; this subject is well studied in [6], [8] by
Boillat, but only in a non-covariant form, in the presence only of differential
constraints, and by using the main �eld instead of the variables which have
more physical meaning. These drawbacks are eliminated in Section 3 of this
paper; the Lagrangian systems are also considered as an example of physical
application. Moreover, in Section 4, case will be considered which has both dif-
ferential and algebraic constraints. From now on, I shall call �symmetrizable� a
system, which is equivalent to a symmetric system.
Let us now consider system (1.2) where U are the components of the main
�eld. The hyperbolicity of this system, in the time-like direction tα , is easy
to study; for example, it holds if the matrix tαA

α is positive-de�nite, which
fact is equivalent to saying that the quadratic form tαA

α
AB dU AdU B is positive-

de�nite. Now, this quadratic form is equal to tα(dA
α
A)dU A , as can be seen

by use of equation (1.3). Obviously, the positive-de�niteness of this quadratic
form, does not depend on the choice of the independent variables. Therefore the
following theorem holds:

Theorem 3. The System (1.1) is symmetrizable and hyperbolic in the time-
like direction tα , if it is symmetrizable and the quadratic form tα(dA

α
A)dU A

is positive-de�nite.

This property has been already applied to un-constrained systems (see
equation (1.9) of [24]); here I propose to extend it also for constrained systems,
in a way that will be explained more clearly in Sections 3 and 4.
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2. Symmetrization of systems satisfying a supplementary conservation law.

Usually, the symmetrizable and hyperbolic systems (1.1) considered in the
literature are those that satisfy the supplementary condition

(2.1) ∂αh
α = g

for every solution of equations (1.1), where hα , g are functions depending on
the �eld variables.
By applying the results in [11], [12], [16], we know that this condition is
equivalent to assuming the existence of the functions λA , called Lagrange
multipliers, such that

∂αh
α − g − λA

�
∂αA

α
A − fA

�
= 0

holds for every value of the �eld variables; moreover, this last condition is
equivalent to

(2.2) dhα = λAdA
α
A; g = λA fA .

If the quadratic form

(2.3) Q = tαdλAdA
α
A,

is positive-de�nite, with tα satisfying the condition tα t
α = −1, we say that

system (1.1) has a convex extension.
In this case, the functions λA are invertible and we may take them as in-
dependent variables; this idea can be found in [3], [23], [25]. By de�ning
h�α = −hα + λA

A
α
A , from equation (2.2)1 it follows

(2.4) dh�α = A
α
AdλA,

from which

A
α
A =

∂h�α

∂λA
;

therefore, system (1.1) becomes

(2.5)
∂2h�α

∂λA∂λB
∂αλ

B = fA .

Consequently, the variables λB are the components of the main �eld and the
hypothesis of Theorem 3 are satys�ed with U A = λA ; therefore, a system with
a convex extension is symmetrizable and hyperbolic.
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Vice versa, if system (1.1) is symmetrizable and hyperbolic, from Statement 1
we have that it becomes symmetric when the components U A of the main �eld
are taken as independent variables; in other words, system (1.1) becomes

∂A
α
A

∂UB
∂αU

B = fA with
∂A

α
A

∂UB
=

∂A
α
B

∂U A
.

Now, this symmetry condition is the integrability condition of the problem

(2.6)
∂h�α

∂UA
= A

α
A,

in the unknown function h�α .
Therefore, a function h�α exists, such that (2.6) is satis�ed, which is equivalent
to

dh�α = A
α
A dU A.

This relation becomes dhα = U AdA
α
A , if we de�ne

hα = −h�α + A
α
AU

A .
In other words, condition (2.1) is satis�ed with

g = U A fA and U A = λA.

From the hyperbolicity of system (1.1), and from Theorem 3, it follows also that
quadratic form (2.3) is positive-de�nite.
Therefore, it has been proved that a system is symmetrizable and hyperbolic, if
and only if it has a convex extension.
If system (1.1) satis�es this condition, it becomes symmetric when the compo-
nents of the main �eld are taken as independent variables; from Theorem 2, it
becomes symmetric also in the original independent variables, if we multiply it
on the left by a suitable invertible matrix B. Now we can prove that this matrix
B is

∂λA

∂UC
;

in other words, system (1.1) can be substituted by

(2.7)
∂λA

∂UC

∂A
α
A

∂UB
∂αU

B =
∂λA

∂UC
fA ,

and we can prove that the matrix

∂λA

∂UC

∂A
α
A

∂UB
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is symmetric. In fact, from equation (2.4) we have

∂h�α

∂UC
= A

α
A

∂λA

∂UC
,

from which follows

∂λA

∂UC

∂A
α
A

∂UB
=

∂2h�α

∂UC∂UB
− A

α
A

∂2λA

∂UC∂UB
.

It remains to prove the hyperbolicity of system (2.7), i.e. that the quadratic form

tα
∂λA

∂UC

∂A
α
A

∂UB
dUC dU B

is positive-de�nite. Now this quadratic form is exactly that in equation (2.3);
therefore, it is positive-de�nite.
To have a better understanding of these arguments, let us apply them to an easy
example of physical application, i.e. the equation of Eulerian �uid dynamics. In
this case, system (1.1) is

∂αV
α = 0,(2.8)

∂α

�
(E + P)uα uβ + P gαβ

�
= 0,

with n = (−Vα V α)1/2, uα = n−1 V α .
Here E is the total energy density, P the pressure, n the number particle density,
uα the 4-velocity of the �uid; these variables are such that the Gibbs relation
holds

1

n
dE + (E + P) d

�
1

n

�

= T dS,

where S is the entropy density and T the temperature.
System (2.8) has a convex extension with

hα = −nSuα , λA ≡

�
E + P

nT
− S ,

uα

T

�

.

If we take T and V β as independent variables, from the Gibbs relation we obtain

ET =
∂E

∂T
= nT

∂S

∂T
, En =

∂E

∂n
=

E + P

n
+ nT

∂S

∂n
,
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whose integrability condition is

En =
E + P

n
−

T PT

n
.

By use of this relation, we see that the system (2.8) in the form (2.7) reads

ET

T 2
uα∂αT +

PT

nT
hα

β∂αV
β = 0,(2.9)

PT

nT
hα

γ ∂αT +
1

n2T

�
(E + P)uαhγβ − nPn

�
2gα

(γuβ) + uαuγ uβ

��
∂αV

β = 0,

where hα
β = gα

β + uαuβ .
System (2.9) is manifestly symmetric and hyperbolic.
Similarly, if we take P and V β as independent variables, the Gibbs relation
implies that

SP =
1

nT
EP; Sn =

1

nT
En −

E + P

n2T
,

from which it follows

−
1

nT 2
EPTn = −

1

nT 2
EnTP −

1

n2T
+

E + P

n2T 2
TP;

consequently, system (2.8) in the form (2.7) reads

1

T 2
TPEPu

α∂α P +

�
1

nT
hα

β −
1

T 2
TnEPu

αuβ

�

∂αV
β = 0,(2.10)

�
1

nT
hα

γ −
1

T 2
TnEPu

αuγ

�

∂αP+

+

�
E + P

n2T
hβγ +

Tn

T 2

�

En −
E + P

n

�

uβuγ

�

uα∂αV
β = 0,

which is symmetric hyperbolic.
At last, if we take E and V β as independent variables, we have

SE =
1

nT
, Sn = −

E + P

n2T
,

from which

Tn =
T

n
PE −

E + P

n
TE.
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System (2.8) in the form (2.7) reads

TE

T 2
uα∂αP +

�
PE

nT
gα

β + TE
E + P

nT 2
uαuβ

�

∂αV
β = 0,(2.11)

�
PE

nT
gα

γ + TE
E + P

nT 2
uαuγ

�

∂αP+

+

�

−2
Pn

nT
u(γ h

α
β) +

E + P

n2T
hγβu

α +

�
Pn

nT
− Tn

E + P

nT 2

�

uγ uβu
α

�

∂αV
β = 0;

It is again symmetric hyperbolic.
In the next section, this method will be applied succesfully to systems with
differential constraints, with an application to the Lagrangian systems.
Before concluding this section, I want to observe that the condition of positive-
de�niteness on the quadratic form (2.3) is particularly signi�cant, when tα is
�eld-independent and system (1.1) has no differential constraints. In fact, in
this case, this condition implies that tαA

α
A = VA are invertible functions of UA ;

taking them as independent variables, from equation (2.2)1 it follows

λA =
∂(tαh

α)

∂VA
.

Consequently, the quadratic form (2.3) becomes

∂2(hα tα)

∂VA∂VB
dVB dVA.

From this fact, we see that the quadratic form (2.3) is positive-de�nite if and
only if hα tα is a convex function of the variables VA . Now, in many physical
problem, hα tα is the entropy density; therefore, the condition on the quadratic
form (2.3) to be positive-de�nitemay be called �convexity of the entropy density
with respect to the variables tαA

α
A�. Obviously, this is equivalent to saying that

the function h�α tα is a convex function of the variables λA .

3. Symmetrization of systems with differential constraints, endowed with
a convex extension.

Let us consider system (1.1), but in the case M > N ; obviously, M − N
rows of the matrix tαA

α
AB are linear combinations of the others; therefore, the

corresponding M − N equations of system (1.1) can be substituted by M − N
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different equations, where no derivative with respect to time appears, in the
time-like direction tα . Then we say that system (1.1) has M − N differential
constraints. We say that system (1.1), with differential constraints, is endowed
with a convex extension, if the following conditions are satis�ed
1) the functions hα , λA exist, such that equation (2.2)1 is satis�ed;
2) the quadratic form tαdλAdA

α
A is positive-de�nite.

Obviously, these conditions are equivalent to assuming that the supplementary
equation (2.1) holds for every solution of system (1.1), with g given by equation
(2.2)2.
But, unlike the case considered in Section 2, now the functions λA are not
invertible. In any case, however, the rectangular matrix ∂λA

∂UC has rank N ,
because tαdλAdA

α
A is positive-de�nite.

Consequently, we can multiply system (1.1) by this matrix, obtaining again
system (2.7) of N equations, in the N unknowns UB . As before, we can prove
that the matrix

∂λA

∂UC

∂A
α
A

∂UB

is symmetric, and that the matrix

tα
∂λA

∂UC

∂A
α
A

∂UB

is positive-de�nite; therefore system (2.7) is symmetric and hyperbolic.
Now system (1.1) is equivalent to system (2.7) and to N − M non evolutive
equations; these last ones may be imposed on the initial manifold and, after that,
omitted because they will be automatically satis�ed as consequence of system
(2.7) and of such initial conditions.
Let us consider now an example of physical application, the Lagrangian sys-
tems. They are described by equations such as

(3.1) ∂α

∂L

∂qh
α

=
∂L

∂qh
,

in the p unknowns qh , and with qh
α = ∂αq

h .
The problem of studying system (3.1) as a system compatible with a supple-
mentary conservation law, was developed by Boillat [4]�[8], in non-covariant
formulation and, later, by Strumia [27] in covariant form and with constrained
equations. This last author writes the Euler-Lagrange equations (3.1) as

(3.2) ∂α

∂L

∂qh
α

=
∂L

∂qh
, ∂αq

h = qh
α, ∂αq

h
β − ∂βq

h
α = 0,



A COVARIANT APPROACH TO SYMMETRIZABLE. . . 109

in the 5p independent variables qh, qh
α .

System (3.2) is compatible with a supplementary conservation law, with

hα =
∂L

∂qh
α

q
β

h tβ − Ltα, g = 0,

while the Lagrange multipliers are

λA ≡

�

qh
β t

β, −
∂L

∂qh
tα,

∂L

∂qh
[β

tα]

�

.

Strumia [27] transforms system (3.2) into a symmetric one, by taking λA as
variables; these Lagrange multipliers are also constrained variables. The method
of the present paper allows us to transform system (3.2) into a symmetric one
also with qh, qh

α as independent variables; these variables are not constrained.
The transformed system (2.7), for this case, is given by

�

∂α

∂L

∂qh
α

−
∂L

∂qh

� ∂
�
qh

β t
β
�

∂UC
−

�
∂αq

h − qh
α

� ∂

∂UC

�
∂L

∂qh
tα

�

+

+
�
∂αq

h
β − ∂βq

h
α

� ∂

∂UC

�
∂L

∂qh
[β

tα]

�

= 0,

that is,

−tα
�
∂αq

h − qh
α

� ∂2
L

∂qh∂qk
+ tβ

�
∂αq

h
β − ∂βq

h
α

� ∂2
L

∂qh
α∂qk

= 0,

�

∂α

∂L

∂qk
α

−
∂L

∂qk

�

t δ − tα
�
∂αq

h − qh
α

� ∂2
L

∂qh∂qk
δ

+

+tβ
�
∂αq

h
β − ∂βq

h
α

� ∂2
L

∂qh
α∂qk

δ

= 0,

which can be expressed as

Aα
kl ∂αq

l + Bα
klγ ∂αq

lγ = −tαqh
α

∂2
L

∂qh∂qk
,(3.3)

Bα
lkδ ∂αq

l + Cα
kδlγ ∂αq

lγ =
∂L

∂qk
t δ − tαqh

α

∂2
L

∂qh∂qk
δ

,
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where

Aα
kl = Aα

lk = −tα
∂2

L

∂ql∂qk
, Bα

klγ = tγ
∂2

L

∂ql
α∂q

k
− tα

∂2
L

∂qlγ ∂qk
,

Cα
kδlγ = Cα

lγ kδ = tδ
∂2

L

∂qk
α∂q

lγ
+ tγ

∂2
L

∂ql
α∂q

kδ
− tα

∂2
L

∂qlγ ∂qkδ
.

System (3.3) is manifestly symmetric.
It is also hyperbolic, if quadratic form (2.3) is positive-de�nite, a requirement
corresponding to the convexity of the entropy density, which is assumed by
Boillat and Strumia. In our case, quadratic form (2.3) becomes

Q = tαdq
k
�
Aα

kl dq
l + Bα

klγ dqlγ
�
+ tαdq

kδ
�
Bα

lkδdq
l + Cα

kδlγ dqlγ
�

=

=
∂2

L

∂ql∂qk
dqldqk + 2

�

tγ t
α ∂2

L

∂qlα∂qk
+

∂2
L

∂qlγ ∂qk

�

dqkdqlγ +

+

�
∂2

L

∂qlγ ∂qkδ
+ tαtδ

∂2
L

∂qkα∂qlγ
+ tαtγ

∂2
L

∂qlα∂qkδ

�

dqkδdqlγ =

= −
∂2

L

∂ql0∂qk0
dql0dqk0 +

∂2
L

∂qki∂qlj
dqki dqlj +

+ 2
∂2

L

∂qk∂qlj
dqkdqlj +

∂2
L

∂ql∂qk
dqldqk =

=
∂2

L

∂ql0∂qk0
dql0dqk0 + dqlj d

�
∂L

∂qlj

�

+ dqkd

�
∂L

∂qk

�

.

In the next section, the case of systems with algebraic constraints will be
considered.

4. Symmetrization of systems with differential and algebraic constraints.

Let us consider system (1.1) with the �eld variables constrained by n
functionally independent algebraic relation

(4.1) �I (U
B ) = 0, with I = 1, · · · , n.

Moreover, we consider the case n < N , M ≥ N − n. From equation (4.1) we
can obtain N − n variables, as functions of the remaining ones; more generally,
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there are different possibilities of choosing N − n independent parameters qh ,
such that

(4.2) UB = UB(qh)

is a solution of equation (4.1), identical with respect to qh .
We consider the case where the functions hα(UB), λA(UB) exist, such that
equation (2.7)1 holds, and the quadratic form tαdλAdA

α
A is positive-de�nite,

for every choice of the parametrical representation (4.2).
Also in this case, Strumia [26] says that the constrained system (1.1) is endowed
with a convex extension. Strumia proves also that this system assumes the
symmetric form, if the Lagrange multipliers λA are taken as new variables,
which are also algebraically constrained. But the matrix of the coef�cients
of ∂αλA is singular; consequently, so as to obtain the eigenvectors, we have
to consider n different equations, which are the differentials of the algebraic
constraints on λA . In this way we obtain a set of N + n equations (Strumia
considers the case M = N ) in the N unknowns dλA ; consequently, the
symmetric form is lost. This obstacle can be overcome, as will be shown below.
But the main interest of this paper is to obtain the symmetric hyperbolic form
also in the original variables UB ; there are two possible approaches to obtain
this result.
The �rst one is that of choosing one of the parametrical representations (4.2) and
to proceed with the unconstrained variables qh as in Section 3. Unfortunately,
in this way, the originally covariant form may be lost.
The second approach is the following one.
Let us consider the n linearly independent equations

(4.3)
∂�I

∂UB
X B = 0,

in the N unknowns X B . System (4.3) is expressed in covariant form, so that
its general solution is a covariant linear function of p parameters YC , i.e.
X B = X B(YC). Obviously p ≥ N − n; if I request p = N − n, the covariant
form may be lost. The matrix

X B
C =

∂X B

∂YC

has rank N − n and is such that

(4.4)
∂�I

∂UB
X B

C = 0,
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for every I = 1, · · · , n;C = 1, · · · , p.

Let us multiply system (1.1) by X B
C

∂λA

∂UB , obtaining the new system

(4.5) X B
C

∂λA

∂UB
∂αA

α
A = X B

C

∂λA

∂UB
fA = SC ,

in the N variables UB constrained by (4.1).
We can now prove that
i) system (4.5) is symmetrizable and hyperbolic;
ii) the eigenvalues λ associated to system (4.5) can be expressed in covariant

form; in particular, they are the solutions of the equation

(4.6) SN−n

�

(nα − λtα) X B
C

∂λA

∂UB

∂A
α
A

∂UB�
X B�

C�

�

= 0,

where Si(M) denotes the orthogonal invariant of order i , of the matrix M;
iii) a set of N−n linearly independent eigenvectors, associated to system (4.5),

can be obtained and expressed in covariant form.
On i).
To prove this �rst property, it is not necessary to worry about the covariant form.
Then, let UB (qh) be a parametrical representation of the solutions of equation
(4.1); consequently, we have

∂�I

∂UB

∂UB

∂qh
= 0, i.e.

∂UB

∂qh

is a solution of system (4.3) whose set of solutions has the generators X B
C .

Therefore LC
h exist such that

∂UB

∂qh
= LC

h X B
C .

By multiplying system (4.5) by LC
h we obtain

(4.7)
∂UB

∂qh

∂λA

∂UB
∂αA

α
A =

∂UB

∂qh

∂λA

∂UB
fA .

This new system is equivalent to (4.5); in fact, ∂UB

∂qh is also a set of generators of
the solutions of equation (4.3), even if they are not expressed in covariant form.
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Therefore L
h
C exists such that X B

C = L
h
C

∂UB

∂qh ; by multiplying system (4.7) by

L
h
C , we obtain system (4.5).

Now system (4.7) is
∂λA

∂qh
∂αA

α
A =

∂λA

∂qh
fA ,

which is symmetric and hyperbolic, because it is the same system obtained, with
the �rst approach, in the unconstrained variables qh .
On ii).
The eigenvalues λ and eigenvectors dU B , associated to system (4.5) are the
solutions of

(nα − λtα) X B
C

∂λA

∂UB

∂A
α
A

∂UB�
dU B�

= 0,(4.8)

∂�I

∂UB�
dU B�

= 0.

From equation (4.8)2 we obtain

(4.9) dU B�

= X B�

C�dYC�

,

and (4.8)1 becomes

(4.10) (nα − λtα) X B
C

∂λA

∂UB

∂A
α
A

∂UB�
X B�

C� dYC�

= 0,

i.e.

(4.11) (BCC� − λACC� ) dYC�

= 0,

with

(4.12) BCC� = nαX
B
C

∂λA

∂UB

∂A
α
A

∂UB�
X B�

C� ; ACC� = tαX
B
C

∂λA

∂UB

∂A
α
A

∂UB�
X B�

C� .

We notice that BCC� and ACC� are symmetric matrices, as will be proved in the
appendix.
It is true that the following passages will not be expressed in covariant form, but
the important thing is that the �nal result will satisfy this requirement.
Let W N−n+1, · · · ,W N be n orthonormal solutions of

(4.13) X B�

C� WC�

= 0.
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We have that BCC� WC�

N−n+i = 0, ACC� WC�

N−n+i = 0. Moreover ACC� has
rank N − n, because condition i) is satis�ed. Let us consider a set of N
orthonormal eigenvectors of the matrix A, with respect to the identical matrix
I, with W N−n+1, · · · ,W N as last elements; let us consider the matrix P which
has these eigenvectors as columns. Let us change the variables by means of

(4.14) dYC�

= P
C�

D�dZ D�

,

and multiply equation (4.11) by P
C
D ; it becomes

(4.15)
�
P

C
DBCC� P

C�

D� − λ P
C
DACC� P

C�

D�

�
dZC�

= 0.

Now,

P
C
DBCC� P

C�

D� =

�
�
�
�

B∗ 0N−n,n

0n,N−n 0n,n

�
�
�
�

P
C
DACC� P

C�

D� =

�
�
�
�

A∗ 0N−n,n

0n,N−n 0n,n

�
�
�
�

with B∗ , A∗ symmetric (N − n) × (N − n) matrices.
If the �rst N − n components of dZC�

are zero, then equation (4.14) yields
that dYC�

is a linear combination of W N−n+1 , · · · ,W N ; after that, by (4.9) and
(4.11) we obtain dY B�

= 0, which is not acceptable as eigenvector. Therefore
we look for solutions of the system (4.15), with dZC�

having at least a non-zero
component between the �rst N − n ones.
This fact shows that the eigenvalues λ are the solutions of |B∗ − λA∗| = 0,
which can be expressed as

SN−n

�
P

C
DBCC� P

C�

D� − λ P
C
DACC� P

C�

D�

�
= 0.

But Si(M) = Si

�
P

−1
MP

�
, because the characteristic equations of M and of

P
−1

MP are the same. Therefore (4.16) is equal to SN−n (BCC� − λ ACC� ) =

0, from which equation (4.6) follows. We notice also, that equation (4.6) is
expressed in covariant form, because its �rst member is an orthogonal invariant
of a covariant matrix.
On iii).
The existence of N − n linearly independent eigenvectors, is a consequence
of property i); they can be expressed in covariant form because they are the
solutions of the system (4.8), which satis�es this property.

NOTE: System (4.5) is not symmetric, even if it is symmetrizable. However, the
symmetry property is useful to study the eigenvalues and eigenvectors, i.e. to
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solve the system (4.8), which is equivalent to (4.9) and (4.11); this last system
is expressed in symmetric form, so that we can consider this result as very
satisfactory.
To see better how this method works, let us consider two simple examples of
physical applications.

4.1. The equations of �uiddynamics.

Let us consider again the equations

∂α(nuα) = 0,(4.17)

∂α

�
(E + P)uα uβ + P gαβ

�
= 0,

but in the six variables n, T , uα constrained by uαuα = −1. System (4.3)
becomes

0 · X � = 0, 0 · X �� = 0, 2uαX
α = 0,

which has the solution Xα = hα
γ Y

γ ; consequently, the matrix X B
C is

�
�
�
�
�

1 0 0β

0 1 0β

0γ 0γ hα
γ ,

�
�
�
�
�

and system (4.5) reads

(4.18)

Pn

nT
uα∂αn +

Pn

T
hα

β∂αu
β = 0,

ET

T 2
uα∂αT +

PT

T
hα

β∂αu
β = 0,

Pn

T
hα

γ ∂αn +
PT

T
hα

γ ∂αT +
E + P

T
hγβu

α∂αu
β = 0.

The corresponding equation (4.6) is

(E + P)2

nT 6
Pn (φαu

α)
3
�
(E + P)ET (φαu

α)
2
−(4.19)

− hαβφαφβ

�
nPnET + T (PT )2

� �
= 0,

where φα = nα − λ tα .
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4.2. The equations of magneto�uiddynamics.

In this case system (1.1) is given by the nine equations

(4.20)

∂α(nuα) = 0,

∂α

�
(E + P + b2)uαuβ + (P + b2)gαβ − bαbβ

�
= 0,

∂α(uαbβ − bαuβ) = 0.

for the determination of the ten variables n, T , uα, bα (related to the magnetic
�eld), constrained by

uαu
α = −1, uαb

α = 0.

The Lagrange multipliers are

λA ≡

�
E + P

nT
− S ,

uβ

T
,

bβ

T

�

.

System (4.3) becomes

2uδ X
δ = 0, bδX

δ + uδx
δ = 0,

which has the solution

X δ = hδ
γ Y

γ , x δ = bγY
γ uδ + hδ

γ yγ ;

consequently, the matrix X B
C is

�
�
�
�
�
�
�

1 0 0β 0β

0 1 0β 0β

0γ 0γ hδγ uδbγ

0γ 0γ uγ bδ hδγ

�
�
�
�
�
�
�

;

System (4.5) is given by

∂λA

∂UB
∂αA

α
A =

∂λA

∂UB
fA ,

premultiplied by the transposite of this matrix X B
C , i.e.

(4.21)

Pn

nT
uα∂αn +

Pn

T
gα

β∂αu
β = 0,

ET

T 2
uα∂αT +

PT

T
gα

β∂αu
β = 0,

Pn

T
hα

γ ∂αn +
PT

T
hα

γ ∂αT +
1

T
Eα

γβ∂αu
β +

1

T
Cα

γβ ∂αb
β = 0,

1

T
Dα

γβ∂αu
β +

1

T
hγβu

α∂αb
β = 0,
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with

Eα
γβ = (E + P + b2)hγβu

α − bγ b
αuβ,

Cα
γβ = hα

γ bβ − bαhγβ + uαbγ uβ , Dα
γβ = bγ g

α
β − hγβb

α.

System (4.21) is not symmetric, but the corresponding eigenvectors are the
solutions of

Pn

nT
uαφαdn +

Pn

T
gα

βφαdu
β = 0,

ET

T 2
uαφαdT +

PT

T
gα

βφαdu
β = 0,

Pn

T
hα

γ φαdn +
PT

T
hα

γ φαdT +
1

T
Eα

γβφαdu
β +

1

T
Cα

γβφαdb
β = 0,

1

T
Dα

γβφαdu
β + 1

T
hγβu

αφαdb
β = 0,

uβdu
β = 0, uβdb

β + bβdu
β = 0.

These last two equations give

duβ = hβ
γ Y

γ , dbβ = bγY
γ uβ + hβ

γ yγ

in the new unknowns Y γ , yγ ; by substituting these relations in the other
equations, they become

Pn

nT
uαφαdn +

Pn

T
hα

δ φαY
δ = 0,

ET

T 2
uαφαdT +

PT

T
hα

δ φαY
δ = 0,

Pn

T
hα

γ φαdn +
PT

T
hα

γ φαdT +
1

T
Fγ δφαu

αY δ +
1

T
Gγ δ y

δ = 0,

1

T
GδγY

δ +
1

T
hγ δu

αφα yδ = 0,

with

Fγ δ = (E + P + b2)hγ δ − bγ bδ, Gγ δ = φα

�
hα

γ bδ − bαhγ δ

�
,

so that the above system is a symmetric one. The matrix of the coef�cients has
rank 8; by calculating its S8, we obtain that equation (4.6) for this case reads,

(4.22)
Pn

n
T −9ETa

2AN4 = 0,
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with

a = φαu
α, A = (E + P + b2)(φαu

α)2 − (φαb
α)2,

N4 = (E + P)

�

E + P − nPn −
T (PT )2

ET

�

(φαu
α)4 −

− (E + P)

�

nPn +
T (PT )2

ET

+ b2

�

(φαu
α)2φβφβ +

+

�

nPn +
T (PT )2

ET

�

(φαb
α)2φβφβ .

Obviously, this method can be applied also to the symmetric system obtained by
Strumia [27], for Lagrangian systems; in fact, he obtains this system by taking
the Lagrange multipliers as constrained variables. However, I do not exploit this
problem further in detail, because the results will not be more signi�cative than
those in Section 3.
For the sake of completeness, I recall that a different approach to constrained
systems is that of considering an extended set of �eld equations and of indepen-
dent variables; I conceived this method applying it in some physical problems
[19], [20]. Boillat [9] has shown how this approach can be used for all systems,
which have only differential constraints that are linear functions of the indepen-
dent variables; the systems considered by Boillat are not expressed in covariant
form. Later, I have eliminated the hypothesis of linearity [21]. The problem
with algebraic constraints and expressed in covariant form is exhausted in the
present paper. The case where a convex extension is not present, has already
been treated in [22].

A. Appendix. On the symmetry of the matrices ACC� and BCC� .

In Section 4, systems (1.1) have been considered, which are endowed with
a convex extension (2.2)1 and present both differential and algebraic constraints
(4.1). Now, from equation (4.1) we can obtain N − n of the variables UB

as functions of the remaining ones; by changing the names of these variables,
we can obtain Un+1, · · · ,UN as functions of U 1, · · · ,Un . After that equation
(2.2)1 gives

(A.1)
∂hα

∂Ui
− λA ∂A

α
A

∂Ui
+

N�

j=n+1

�
∂hα

∂U j
− λA ∂A

α
A

∂U j

�
∂U j

∂Ui
= 0,
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with i = 1, · · · , n. From equation (4.1) we have also

(A.2)
∂�I

∂Ui
+

N�

j=n+1

∂�I

∂U j

∂U j

∂Ui
= 0.

Let
�
�PkI

�
� be the inverse matrix of

�
� ∂�I

∂U j

�
� , so that

(A.3) PkI ∂�I

∂U j
= δk

j .

From equation (A.2) we obtain

(A.4)
∂U j

∂Ui
= −P j I ∂�I

∂Ui
.

Let us de�ne ω Iα as

(A.5) ω Iα =

N�

j=n+1

�
∂hα

∂U j
− λA ∂A

α
A

∂U j

�

P j I .

After that, equation (A.1) becomes

(A.6)
∂hα

∂Ui
− λA ∂A

α
A

∂Ui
− ω Iα ∂�I

∂Ui
= 0 for i = 1, · · · , n.

Now, if i > n, from (A.3) we have

ω Iα ∂�I

∂Ui
=

∂hα

∂Ui
− λA ∂A

α
A

∂Ui
;

consequently, equation (A.6) holds also for i > n.
This equation can be considered as a system of 4N equations for the determi-
nation of the 4n unknowns ω Iα . We have just proved that this system has a
solution; it is also expressed in covariant form, because this property is satis�ed
by system (A.6).
Let us consider equation (A.6), written with i = B �, and let us take its derivative
with respect to UB ; we obtain

∂λA

∂UB

∂A
α
A

∂UB�
=

∂2hα

∂UB ∂UB�
− λA ∂2

A
α
A

∂UB ∂UB�
−

− ω Iα ∂2�I

∂UB ∂UB�
−

∂ω Iα

∂UB

∂�I

∂UB�
;
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consequently, we have that

X B
C

∂λA

∂UB

∂A
α
A

∂UB�
X B�

C�

is symmetric , because
∂�I

∂UB�
X B�

C� = 0.

From this result, it follows that the matrices ACC� and BCC� in equation (4.12),
are also symmetric.
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super�uidité de l�helium II. Dynamique des milieux polyphasés. Dynamique du
milieu continu, Novossibirsk, 68:13, (1984).

[3] G. Boillat, Sur l�existence et la recherche déquation de conservation supplémen-
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