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A COVARIANT APPROACH TO SYMMETRIZABLE
AND CONSTRAINED HYPERBOLIC SYSTEMS

SEBASTIANO PENNISI

A hyperbolic system with a convex extension is usually transformed in
the symmetric form by taking the components of the main field as independent
variables. However, the symmetric form can be obtained also in the original
independent variables, which may have more physical meaning, by multiply-
ing the system on the left by a suitable matrix P. Here the two methods are
compared, showing also how to find the matrix P. The experience gained in
this way, allows us to find also a new method to treat the systems with al-
gebraic and differential constraints, without losing manifest covariance. The
particular case of Lagrangian systems is also considered.

1. Introduction.

The problem of symmetrizing hyperbolic differential equations has been
object of much interest in the literature; see, for example, [1]-[5], [10]-
[13], [17], [18], [23], concerning some particular systems of equations of
mathematical physics. The general case has also been considered, but at the
cost of losing manifest covariance or of using independent variables which are
not usually used in Physics; see [12], [13], [14], [15] for a little survey. To
eliminate these drawbacks, we may proceed as follows. Let us consider the
following system of M equations, in the N independent variables U2,

(1.1) o AL = fa,
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which is equivalent to

(1.2) A%, U = f,
with

9 A
(1.3) A%, = w—g

Let us suppose, firstly, that M = N. The case M > N will be considered in the
other sections.
System (1.2) is hyperbolic in the time-direction t* (such that t*f, = —1) if and
only if the following two conditions hold
1) Det (ASzty) #O0,
2) for any four-vector n* such that n“t, = 0, n*n, = 1, the eigenvalue
problem

N
(1.4) > Al (ng — A)SU® =0
B=1

has real eigenvalues A and N linearly independent eigenvectors §U 2.

Obviously, these conditions are surely satisfied if the matrices A% are symmetric
and the matrix A%f, is positive-definite. More generally, they are satisfied if
two invertible matrices P and Q exist such that PA*Q are symmetric and
P A% Q1t, is positive-definite. In fact, in this case we have Det (PA*Qt,) =
(Det P) (Det A%t,) (Det Q) # 0 thus assuring condition 1); moreover system
(1.4) can be multiplied on the left by the matrix P and transformed in

N
(1.5) D (PAYQ) 4 (g — 11a)SWE =0,

B=1

with sWE defined by §Uz = QprSWE. Obviously, problem (1.5) has real
eigenvalues A and N linearly independent eigenvectors § W £, then assuring the
same property also for system (1.4). These considerations suggest the following
statement.

Statement 1. System (1.2) is equivalent to a symmetric one, if two invertible
matrices P and Q exist, such that P A* Q is a symmetric matrix.
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The property of positive-definiteness of A%z, will be considered in Theo-
rem 3 below.

Now, if Statement 1 is satisfied, then also A*S is symmetric with S =
Q(P™HT; in fact, A*S = P~'(PA*Q)(P™")" holds. This yields the
following theorem.

Theorem 1. System (1.2) is equivalent to a symmetric one, if and only if an
invertible matrix S exists, such that A“S is a symmetric matrix.

The necessary condition has been already proved above, the sufficient
condition is obvious, because Statement 1 is a particular case of that in Theorem
1, with O = S and P = I, the identity matrix.

A more restrictive statement has been usually used in many applications in
literature [11], [12], [3], [23], [25], [10], [17], [18], [1], that is,

Statement 2. System (1.2) is equivalent to a symmetric one, if it takes the
symmetric form with a suitable change of independent variables.

In other words, it is required that the invertible functions U2 = UZ (W)
exist, such that the matrix

aUB

o

AB BWE

is symmetric; the new variables W are called “main field”.

Obviously, this is a particular case of that in Theorem 1, when § is a Jacobian
matrix; moreover, being more restrictive, it may guarantee more analitical
properties. For example, it allows the study of weak solutions, since the original
system of balance laws and the system symmetrized by premultiplication of
some matrix (no longer containing balance laws) are equivalent only under
differentiability conditions.

Starting from Statement 2, Friedrichs and Lax [12] conceived an idea which we
adopt also using the less restrictive statement in Theorem 1 as starting point.
More clearly, if A%S is symmetric, then (S~ )7 (A*S)S™! = (S™HTA” is
symmetric too; therefore, the statement in the following theorem is satisfied

Theorem 2. System (1.2) is equivalent to a symmetric system if and only if an
invertible matrix B exists, such that BA® is symmetric.

This result follows from Theorem 1 with B = (S~)T. Vice versa, if it is
satisfied, then Statement 1 follows too with P = B, Q = [. This property
is very interesting, because it shows how system (1.2) can be transformed
into symmetric form, no matter how the independent variables are chosen;
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for example, we may choose independent variables which have more physical
meaning than the main field. In fact, system (1.2) is equivalent to

BA“3,U = B f,

where BA“ is a symmetric matrix. In Section 2 it is shown how the matrix B
can be determined, when system (1.1) satisfies a supplementary conservation
law. An apparent disadvantage of this technique is that the new system has
not the divergence form; however, it is equivalent to the original system having
the divergence form, because they can be obtained each from the other with a
multiplication on the left by an invertible matrix. Therefore, all the analitical
properties of the original system are preserved; for example, if the original
system satisfies Statement 2, the above mentioned differentiability condition
holds and, consequently, also the new system has the same weak solutions
and schocks. In any case, the original system and the new one have the same
eigenvalues and eigenvectors, which may be more easily found from the system
in the symmetric form.

Another interesting aspect of this methodology is that it can be applied suc-
cesfully to systems with constraints; this subject is well studied in [6], [8] by
Boillat, but only in a non-covariant form, in the presence only of differential
constraints, and by using the main field instead of the variables which have
more physical meaning. These drawbacks are eliminated in Section 3 of this
paper; the Lagrangian systems are also considered as an example of physical
application. Moreover, in Section 4, case will be considered which has both dif-
ferential and algebraic constraints. From now on, I shall call “symmetrizable” a
system, which is equivalent to a symmetric system.

Let us now consider system (1.2) where U are the components of the main
field. The hyperbolicity of this system, in the time-like direction z,, is easy
to study; for example, it holds if the matrix z,A% is positive-definite, which
fact is equivalent to saying that the quadratic form #, 4% ,dU*dU?® is positive-
definite. Now, this quadratic form is equal to #,(dA%)dU A as can be seen
by use of equation (1.3). Obviously, the positive-definiteness of this quadratic
form, does not depend on the choice of the independent variables. Therefore the
following theorem holds:

Theorem 3. The System (1.1) is symmetrizable and hyperbolic in the time-
like direction ty, if it is symmetrizable and the quadratic form t,(d A%)dU*
is positive-definite.

This property has been already applied to un-constrained systems (see
equation (1.9) of [24]); here I propose to extend it also for constrained systems,
in a way that will be explained more clearly in Sections 3 and 4.
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2. Symmetrization of systems satisfying a supplementary conservation law.

Usually, the symmetrizable and hyperbolic systems (1.1) considered in the
literature are those that satisfy the supplementary condition

2.1 dh" =g

for every solution of equations (1.1), where A%, g are functions depending on
the field variables.

By applying the results in [11], [12], [16], we know that this condition is
equivalent to assuming the existence of the functions A4, called Lagrange
multipliers, such that

deh® — g — A (3 A% — f4) =0

holds for every value of the field variables; moreover, this last condition is
equivalent to

(2.2) dh® = A*dA%; g = A fa.

If the quadratic form

2.3) Q = t,dA d A%,

is positive-definite, with #, satisfying the condition #,* = —1, we say that

system (1.1) has a convex extension.

In this case, the functions A? are invertible and we may take them as in-
dependent variables; this idea can be found in [3], [23], [25]. By defining
h'* = —h* + A4 A%, from equation (2.2); it follows

(2.4) dh'™ = A%d)*,
from which
N ah/(x )
A7 9aa’

therefore, system (1.1) becomes

82h/a
OLAONB

(2.5) 0 AE = fa.

Consequently, the variables A2 are the components of the main field and the
hypothesis of Theorem 3 are satysfied with U4 = A4; therefore, a system with
a convex extension is symmetrizable and hyperbolic.
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Vice versa, if system (1.1) is symmetrizable and hyperbolic, from Statement 1
we have that it becomes symmetric when the components U# of the main field
are taken as independent variables; in other words, system (1.1) becomes

AL _ OAG
oUB ~ dUA

UB = fy  with

Now, this symmetry condition is the integrability condition of the problem

8h/(¥
2.6 — = A%,
(2.6) oU, A
in the unknown function 4'*.
Therefore, a function 4'* exists, such that (2.6) is satisfied, which is equivalent
to
dh'™ = A% dUA.

This relation becomes dh® = UAd A%, if we define
h* = —h" + ASU™.
In other words, condition (2.1) is satisfied with

g=U"f4 and UA =2

From the hyperbolicity of system (1.1), and from Theorem 3, it follows also that
quadratic form (2.3) is positive-definite.

Therefore, it has been proved that a system is symmetrizable and hyperbolic, if
and only if it has a convex extension.

If system (1.1) satisfies this condition, it becomes symmetric when the compo-
nents of the main field are taken as independent variables; from Theorem 2, it
becomes symmetric also in the original independent variables, if we multiply it
on the left by a suitable invertible matrix B. Now we can prove that this matrix
Bis

art
auc’
in other words, system (1.1) can be substituted by
XA 9AY ard
2.7 —43,U% = :
@.7) dUC JUB auc /4
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is symmetric. In fact, from equation (2.4) we have

Oh'™ art

= A% ,
auC A9U°¢

from which follows

A DAZ 92 92

_ o

aUC dUB — JUCIUB A dUCIUB”

It remains to prove the hyperbolicity of system (2.7), i.e. that the quadratic form

AL JAY

t
*QUC U B

dU¢ dU?®

is positive-definite. Now this quadratic form is exactly that in equation (2.3);
therefore, it is positive-definite.

To have a better understanding of these arguments, let us apply them to an easy
example of physical application, i.e. the equation of Eulerian fluid dynamics. In
this case, system (1.1) is

(2.8) 3 V* =0,
¥ [(E + P)u*uf + P g*] =0,
withn = (=V, V)2, u® =n~1 V.
Here E is the total energy density, P the pressure, n the number particle density,

u® the 4-velocity of the fluid; these variables are such that the Gibbs relation
holds

1 1
—dE+«E+JUd<—):Td&
n n

where S is the entropy density and 7' the temperature.
System (2.8) has a convex extension with

E+P u”
h* = —nSu®* , A= -5 .
nou < nT T)

If we take T and V# as independent variables, from the Gibbs relation we obtain

0E a5 0E E+ P 2S5
EFr=—=nT—, E,=—-= +nT —,
oT oT on n on
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whose integrability condition is

E+P TP
E, = r

n .
n n

By use of this relation, we see that the system (2.8) in the form (2.7) reads

Er Pr
(2.9) —Zu“3.T + n—Thgaavﬁ =0,
PT o 1 o o o B _
3T + = [(E + P)u®hyp — nP, (288,up + uu,up)]8,VF =0,
where hiy = gi +u*ug.
System (2.9) is manifestly symmetric and hyperbolic.
Similarly, if we take P and V# as independent variables, the Gibbs relation
implies that

o — 1 Eo: § — 1 £ E+ P
Pl Y A n?T ~’
from which it follows
1 EuT. — 1 ET 1 n E —i—PT )
nT2 T T ar2 T T ey 2 P

consequently, system (2.8) in the form (2.7) reads

1 1 1
(2.10) ﬁTpEpu“aaP + <n—Th§ — ﬁTnEpMaMﬁ) 3, VP =0,

1 o 1 o
<n—Thy — ﬁTnEPM My) BaP—I-

E+P T, E+P
ot (B

“3,VP =0,
" )u,guy]u

which is symmetric hyperbolic.
At last, if we take E and V? as independent variables, we have
1 E+P
S _ +
n’T

’

from which
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System (2.8) in the form (2.7) reads

Tx Py E+P
(211) ﬁuaaaP—l—(n—ng—I—TEnTu“u/g) 8avﬂ:0,

Pr , . E+P
nTgy nT?

+ TE—u“u,,) 0y P+

P, E+P P E+P
+ [—Zn—Tl”w Bt g s+ <n—; - TnﬂT) ”y”ﬁ”a] 9 VP = 0;

It is again symmetric hyperbolic.

In the next section, this method will be applied succesfully to systems with
differential constraints, with an application to the Lagrangian systems.

Before concluding this section, I want to observe that the condition of positive-
definiteness on the quadratic form (2.3) is particularly significant, when ¢, is
field-independent and system (1.1) has no differential constraints. In fact, in
this case, this condition implies that 7, A% = V4 are invertible functions of Uy
taking them as independent variables, from equation (2.2); it follows

A _ 00h?)
aVa

Consequently, the quadratic form (2.3) becomes

3%(h%ty)

dVgdV,.
avaavg BUTA

From this fact, we see that the quadratic form (2.3) is positive-definite if and
only if h%t, is a convex function of the variables V4. Now, in many physical
problem, h%t, is the entropy density; therefore, the condition on the quadratic
form (2.3) to be positive-definite may be called “convexity of the entropy density
with respect to the variables 7, 4% . Obviously, this is equivalent to saying that
the function h*t, is a convex function of the variables 1.

3. Symmetrization of systems with differential constraints, endowed with
a convex extension.

Let us consider system (1.1), but in the case M > N; obviously, M — N
rows of the matrix 7, A%, are linear combinations of the others; therefore, the
corresponding M — N equations of system (1.1) can be substituted by M — N
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different equations, where no derivative with respect to time appears, in the
time-like direction #,. Then we say that system (1.1) has M — N differential
constraints. We say that system (1.1), with differential constraints, is endowed
with a convex extension, if the following conditions are satisfied
1) the functions h%, A4 exist, such that equation (2.2); is satisfied;
2) the quadratic form 7,dA*d A% is positive-definite.
Obviously, these conditions are equivalent to assuming that the supplementary
equation (2.1) holds for every solution of system (1.1), with g given by equation
(2.2),.
But, unlike the case considered in Section 2, now the functions A4 are not
invertible. In any case, however, the rectangular matrix % has rank N,
because t,d1Ad A% is positive-definite.
Consequently, we can multiply system (1.1) by this matrix, obtaining again
system (2.7) of N equations, in the N unknowns U2. As before, we can prove
that the matrix

At 9AS

aUC aUB

is symmetric, and that the matrix

t I DAY
“QUC aUB

is positive-definite; therefore system (2.7) is symmetric and hyperbolic.

Now system (1.1) is equivalent to system (2.7) and to N — M non evolutive
equations; these last ones may be imposed on the initial manifold and, after that,
omitted because they will be automatically satisfied as consequence of system
(2.7) and of such initial conditions.

Let us consider now an example of physical application, the Lagrangian sys-
tems. They are described by equations such as

31 oL oL
3.1) Vo = 3
in the p unknowns ¢", and with ¢ = 3,4".
The problem of studying system (3.1) as a system compatible with a supple-
mentary conservation law, was developed by Boillat [4]—[8], in non-covariant
formulation and, later, by Strumia [27] in covariant form and with constrained
equations. This last author writes the Euler-Lagrange equations (3.1) as

0L L " s
agh g x4 T e Dady = 0pdy =0,

o

(3.2) Oy
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in the 5p independent variables ¢", ¢".
System (3.2) is compatible with a supplementary conservation law, with

8£
B o
= —qitg — L1, =0,

o

while the Lagrange multipliers are

0L 0L
)\.A = ( gtﬁ, ——hta, —hta]> .
9q"  dqpp

Strumia [27] transforms system (3.2) into a symmetric one, by taking A% as
variables; these Lagrange multipliers are also constrained variables. The method
of the present paper allows us to transform system (3.2) into a symmetric one
also with ¢", g" as independent variables; these variables are not constrained.
The transformed system (2.7), for this case, is given by

ad qhtﬂ)
(1.2 - 2£) (9 R

“aqh  0g") aUC auc \ agh

9 AL
+ (aaqg — 0pq1) ST (_ta]> =0,

94y
that is,
92.L 92.L
_tc{ aah_h— t aah_ h—_
( q qa) aqhaqk + ( qﬁ ﬁqa) 8q£8qk
AL AL 9%2.L
aa_ o t(S _ tc{ aa h _ h _|_
< gk 361") (" = 4a) 3q"dqf
92.L

+1* (0uq — 9pq)) baiodE =
o §

which can be expressed as

o l 4 ly aqh azcc
(3.3) A aq” + Buy dag” = —17q, dghagt’
AL 2L
Bity0uq' + Clly, daq"” = 51" — 1) :
1ks %aq kety 9ad ag* q dg"dq"



110 SEBASTIANO PENNISI

where
A%, = AY = —t“82—£ BY =t 8°L —r“ o°L
kKl — Ak — Ia .k’ kKly — %y Ji k ! k’
dq'dq 99,99 aq'vdq
9%2.L 9%.L 9%.L

o

+t ¢ .
dgkaqlr 7 9qLagH dg'r dg*

o _ a _
Cisiy = Cryps =1

System (3.3) is manifestly symmetric.

It is also hyperbolic, if quadratic form (2.3) is positive-definite, a requirement
corresponding to the convexity of the entropy density, which is assumed by
Boillat and Strumia. In our case, quadratic form (2.3) becomes

Q = todq" (AL dq' + Bl(cxlydqu) + todq" (Bfisdq' + C/?alyd‘lly) =
LY L, 0
- 3qlaqk aqlaaqk aquaqk

2L ., 0L . L o
= o= _ 9~ Y —
+ <8q1yaqk8 T dgkedgly 1t aqlaaqkS)dq dg”’ =
92.L o 0L

_ 10 ki g lj
= ——8q108qk0dq dq —quiaql/dq dq"’ +

dq'dg* +2 <t,,t“ )qudql” +

9%.L . 9%.L
+2 _dg*dq’ + ———dq'dq* =
9q* 04V q9-4aq9 9¢'0q" q94a49

92.L . (AL aL
=—— d¢"dg"® + dgVd | —= | + dg*d | = ).
aqloaqko q aq +dq 3q1/ +dq aqk

In the next section, the case of systems with algebraic constraints will be
considered.

4. Symmetrization of systems with differential and algebraic constraints.

Let us consider system (1.1) with the field variables constrained by n
functionally independent algebraic relation

4.1) o, (UB) =0, with I=1,---.n.

Moreover, we consider the case n < N, M > N — n. From equation (4.1) we
can obtain N — n variables, as functions of the remaining ones; more generally,
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there are different possibilities of choosing N — n independent parameters g",
such that

(4.2) Uf =utgh

is a solution of equation (4.1), identical with respect to ¢".

We consider the case where the functions A% (U%), AA(U?B) exist, such that
equation (2.7); holds, and the quadratic form t,dA%d A 1s positive-definite,
for every choice of the parametrical representation (4.2).

Also in this case, Strumia [26] says that the constrained system (1.1) is endowed
with a convex extension. Strumia proves also that this system assumes the
symmetric form, if the Lagrange multipliers A4 are taken as new variables,
which are also algebraically constrained. But the matrix of the coefficients
of 3,14 is singular; consequently, so as to obtain the eigenvectors, we have
to consider n different equations, which are the differentials of the algebraic
constraints on A“4. In this way we obtain a set of N + n equations (Strumia
considers the case M = N) in the N unknowns dA?; consequently, the
symmetric form is lost. This obstacle can be overcome, as will be shown below.
But the main interest of this paper is to obtain the symmetric hyperbolic form
also in the original variables U5 ; there are two possible approaches to obtain
this result.

The first one is that of choosing one of the parametrical representations (4.2) and
to proceed with the unconstrained variables g” as in Section 3. Unfortunately,
in this way, the originally covariant form may be lost.

The second approach is the following one.

Let us consider the n linearly independent equations

30, ,

4.3 X" =0,
(4.3) SUB

in the N unknowns X 2. System (4.3) is expressed in covariant form, so that
its general solution is a covariant linear function of p parameters Y € ie.
X8 = XB(Y°). Obviously p > N — n; if I request p = N — n, the covariant
form may be lost. The matrix

s 0X°
Xe=—=
aY€
has rank N — »n and is such that
0P
(4.4) LxE=o,

auB
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forevery I =1,---,n;C=1,---, p.

Let us multiply system (1.1) by X2 (,f?]/; , obtaining the new system
Al arA

in the N variables U? constrained by (4.1).
We can now prove that
i) system (4.5) is symmetrizable and hyperbolic;
ii) the eigenvalues A associated to system (4.5) can be expressed in covariant
form; in particular, they are the solutions of the equation

A DAL
(4.6) SN_n |:(na — M) XE ST 8U;, Xg,] =0,

where §; (M) denotes the orthogonal invariant of order i, of the matrix M;
iii) aset of N —n linearly independent eigenvectors, associated to system (4.5),
can be obtained and expressed in covariant form.
On i).
To prove this first property, it is not necessary to worry about the covariant form.
Then, let U2 (¢") be a parametrical representation of the solutions of equation
(4.1); consequently, we have

I, UP o uU”
aUB agh 7 T agh

is a solution of system (4.3) whose set of solutions has the generators X 2.
Therefore L exist such that

o LS XE.

By multiplying system (4.5) by LS we obtain

@ QU art ., 0U” ot
' agh aUB AT agh guB’t

This new system is equivalent to (4.5); in fact, % is also a set of generators of

the solutions of equation (4.3), even if they are not expressed in covariant form.
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Therefore aC’é exists such that X2 = aC’é%; by multiplying system (4.7) by
£’é, we obtain system (4.5).
Now system (4.7) is

oAt 0l

agh AT G
which is symmetric and hyperbolic, because it is the same system obtained, with
the first approach, in the unconstrained variables g".
On ii).
The eigenvalues A and eigenvectors dU 2, associated to system (4.5) are the
solutions of

5 OAA DAY

B _
4.8) (na—kta)XCaUB aUB’dU =0,
od ,
Lau® =o.

oUB
From equation (4.8), we obtain
4.9) dU® = x8av“,
and (4.8); becomes

5 At 9AS B 4yC —
(4.10) (ng — Aty) X SUF guB ¢ =0,
ie.
(4.11) (Beer — Aohee)dYE =0,
with

A DAY g OAA DAL

(4.12) Bee = ngXE—

CoyB aUB,X?; Acc =ta X%

Cous aUB’XC"

We notice that B¢ and A are symmetric matrices, as will be proved in the
appendix.

It is true that the following passages will not be expressed in covariant form, but
the important thing is that the final result will satisfy this requirement.

Let Wx_,+1, -+, Wy be n orthonormal solutions of

(4.13) xEwe =o.
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We have that Bcc Wy_,.; = 0, AccoWS_,.; = 0. Moreover scc has
rank N — n, because condition 1) is satisfied. Let us consider a set of N
orthonormal eigenvectors of the matrix »4, with respect to the identical matrix
I, with Wy_,.q, -+, Wy as last elements; let us consider the matrix & which
has these eigenvectors as columns. Let us change the variables by means of

(4.14) dy® = $5dz",

and multiply equation (4.11) by £§; it becomes

(4.15) (P5Bcc PG =1 Phce :Pgi) dz° =o.
Now,
!’ B* 0 —
PHBeo Phy = N=mn
0n,N—n 0n,n
: A* Oy
PEAce Py, =
b b 0n,N—n 0n,n

with B*, A* symmetric (N — n) x (N — n) matrices.

If the first N — n components of dZ€ are zero, then equation (4.14) yields
that Y€ is a linear combination of W Nen+1, "+, Wy after that, by (4.9) and
(4.11) we obtain dY® = 0, which is not acceptable as eigenvector. Therefore
we look for solutions of the system (4.15), with dZ€" having at least a non-zero
component between the first N — n ones.

This fact shows that the eigenvalues A are the solutions of |B* — AA*| = 0,
which can be expressed as

SN-n (?,S:BC@ PS5 —n PSAce fg:) —0.

But S;(M) = S; (?_IM?), because the characteristic equations of M and of
P MP are the same. Therefore (4.16) is equal to Sy_, (Bccr — A Ace) =
0, from which equation (4.6) follows. We notice also, that equation (4.6) is
expressed in covariant form, because its first member is an orthogonal invariant
of a covariant matrix.

On iii).

The existence of N — n linearly independent eigenvectors, is a consequence
of property i); they can be expressed in covariant form because they are the
solutions of the system (4.8), which satisfies this property.

NOTE: System (4.5) is not symmetric, even if it is symmetrizable. However, the
symmetry property is useful to study the eigenvalues and eigenvectors, i.e. to
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solve the system (4.8), which is equivalent to (4.9) and (4.11); this last system
is expressed in symmetric form, so that we can consider this result as very
satisfactory.

To see better how this method works, let us consider two simple examples of
physical applications.

4.1. The equations of fluiddynamics.

Let us consider again the equations

4.17) 0y (nu®) =0,
3 [(E + P)u®uf + P g*] =0,
but in the six variables n, T, u® constrained by u*u, = —1. System (4.3)

becomes
0-X'=0, 0-X"=0, 2u,X*=0,

which has the solution X* = hJY"; consequently, the matrix X g is

1 0 0p
0 1 0g
0, 0, i
and system (4.5) reads
P, Py oo
n_TM ogn  + Thﬁaau =0,
ET o PT o B
(4.18) FM 0. T + ?hﬁaau =0,

E+P

P" o PT o o B
?hyaan + ?hya(xT + hyﬂu 8au :0

The corresponding equation (4.6) is

E + P)?
4.19) (;T)Pn (Pou®)’ {(E + P)E7 (¢ou®)* —

— h ¢y [nPEr + T (P)?] | =0,

where ¢, = n, — A t,.
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4.2. The equations of magnetofluiddynamics.
In this case system (1.1) is given by the nine equations

0o (nu®) =0,
(4.20) 3o [(E + P+ bHuu? + (P +b*)g™ — b"bP] = 0,
9y (u?b?P — b*uPy = 0.

for the determination of the ten variables n, T', u®, b* (related to the magnetic
field), constrained by

ugu® = —1, ulb* =0.
The Lagrange multipliers are
A= E+P -S ﬁ , ﬁ .
nT T T

System (4.3) becomes
2us X° =0, bsX’ +usx’ =0,
which has the solution
XP=nY", x°=b,Y'u’ +h)y”

consequently, the matrix X2 is

1 0 0g 04
0 1 0g 04
Oy 0)/ hSy Méby
Oy Oy Myb(; h(;y
System (4.5) is given by
arA arA

aun M = g e

premultiplied by the transposite of this matrix X2, i.e.

P P
—u%9, 2093, B =0,
nTu n—+ Tgﬁ u
E P
TTU T+ g =0,
4.21) p

ngo PT o 1 o B 1 o B
?h}/aal’l-i- ?hyaaT-i- ?Eyﬂaau + ?Cyﬂaab :0,

1 1
?D;‘,‘ﬂaauﬂ + ?hwguaaabﬂ = 0,
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with
ESy = (E 4+ P +b)hygu® — b,bup,
C;[ﬁ = ]’l(}x,blg — bahyﬁ + u“byuﬂ, Dgﬂ = bygg — ]’ly/gba.

System (4.21) is not symmetric, but the corresponding eigenvectors are the
solutions of

L g + g’ =0,
%u“%dT + %gg‘d)aduﬁ =0,

%hgd)adn + %hgd)adr + %E}Ojﬁd)aduﬂ' + %c;‘ﬁ%dbﬂ =0,
%Dgﬂ(paduﬂ +  Thypudedb? =0,

u,gdu’S =0, u,gdbﬂ + b,gduﬂ =0.

These last two equations give
du? =nlY?, db® =b,Y"u’ +nly”

in the new unknowns Y7, y¥; by substituting these relations in the other
equations, they become

P" o P" o $
peall ¢odn + Ths oY =0,
ET o PT o
U bedT +  —hiaY" =0,
P, . Pr ., 1 " 1
thqbadn + ?hyd)adT + = LsPau®Y? + Tcy(gy(S =0,

1 5 1 o 8
?GSyY + ?hyéu oy =0,
with
F,s =(E+ P+ bz)hys —b,bs, G5 =g (hibé - bah)’S) )

so that the above system is a symmetric one. The matrix of the coefficients has
rank 8; by calculating its Sg, we obtain that equation (4.6) for this case reads,

Pu o 2
(4.22) 2T9Era* AN, =0,
n
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with

a=¢u", A= (E+P+b>)(eu") — (¢ob)?,
T (Pr)?

Nis=(E+ P) <E +P —nP, — —) (pou®)*
Er

T(Pr)?
Er

T (Pr)?

a

—(E+P) <np,, + + bz) (Pou®)ppd’ +

+ <nP,, + ) (¢ub®) P’

Obviously, this method can be applied also to the symmetric system obtained by
Strumia [27], for Lagrangian systems; in fact, he obtains this system by taking
the Lagrange multipliers as constrained variables. However, I do not exploit this
problem further in detail, because the results will not be more significative than
those in Section 3.

For the sake of completeness, I recall that a different approach to constrained
systems is that of considering an extended set of field equations and of indepen-
dent variables; I conceived this method applying it in some physical problems
[19], [20]. Boillat [9] has shown how this approach can be used for all systems,
which have only differential constraints that are linear functions of the indepen-
dent variables; the systems considered by Boillat are not expressed in covariant
form. Later, I have eliminated the hypothesis of linearity [21]. The problem
with algebraic constraints and expressed in covariant form is exhausted in the
present paper. The case where a convex extension is not present, has already
been treated in [22].

A. Appendix. On the symmetry of the matrices A¢¢ and Bec .

In Section 4, systems (1.1) have been considered, which are endowed with
a convex extension (2.2); and present both differential and algebraic constraints
(4.1). Now, from equation (4.1) we can obtain N — n of the variables U2
as functions of the remaining ones; by changing the names of these variables,
we can obtain U™, ..., UV as functions of U', - - -, U". After that equation
(2.2); gives

N

dhe 9 AY ahe AL\ U/
Al — A4 A=A ) = =0,
(4.1) AU AU +,~:Xn+:1 (an aUJ | Ui
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withi =1, - - -, n. From equation (4.1) we have also
' vl aUJ AU
j=n+1
Let | P¥ | be the inverse matrix of || %| , so that
0d;
kI _ sk
(A.3) P U J°
From equation (A.2) we obtain
U’ 0D
(A.4) — =-pli—
oU! oU!
Let us define '* as
I o dh* 4 0AY i1
o __ _ J
(A.5) ' = Z <an A an)P .
j=n+1
After that, equation (A.1) becomes
oh* 0 A oo
(A.6) - _A2A e L0 fori=1,- -
aU! aU! aU!
Now, if i > n, from (A.3) we have
aU! aU! aU!

consequently, equation (A.6) holds also for i > n.

119

This equation can be considered as a system of 4N equations for the determi-
nation of the 4n unknowns /. We have just proved that this system has a
solution; it is also expressed in covariant form, because this property is satisfied

by system (A.6).

Let us consider equation (A.6), written with i = B’, and let us take its derivative

with respect to U2 ; we obtain

I A 3°h* A 0PAS
= —A —
QUB QU JUBIUP AUBIUE
1o 02 do'* 9D,

AUBIUB  aUB aUB’
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consequently, we have that

B orA dAY

Causaus €
is symmetric , because

0P, ,

WXC, = 0

From this result, it follows that the matrices ¢ and B¢ in equation (4.12),
are also symmetric.
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