THE ASYMPTOTIC REPRESENTATION OF THE FUNDAMENTAL MATRIX OF A DISCRETE SYSTEM

RAÚL NAULIN

In this paper by using the notion of discrete dichotomies, an asymptotic representation of Φ, the fundamental matrix of the linear difference equation $y(n+1)=(A(n)+B(n)) y(n)$ is given.

1. Introduction.

An important problem in the theory of difference equations [1] is the description of the solutions of the perturbed system

$$
\begin{equation*}
y(n+1)=(A(n)+B(n)) y(n), \quad n \in \mathbb{N}, \tag{1}
\end{equation*}
$$

where the solutions of the system

$$
\begin{equation*}
x(n+1)=A(n) x(n), \quad n \in \mathbb{N}=\{0,1,2,3, \ldots\} \tag{2}
\end{equation*}
$$

or equivalently, the fundamental matrix of (2)

$$
\Phi(n)=\prod_{m=0}^{n-1} A(m)=A(n-1) \ldots A(2) A(1), \quad \Phi(0)=I
$$

Entrato in Redazione il 9 marzo 1999.
Key words and phrases: Difference equations, Asymptotic integration of nondiagonal systems.
1991 AMS subject classification: Primary 39A11, 39A10
is assumed to be known. Among the existing methods in solving this problem [2], [3], [6] we emphasize the theory of asymptotic integration, developed by Levinson for diagonal systems of ordinary differential equations [5], and lately adapted to difference equations by Devinatz and Benzaid-Lytz [2]. This method applies to (1), where $A(n)=\operatorname{diag}\left\{\lambda_{1}(n), \lambda_{2}(n), \ldots, \lambda_{r}(n)\right\}$, when the coefficients of these diagonal matrices satisfy the so termed Levinson dichotomic conditions (2). A second method relies on the notion of asymptotic equivalence [11] allowing the asymptotic integration of the solutions of (1) under the assumption that (2) has some discrete dichotomy [10], [11].

Definition 1. [7], [11]. Let (h, k) be a pair of sequences of positive numbers. We shall say that (1) has a discrete (h, k)-dichotomy iff there exists an orthogonal projection P and a positive constant $K \geq 1$ such that

$$
\begin{align*}
\mid \Phi(n) P\left(\Phi^{-1}(m) \mid \leq K h(n) h(m)^{-1},\right. & & n \geq m, \\
\left|\Phi(n)(I-O) \Phi^{-1}(m)\right| \leq K k(n) k(m)^{-1}, & & m \geq n . \tag{3}
\end{align*}
$$

The case when $h=k$, is sample called an h-dichotomy.
If (2) yields a discrete dichotomy, and the sequence $\{B(n)\}$ is summable, then the h-bounded solutions (respectively the k-bounded solutions) of (1) and (2) are biunivocal correspondence. This correspondence is obtained by means of the solutions of the integral equation

$$
\begin{aligned}
y(n)=x(n) & +\sum_{m=n_{0}}^{n-1} \phi(n) P \phi^{-1}(m) b(m) \\
& -\sum_{m=n}^{\infty} \phi(n)(I-P) \phi^{-1}(m) B(m) .
\end{aligned}
$$

The main result on the asymptotic integration of h-bounded solutions establishes that if solutions $\{y(n)\},\{x(n)\}$ of (1), (2) respectively are in correspondence, then

$$
y(n)=x(n)+\rho_{h}(n),
$$

where ρ_{h} denotes a sequence satisfying

$$
\lim _{n \rightarrow \infty} h(n)^{-1} \rho_{h}(n)=0, \quad h(n)^{-1}:=1 / h(n) .
$$

In this paper we will extend this result in the following respect: we will assume that (2) has a family of $\left(h_{i}, k_{i}\right)$-dichotomies. Then, for Ψ, the
fundamental matrix of (1), we will obtain the asymptotic formula

$$
\Psi(n) E=\sum_{i=1}^{p}\left(\left(\Phi(n)+\rho_{h_{i}}(n)\right) R_{i}+\left(\Phi(n)+\rho_{k_{i}}(n)\right) S_{i}\right)
$$

where E is an invertible matrix, R_{i} and S_{i} are orthogonal projections satisfying $\sum_{i=1}^{p}\left(R_{i}+S_{i}\right)=I$.

2. Preliminaries.

In what follows \mathbb{V}^{r} will denote the vector space \mathbb{R}^{r} or \mathbb{C}^{r}, where a norm $|\cdot|$ is defined. If A is $r \times r$ matrix, then $|A|$ will denote the corresponding operator norm. By $x(n, \xi)$ and $y(n, \xi)$ we will denote the solutions of (2) and (1) satisfying $x(0, \xi)=y(0, \xi)=\xi$.

Definition 2. We shall say that the ordered pair of sequences (h, k) are compensated iff $h(n) k(m) \leq C k(n) h(m), n \geq m$ for some constant C.
Definition 3. We shall denote by ℓ_{h}^{∞} and ℓ_{h}^{1} the following sequential spaces

$$
\begin{gathered}
x \in \ell_{h}^{\infty} \quad \text { iff } \quad|x|_{h}^{\infty}=\sup \left\{\left|h(n)^{-1} x(n)\right|: n \in N\right\}<\infty \\
x \in \ell_{h}^{1} \quad \text { iff } \quad|x|_{h}^{1}:=\sum_{n=0}^{\infty}\left|h(n)^{-1} x(n)\right|<\infty
\end{gathered}
$$

The elements of the space ℓ_{h}^{∞} will be called h-bounded sequences. Further, we define the subspaces of initial conditions $V_{h}=\left\{\xi \in \mathbb{V}^{r}: x(\cdot, \xi) \in \ell_{h}^{\infty}\right\}$, $V_{h, 0}=\left\{\xi \in V_{h}: \lim _{n \rightarrow \infty} h(n)^{-1} x(n, \xi)=0\right\} . Q_{h}$ and $Q_{h, 0}$ will denote projection matrices such that $Q_{h}\left[\mathbb{V}^{r}\right]=V_{h}, Q_{h, 0}\left[\mathbb{V}^{r}\right]=V_{h, 0}$. Similar ${\underset{\widetilde{V}}{h}}^{\text {subspaces and projections defined for Eq. (1) will be distinguished by a tilde: }}$ $\widetilde{V}_{h}, \widetilde{V}_{h, 0}, \widetilde{Q}_{h}$, etc.

In our paper we will deal with the adjoint system:

$$
\begin{equation*}
z(n+1)=A_{*}(n) z(n) \tag{4}
\end{equation*}
$$

where $C_{*}={\overline{\left(C^{-1}\right)}}^{t}$ is the transpose of the complex conjugate of the inverse matrix C^{-1}. Is clear that ϕ_{*} is the fundamental matrix of (4). If (2) has an (h, k)-dichotomy with an orthogonal projection P, then (4) has a $\left(k^{-1}, h^{-1}\right)$ dichotomy with projection $I-P$:

$$
\begin{align*}
\left|\phi_{*}(n)(I-P) \Phi_{*}^{-1}(m)\right| & \leq K k(n)^{-1}(n) k(m) \quad, n \geq m \\
\left|\Phi_{*}(n) P \Phi_{*}^{-1}(m)\right| & \leq k h(n)^{-1} h(m), q u a d m \tag{5}
\end{align*}
$$

Its clear that if the pair (h, k) is compensated, then so is the pair $\left(k^{-1}, h^{-1}\right)$.
The proof of the following theorem is contained in [7].

Theorem A. If (2) has an (h, k)-dichotomy with projection matrix P, then (1) has an (h, k)-dichotomy with projection matrix Q iff

$$
\begin{equation*}
V_{h, 0} \subset V_{k, 0} \subset Q\left[\mathbb{V}^{r}\right] \subset V_{h} \subset V_{k} \tag{6}
\end{equation*}
$$

The projection P of dichotomy (3) can be chosen with the property

$$
\begin{equation*}
\lim _{n \rightarrow \infty} h(n)^{-1} \Phi(n) P=0 \tag{7}
\end{equation*}
$$

iff $V_{h, 0}=V_{k, 0}$.
Theorem A can be applied to (4). Consequently, if (4) has the dichotomy (5), then it has a $\left(k^{-1}, h^{-1}\right)$-dichotomy with projection q iff

$$
\begin{equation*}
V_{k^{-1}, 0}^{*} \subset V_{h^{-1}, 0}^{*} \subset Q\left[\mathbb{V}^{r}\right] \subset V_{k^{-1}}^{*} \subset V_{h^{-1}}^{*} \tag{8}
\end{equation*}
$$

where $V_{h^{-1}}^{*}$ is the subspace of initial conditions of (4) of h^{-1}-bounded solutions etc.

The following result was proved in [7].
Theorem B. Let us suppose (2) has an (h, k)-dichotomy with projection P. If $\left\{\left|A(n)^{-1}\right||B(n)|\right\} \in \ell^{1}$, then (1) has an (h,k)-dichotomy

$$
\begin{align*}
\left|\widetilde{\Phi}(n) \widetilde{P} \widetilde{\Phi}^{-1}(m)\right| & \leq \widetilde{K} h(n) h(m)^{-1}, & & n \geq m \\
\left|\widetilde{\Phi}(n)(I-\widetilde{P}) \widetilde{\Phi}^{-1}(m)\right| & \leq \widetilde{K} k(n) k(m)^{-1}, & & m \geq n \tag{9}
\end{align*}
$$

where \widetilde{P} is a projection similar to projection P.

3. h-bounded solutions.

Before we go ahead, we will establish some correspondence between the h-bounded solutions of (2) with those of its adjoint (4).

Lemma 1. Assume that (2) has an h-dichotomy. If for some subsequence $\left\{n_{j}\right\}$ one has $\lim _{j \rightarrow \infty} h\left(n_{j}\right)^{-1} x\left(n_{j}, \xi\right)=0$, then $\lim _{n \rightarrow \infty} h(n)^{-1} x(n, \xi)=0$.

Proof. Following Proposition 2.2 in [4], let us denote $x(n, \xi)=x_{1}(n)+x_{2}(n)$, $x_{1}(n)=P \Phi(n) \xi, x_{2}(n)=(I-P) \Phi(n) \xi$. It is easy to verify that

$$
\begin{array}{ll}
\left|h(n)^{-1} x_{1}(n)\right| \leq K\left|h\left(n_{j}\right)^{-1} x\left(n_{j}\right)\right| & n>n_{j}, \\
\left|h(n)^{-1} x_{2}(n)\right| \leq K\left|\left(n_{j}\right)^{-1} x\left(n_{j}\right)\right|, & n<n_{j},
\end{array}
$$

from where the proof of the lemma follows.
Lemma 2. If (2) has an h-dichotomy, then

$$
V_{h^{-1}}^{*}=\left(I-Q_{h, 0}\right)\left[\mathbb{V}^{r}\right], V_{h^{-1}, 0}^{*}=\left(I-Q_{h}\right)[\mathbb{V}]
$$

Proof. The existence of an h-dichotomy for (2) with projection P implies the existence of two h-dichotomy for this system, respectively with projection Q_{h} and $Q_{h, 0}$. Without loss of generality we can assume that $Q_{h, 0}$ and Q_{h} have the diagonal forms $Q_{h, 0}=\operatorname{diag}\left\{I_{0}, 0,0\right\}, Q_{h}=\operatorname{diag}\left\{I_{0}, I_{1}, 0\right\}$, where I_{0} is a unit matrix of dimensions $r_{0} \times r_{0}, r_{0}=\operatorname{dim}\left[V_{h, 0}\right]$, and I_{1} is a unite matrix of dimensions $r_{1} \times r_{1}$, such that $r_{0}+r_{1}=\operatorname{dim}\left[V_{h}\right]$. According to Lemma 1 in [9] (see also Lemma 5.2 in [4]), there exists a bounded sequence $S: \mathbb{N} \rightarrow \mathbb{V}^{r+r}$, such that $S^{-1}: \mathbb{N} \rightarrow \mathbb{V}^{r+r}$ exists, is bounded, and the change of variables $x(n)=S(n) w(n)$ reduces (2) to the form

$$
\left(\begin{array}{c}
w_{0}(n+1) \tag{10}\\
w_{1}(n+1) \\
w_{\infty}(n+1)
\end{array}\right)=\left(\begin{array}{ccc}
C^{0}(n) & 0 & 0 \\
0 & C^{1}(n) & 0 \\
0 & 0 & C^{\infty}(n)
\end{array}\right)\left(\begin{array}{c}
w_{0}(n) \\
w_{1}(n) \\
w_{\infty}(n)
\end{array}\right)
$$

where

$$
\begin{gathered}
w_{0}(n) \in V^{r_{0}}, C^{0}(n) \in V^{r_{0} \times r_{0}}, w_{1}(n) \in V^{r_{1}}, C^{1}(n) \in V^{r_{1} \times r_{1}}, \\
w_{\infty}(n) \in V^{r_{\infty}}, C^{\infty}(n) \in V^{r_{\infty} \times r_{\infty}}, r_{\infty}:=r-\left(r_{1}+r_{0}\right) .
\end{gathered}
$$

By a straightforward calculation, we may verify that the change of variables $z(n)=S_{*}(n) u(n)$ reduces the adjoint equation of (10) to the diagonal form

$$
\left(\begin{array}{c}
u_{0}(n+1) \tag{11}\\
u_{1}(n+1) \\
u_{\infty}(n+1)
\end{array}\right)=\left(\begin{array}{ccc}
C_{*}^{0}(n) & 0 & 0 \\
0 & C_{*}^{1}(n) & 0 \\
0 & 0 & C_{*}^{\infty}(n)
\end{array}\right)\left(\begin{array}{c}
u_{0}(n) \\
u_{1}(n) \\
u_{\infty}(n)
\end{array}\right)
$$

For (10) we have $V_{h, 0}=Q_{h, 0}\left[\mathbb{V}^{r}\right], V_{h}=Q_{h}\left[\mathbb{V}^{r}\right]$. We may write Θ, the fundamental matrix of (10), in the form

$$
\Theta(n)=\operatorname{diag}\left\{U_{0}(n), U_{1}(n), U_{\infty}(n)\right\}
$$

where $U_{0}(n) \in V^{r_{0} \times r_{0}}, U_{1}(n) \in V^{r_{1} \times r_{1}}$ and $U_{\infty}(n) \in V^{r_{\infty} \times r_{\infty}}$.
Regarding (11), let us consider the direct sum $\mathbb{V}^{r}=V_{h^{-1}}^{*} \otimes W_{h^{-1}}^{*}$, where V_{h-1}^{*} is a complementary subspace of V_{h-1}^{*}. For the initial condition $\xi=\operatorname{column}\left\{\xi_{1}, 0,0\right\}$, we have $\lim _{n \rightarrow \infty} h(n)^{-1} \Theta(n) \xi=0$, and $\{\Theta(n)\} \xi$ is $h^{-1}-$ bounded if $\xi=$ column $\left\{\xi_{1}, \xi_{2}, 0\right\}$. From these properties

$$
\lim _{n \rightarrow \infty}\left|h(n) \Theta_{*}(n) \xi\right|=\infty, \quad \text { if } \xi_{2}=0, \xi_{3}=0, \xi_{1} \neq 0
$$

follows. Otherwise, the boundedness of some subsequence $\Theta_{*}\left(n_{j}\right) \xi$ would lead to the contradictory equation $|\xi|^{2}=<h\left(n_{j}\right)^{-1} \Phi\left(n_{j}\right) \xi, h\left(n_{j}\right) \Phi_{*}\left(n_{j}\right) \xi>=0$, where $\langle x, y\rangle=\sum_{i=1}^{r} x_{i} \bar{y}_{i}$. Thus, we have proven

$$
\begin{equation*}
V_{h, 0} \subset W_{h^{-1}}^{*} . \tag{12}
\end{equation*}
$$

Further, for some constants K, M, one satisfies $K \geq\left|h(n)^{-1} U_{1}(n)\right| \geq M>0$, $\forall n \in \mathbb{N}$. This implies

$$
\begin{equation*}
M^{-1} \geq\left|h(n) U_{1^{*}}(n)\right| \geq K^{-1}, \forall n \in \mathbb{N} . \tag{13}
\end{equation*}
$$

The boundedness of $\left\{h(n) U_{1^{*}}(n)\right\}$ and $\left\{h(n) U_{\infty^{*}}(n)\right\}$ (the boundedness of this last sequence follows from the fact that the adjoint (11) has an h^{-1} dichotomy with projection $I-Q_{h}$ implies

$$
\begin{equation*}
r_{1}+r_{\infty} \leq \operatorname{dim} V_{h^{-1}}^{*} . \tag{14}
\end{equation*}
$$

Since $\operatorname{dim} V_{h, 0}=r_{0}$, from (12) and (14) we obtain $r_{0}=\operatorname{dim} W_{h^{-1}}^{*}$. Therefore

$$
\begin{equation*}
V_{h, 0}=W_{h^{-1}}^{*} . \tag{15}
\end{equation*}
$$

From (14) and (15) we obtain $\left(I-Q_{h, 0}\right)\left[\mathbb{V}^{r}\right]=V_{h^{-1}}^{*}$.
Let us prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|(n) \Theta_{*}(n) \xi\right|=0, \quad \text { if } \xi_{1}=0, \xi_{2}=0 \tag{16}
\end{equation*}
$$

Assuming the contrary, from Lemma 1 , we would have for all values of n the estimate $K \geq\left|h(n) U_{\infty^{*}}(n)\right| \geq M>0$, for some constant M. This implies the h^{-1}-boundedness of the sequence $\left\{U_{\infty}(n)\right\}$. But this contradicts

$$
\lim _{n \rightarrow \infty}|\Theta(n) \xi|=\infty, \quad \text { if } \xi_{1}=0, \xi_{2}=0, \xi_{3} \neq 0
$$

From the assertion (16) we have $\left(I-Q_{h}\right)\left[\mathbb{V}^{r}\right] \subset V_{h^{-1}, 0}^{*}$. This content and (13) imply $\left[I-Q_{h, 0}\right]\left[\mathbb{V}^{r}\right] \subset V_{h^{-1}}^{*}$. From (15) we obtain $\operatorname{dim}\left[I-Q_{h, 0}\right]\left[\mathbb{V}^{r}\right]=$ $\operatorname{dim} V_{h^{-1}}^{*}$. Therefore $\left[I-Q_{h, 0}\right]\left[\mathbb{V}^{r}\right]=V_{h^{-1}}^{*}$.
Definition 4. The dichotomy (3) is said to be exhaustive if $V_{k}=V$, and precise if $V_{h, 0}=\{0\}$.

From Lemma 2 it follows

Theorem 1.

A: If (2) has an h-dichotomy, then

$$
Q_{h^{-1}}^{*}[\mathbb{V}]=\left(I-Q_{h, 0}\right)\left[\mathbb{V}^{r}\right], Q_{h^{-1}, 0}^{*}\left[\mathbb{V}^{r}\right]=\left(I-Q_{h}\right)\left[\mathbb{V}^{r}\right]
$$

B: If (3) is compensated, then the dichotomy (3) is exhaustive iff $V_{k^{-1}, 0}^{*}=\{0\}$.
C: If (3) is compensated, then the dichotomy (3) is precise iff $V_{h^{-1}}^{*}=\mathbb{V}^{r}$.

4. Asymptotic formulae.

If (2) has the (h, k)-dichotomy (3) and this dichotomy is compensated, then according to Theorem A the projections $Q_{h}, Q_{h, 0}, Q_{k}$ satisfy

$$
\begin{equation*}
Q_{h} Q_{h, 0}=Q_{h, 0}, Q_{k} Q_{h}=Q_{h} Q_{k}=Q_{h} \tag{17}
\end{equation*}
$$

We recall that the notation ρ_{h} will indicate a sequence with the property

$$
\begin{equation*}
\lim _{n \rightarrow \infty} h(n)^{-1} \rho_{h}(n)=0 . \tag{18}
\end{equation*}
$$

4.1. An asymptotic formula to the h-bounded solutions.

Theorem 2. Let us assume that (2) has an h-dichotomy. If

$$
\begin{equation*}
K \widetilde{K} \sum_{m=0}^{\infty}\left|A(m)^{-1}\right||B(m)|<1 \tag{19}
\end{equation*}
$$

then the h-bounded solutions of (2) and the h-bounded solutions of (1) are in biunivocal correspondence, satisfying

$$
\begin{equation*}
y(n)=x(n)+\rho_{h}(n) \tag{20}
\end{equation*}
$$

The fundamental matrix Ψ of (1), $\Psi(0)=I$, satisfies

$$
\begin{equation*}
\Psi(n) \widetilde{Q}_{h}=\Phi(n) Q_{h}+\rho_{h} Q_{h} . \tag{21}
\end{equation*}
$$

Proof. According to Theorem B, the assumed h-dichotomy of (2) can be accomplished with projection $Q_{h, 0}$ satisfying (7). Given $\{x(n)\}$, an h-bounded solution of (2), we consider the integral equation
(22) $y(n)=x(n)+\sum_{m=0}^{n} \Phi(n) Q_{h, 0} \Phi^{-1}(m+1) B(m) y(m)$

$$
-\sum_{m=n}^{\infty} \Phi(n)\left(I-Q_{h, 0}\right) \Phi^{-1}(m+1) B(m) y(m) .
$$

Then, following [7] it is possible to prove that (22) has a unique h-bounded solution satisfying Eq. (1) and property (20). If we put $n=0$ in (22), then

$$
y(0)=x(0)-\sum_{m=0}^{\infty}\left(I-Q_{h, 0}\right) \Phi^{-1}(m+1) B(m) \Psi(m) y(0)
$$

The estimate (9) implies $\left|\Psi(n) \widetilde{Q}_{h}\right| \leq \widetilde{K} h(n)$, for some constant K. Henceforth

$$
\left|\sum_{m=0}^{\infty}\left(I-Q_{h, 0}\right) \Phi^{-1}(m+1) B(m) \Psi(m) \widetilde{Q}_{h}\right| \leq k \widetilde{K} \sum_{m=0}^{\infty}\left|A(m)^{-1}\right||B(m)|<1
$$

From this estimate we obtain $y(0)=\Theta_{h} x(0)$, where

$$
\begin{equation*}
\Theta_{h}=\left(I+\sum_{m=0}^{\infty}\left(I-Q_{h, 0}\right) \Phi^{-1}(m+1) B(m) \Psi(m) \widetilde{Q}_{h}\right)^{-1} \tag{23}
\end{equation*}
$$

The (22) implies

$$
\begin{equation*}
\Psi(n) \widetilde{Q}_{h} y(0)=\Phi(n) Q_{h} x(0)+\rho_{h}(n) x(0) \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
\rho_{h}(n) & =\sum_{m=0}^{n-1} \Phi(n) Q_{h, 0} \Phi^{-1}(m+1) B(m) \Psi(m) \Theta_{h} q_{h} \\
& -\sum_{m=n}^{\infty} \Phi(n)\left(I-Q_{h, 0}\right) \Phi^{-1}(m+1) B(m) \Psi(m) \Theta-h Q_{h} .
\end{aligned}
$$

from (7) and (24) it follows that ρ_{h} satisfies the property (18).

4.2. An asymptotic formula to the k-bounded solutions.

Let us now assume that (2) has an (h, k)-dichotomy. Since the pair of functions (h, k) is compensated, then (2) has both an h and a k-dichotomy. If (19) is satisfied, Theorem 2 can be applied to this k-dichotomy, and therefore the k-bounded solutions of (2) and (1) are in biunivocal correspondence with k-bounded solutions of (1); this correspondence is obtained by the k-bounded solution of the integral equation

$$
\begin{aligned}
y(n)=x(n) & +\sum_{m=0}^{n} \Phi(n) Q_{k, 0} \Phi^{-1}(m+1) B(m) y(m) \\
& -\sum_{m=n}^{\infty} \Phi(n)\left(I-Q_{k, 0}\right) \Phi^{-1}(m+1) B(m) y(m)
\end{aligned}
$$

from where it follows the asymptotic formula

$$
\begin{equation*}
y(n)=x(n)+\rho_{k}(n) \tag{25}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{k}(n)=\sum_{m=0}^{n-1} \Phi(n-1) Q_{k, 0} \Phi^{-1}(m+1) B(m) \Psi(m) \Theta_{k} Q_{k} \\
& \quad-\sum_{m=n}^{\infty} \Phi(n)\left(I-Q_{k, 0} \Phi^{-1}(m+1) B(m) \Psi(m) \Theta_{k} Q_{k},\right.
\end{aligned}
$$

and

$$
\Theta_{k}=\left\{I+\sum_{m=0}^{\infty}\left(I-Q_{k, 0}\right) \Phi^{-1}(m+1) B(m) \Psi(m) \widetilde{Q}_{k}\right\}^{-1}
$$

The asymptotic formula (25) yields the following asymptotic correspondence

$$
\begin{equation*}
\Psi(n) \widetilde{Q}_{k}=\Phi(n) Q_{k}+\rho_{k}(n) Q_{k} \tag{26}
\end{equation*}
$$

4.3. An asymptotic formula to the fundamental matrix.

Let us denote $W_{k}=\left(Q_{k}-Q_{h}\right)\left[\mathbb{V}^{r}\right]$ and $S_{k}=Q_{k}-Q_{h}$. From (17) we obtain $V_{k}=V_{h} \oplus W_{k}$. From (18) we point out to the important property

$$
\begin{equation*}
S_{k} Q_{k}=S_{k}=Q_{k} S_{k} \tag{27}
\end{equation*}
$$

Theorem 3. If (19) is satisfied and (2) has an (h,k)-dichotomy, with a compensated pair (h, k), then the fundamental matrix $\Psi(n)$ of (1) satisfies

$$
\begin{equation*}
\Psi(n)\left(\widetilde{Q}_{h} Q_{h}+\widetilde{Q}_{k} S_{k}\right)=\left(\Phi(n)+\rho_{h}(n)\right) Q_{h}+\left(\Phi(n)+\rho_{k}(n)\right) S_{k} . \tag{28}
\end{equation*}
$$

Moreover, if the (h, k)-dichotomy is exhaustive, then the matrix $\left(\widetilde{Q}_{h} Q_{h}+\widetilde{Q}_{k} S_{k}\right)$ is invertible.

Proof. The first part of the theorem is obtained by adding (21) and (26), previously being multiplied by Q_{h} and S_{k}.

Let us denote $E=\widetilde{Q}_{h} Q_{h}+\widetilde{Q}_{k} S_{k}$. Let $E \xi=0$. From (27) we may write the decomposition $\xi=\xi_{1}+\xi_{2}, \xi_{1} \in Q_{h}\left[\mathbb{V}^{r}\right], \xi_{2} \in\left(Q_{k}-Q_{h}\right)\left[\mathbb{V}^{r}\right]$. Therefore

$$
0=\Phi(n) \xi_{1}+R_{h}(n) \xi_{1}+\Phi(n) \xi_{2}+R_{k}(n) \xi_{2}
$$

This identity shows that $\xi_{2} \in V_{k, 0}$. Theorem A implies $\xi_{2} \in V_{h}$. Thus $\xi_{2}=0$. Since $\Phi(n) \xi_{1}+R_{h}(n) \xi_{1}=0$ is an h-bounded solution of Eq. (1) and the h-bounded solutions of (1), (2) are in biunivocal correspondence given by the nonsingular matrix (23). Therefore $\xi_{1}=0$ implies that E is invertible.

It is clear that if the (h, k)-dichotomy is exhaustive and $\widetilde{Q}_{h}=Q_{h}$, $\widetilde{Q}_{k}=Q_{k}$, then

$$
\widetilde{Q}_{h} Q_{h}+\widetilde{Q}_{k} S_{k}=I .
$$

4.4. An asymptotic formula to the inverse matrix.

Condition (19) can be replaced by

$$
\begin{equation*}
K \widetilde{K} \sum_{m=n_{0}}^{\infty}\left|A(m)^{-1}\right||B(m)|<\infty \tag{29}
\end{equation*}
$$

implying

$$
K \widetilde{K} \sum_{m=n_{0}}^{\infty}\left|A(m)^{-1}\right||B(m)|<1
$$

for an n_{0} sufficiently large. it is clear that the results of the previous section will remain valid on the interval $\mathbb{N}_{n_{0}}=\left\{n_{0}, n_{0}+1, n_{0}+2, \ldots\right\}$.

In this section we wish to find an asymptotic formula to the inverse of the fundamental matrix Ψ.

We may write $(A(n)+B(n))^{-1}=A^{-1}(n)+\widetilde{B}(n)$, where we have defined $\widetilde{B}(n)=(A(n)+B(n))^{-1}-A^{-1}(n)$. Condition (29) implies for a large n_{0} :

$$
K \widetilde{K} \sum_{m=n_{0}}^{\infty}|A(m)||\widetilde{B}(n)|<\infty .
$$

Let assume that (2) allows a compensated (h,k)-dichotomy. Then (4) has the compensated (k^{-1}, h^{-1})-dichotomy (5). If (29) is fulfilled, then from Theorem 3 and $\Psi(n)^{-1}=\Psi_{*}^{t}$ we obtain the following asymptotic equation for Ψ^{-1}

$$
\begin{aligned}
& \left(Q_{k^{-1}}^{*} \widetilde{Q}_{k^{-1}}^{*}+S_{h^{-1}}^{*} \widetilde{Q}_{h^{-1}}^{*}\right) \Psi^{-1}(n)= \\
& \quad Q_{k^{-1}}^{*}\left(\Phi^{-1}(n)+\rho_{k^{-1}}(n)\right)+S_{h^{-1}}^{*}\left(\Phi^{-1}(n)+\rho_{h^{-1}}(n)\right)
\end{aligned}
$$

where $S_{h^{-1}}^{*}=Q_{h^{-1}}^{*}-Q_{k^{-1}}^{*}$. this equation can be simplified if we assume that dichotomy (5) is exhaustive. According to Theorem 1, this condition is accomplished if $Q_{h, 0}=0$, that is, if the dichotomy (3) is precise. In such a case ${ }_{\widetilde{Q}}$ applying Theorem 1 we have $Q_{k^{-1}}^{*}=I-Q_{k, 0}, Q_{h^{-1}}^{*}=I, \widetilde{Q}_{k^{-1}}^{*}=I-\widetilde{Q}_{k, 0}$, $\widetilde{Q}_{h^{-1}}=I$, from where

$$
Q_{k^{-1}}^{*} \widetilde{Q}_{k^{-1}}^{*}+S_{h^{-1}}^{*} \widetilde{Q}_{h^{-1}}^{*}=\left(I-Q_{k, 0}\right)\left(I-\widetilde{Q}_{k, 0}\right)+Q_{k, 0} .
$$

In this way we have proven the following
Lemma 3. If the compensated dichotomy (3) is precise then under condition (29) the fundamental matrix Ψ satisfies

$$
\begin{aligned}
& \left(\left(I-Q_{k, 0}\right)\left(I-\widetilde{Q}_{k, 0}\right)+Q_{k, 0}\right) \Psi^{-1}(n)= \\
& \quad Q_{k^{-1}}^{*}\left(\Phi^{-1}(n)+\rho_{k^{-1}}(n)\right)+S_{h^{-1}}^{*}\left(\Phi^{-1}(n)+\rho_{h^{-1}}(n)\right)
\end{aligned}
$$

where the matrix $\left(I-Q_{k, 0}\right)\left(I-\widetilde{Q}_{k, 0}\right)+Q_{k, 0}$ is invertible.
Theorem 4. Let us assume that the discrete dichotomy (3) is compensated, exhaustive and precise. Moreover, let us assume that $\widetilde{Q}_{h}=Q_{h}, \widetilde{Q}_{k}=Q_{k}$, $\widetilde{Q}_{k, 0}=Q_{k, 0}, \widetilde{Q}_{h, 0}=Q_{h, 0}$. If condition (29) is satisfied, then the fundamental matrix ψ of (1) and its inverse have the following asymptotic representation

$$
\begin{gathered}
\Psi(n)=\left(\Phi(n)+\rho_{h}(n)\right) Q_{h}+\left(\Phi(n)+\rho_{k}(n)\right)\left(I-Q_{h}\right) . \\
\Psi^{-1}(n)=\left(I-Q_{k, 0}\right)\left(\Phi^{-1}(n)+\rho_{k^{-1}}(n)\right)+Q_{k, 0}\left(\Phi^{-1}(n)+\rho_{h^{-1}}(n)\right),
\end{gathered}
$$

From this theorem it follows an asymptotic formula for the Cauchy matrix of (1).

Theorem 5. Under conditions of Theorem 4, the assumption $Q_{k, 0}=Q_{h}$ implies the asymptotic representation

$$
\begin{aligned}
\Psi(n) & \Psi^{-1}(m)=\left(\Phi(n)+R_{h}(n)\right) Q_{h}\left(\Phi^{-1}(m)+\rho_{h^{-1}}(m)\right) \\
& \quad+\left(\Phi(n)+\rho_{k}(n)\right)\left(I-Q_{h}\right)\left(\Phi^{-1}(m)+R_{k^{-1}}(m)\right), \forall m, n
\end{aligned}
$$

5. Dichotomic chains.

Let us consider two ordered sets of positive continuous functions

$$
\mathscr{H}=\left\{h_{1}, h_{2}, \ldots, h_{p}\right\}, \quad \mathcal{K}=\left\{k_{1}, k_{2}, \ldots, k_{p}\right\},
$$

and a collection of projections matrices

$$
\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}
$$

Definition 5. We shall say that the triplet $(\mathcal{H}, \mathcal{K}, \mathcal{P})$ is a dichotomic chain for (2) iff
(L 1) For $j=1, \ldots, r$, (2) has a dichotomy $\left(h_{j}, k_{j}, P_{j}\right)$.
(L 2) $V_{k_{1}} \subset V_{k_{2}} \subset \cdots \subset V_{k_{p}}$.
We will employ the abbreviation $(\mathscr{H}, \mathcal{P})=(\mathscr{H}, \mathscr{H}, \mathcal{P})$. In applications, a convenient algebraic condition implying (L2) is given by
(L 2') For some constant D we have $k_{j}(n) \leq D k_{j+1}(n), j=1,2, \ldots, r-1$.
A more stringent condition than ($\mathrm{L} 2^{\prime}$) is the uniform condition
(L 2") For some constant D we have

$$
k_{j}(n) k_{j}(m)^{-1} \leq D k_{j+1}(n) k_{j+1}(m)^{-1}, \quad j=1,2, \ldots, r-1, \quad n \geq m
$$

Theorem 6. Let us assume that (2) has the dichotomic chain ($\mathcal{H}, \mathcal{K}, \mathcal{P}$), then (2) has a dichotomic chain $\left(\mathscr{H}, \mathcal{K}, \mathcal{P}^{\prime}\right)$, where the projections $\mathcal{P}^{\prime}=$ $\left\{P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{p}^{\prime}\right\}$ are respectively similar to the projections of the collection $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}$.

Proof. Applying Theorem B to each $\left(h_{i}, k_{i}\right)$-dichotomy of $(\mathcal{H}, \mathcal{K}, \mathcal{P})$ we obtain an $\left(h_{i}, k_{i}\right)$-dichotomy for (2) with a projection P_{i}^{\prime} similar to projection P_{i}. In [8] it is proven that for any (h, k)-dichotomy of System (2) we have the properties dimension $\left[V_{h}\right]=$ dimension $\left[\widetilde{V}_{h}\right]$, dimension $\left[\widetilde{V}_{h}\right]$, dimension $\left[V_{k}\right]=$ dimension $\left[\widetilde{V}_{k}\right]$. Hence, from (L 2) we obtain $\widetilde{V}_{k_{1}} \subset \widetilde{V}_{k_{2}} \subset \cdots \subset \widetilde{V}_{k_{p}}$. If $\mathcal{P}^{\prime}=\left\{P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{p}^{\prime}\right\}$, then $\left(\mathcal{H}, \mathcal{K}, \mathscr{P}^{\prime}\right)$ is required dichotomic chain.
Remark 1. In what follows we will assume that all (h, k)-dichotomies of the dichotomic chain $(\mathcal{H}, \mathcal{K}, \mathcal{P})\left(\right.$ respectively $\left.\left(\mathcal{H}, \mathcal{K}, \mathcal{P}^{\prime}\right)\right)$ are defined with a same constant K (respectively \widetilde{K}).

Assume that (2) has the dichotomic chain $(\mathscr{H}, \mathcal{K}, \mathcal{P})$. We will perform the following construction: Let us define $U_{h_{1}}=V_{h_{1}}$. Further, if $V_{h}=V_{k_{1}}$ we define $W_{k_{1}}=\{0\}$. If $V_{h_{1}}$ is properly contained in $V_{k_{1}}$, then we define $W_{k_{1}}$ as a complementary subspace to $V_{h_{1}}$ in the space $V_{k_{1}}$. In both cases we can write the disjoint summa $V_{k_{1}}=\{0\}+U_{h_{1}}+W_{k_{1}}$. thus in the space $U_{h_{1}}$ we keep all the initial conditions corresponding to the h_{1}-bounded solutions of (2). To the space $W_{k_{1}}$ we assign the initial conditions of k_{1}-bounded solutions that are not h_{1}-bounded. We repeat this process for the space $V_{k_{2}}$ in the following manner: If $V_{k_{2}}=V_{k_{1}}$, we define $U_{k_{2}}=W_{k_{2}}=\{0\}$. If $V_{k_{1}}$ is properly contained in $V_{k_{2}}$, then we define $U_{h_{2}}$ as the subspace of the initial condition of the $h_{2^{-}}$ bounded solutions not contained in $V_{h_{1}}$ and the subspace $W_{k_{2}}$ groups the initial conditions of k_{2}-solutions not included in $U_{h_{2}}$; therefore $V_{k_{2}}$ can be written as a disjoint sum $V_{k_{2}}=V_{k_{1}}+U_{k_{2}}+W_{k_{2}}$. Carrying out this process further, we obtain the decomposition:

$$
\begin{align*}
& V_{k_{1}}=\{0\}+U_{h_{1}}+W_{k_{1}} \\
& V_{k_{2}}=V_{k_{1}}+U_{h_{2}}+W_{k_{2}} \\
& \begin{array}{ccc}
\vdots \\
V_{k_{p}} & = & \vdots \\
V_{k_{r-1}}
\end{array}+\begin{array}{c}
U_{h_{p}}
\end{array}+\begin{array}{c}
W_{k_{p}}
\end{array} \tag{30}
\end{align*}
$$

In applications the table (30) does not give a good decomposition of the subspaces of initial conditions corresponding to solutions with different growths; for example if $k_{1}=k_{2}=\cdots=k_{p}$, all subspaces of table (30) would be trivial, except $U_{h_{1}}$ and maybe $W_{k_{1}}$. This situation can be improved by asking from the dichotomic chain the property defined as follows.
Definition 6. We shall say that the $L D(\mathcal{H}, k, \mathcal{P})$ is a stratified iff

$$
U_{h_{1}} \subset V_{k_{1}} \subset U_{h_{2}} \subset V_{k_{2}} \subset \ldots \subset U_{h_{p}} \subset V_{k_{p}}
$$

This property is given if for some constant D we have $k_{j}(t) \leq D h_{j+1}(t)$, $j=1,2, \ldots, r-1$. We emphasize that the dichotomic chain $(\mathcal{H}, \mathcal{P})$ is stratified.

6. Asymptotic integration.

In this section we generalize the asymptotic formula (28) under the existence of a dichotomic chain for (2). Let us consider a chain ($\mathcal{H}, \mathcal{K}, \mathcal{P}$). According to the table (30), we define the projections matrices R_{j}, S_{j} such that $R_{j}\left[\mathbb{V}^{r}\right]=U_{h_{j}}, S_{j}\left[\mathbb{V}^{r}\right]=W_{k_{j}}$. From the construction of subspaces $U_{h_{j}}$ and $V_{k_{j}}$ we have $R_{j} R_{i}=0, S_{j} S_{i}=0$, if $i \neq j, R_{j} S_{i}=0$ for all indexes i, j. Moreover, since the range of projections R_{j} and S_{j} are respectively contained in $V_{h_{j}}$ and $V_{k_{j}}$, we have the identities

$$
\begin{equation*}
Q_{h_{j}} R_{j}=R_{j}, Q_{k_{j}} S_{j}=S_{j} . \tag{31}
\end{equation*}
$$

Theorem 7. Let us assume that (2) has the dichotomic chain ($Һ, \mathcal{K}, \mathcal{P}$) and condition (19) is satisfied (see Remark 1), then the fundamental matrix Ψ of (2), $\Psi\left(t_{0}\right)=I$, has the property

$$
\begin{equation*}
\left.\left.\Psi(n) E=\sum_{j=1}^{r}\left(\Phi(n)+\rho h_{j}(n)\right)\right) R_{j}+\sum_{j=1}^{r}\left(\Phi(n)+\rho k_{j}(n)\right)\right) S_{j}, \tag{32}
\end{equation*}
$$

where some of projections R_{j} or S_{j} in (32) could be equal zero, and E is defined by

$$
\begin{equation*}
E=\sum_{j=1}^{p}\left(\widetilde{Q}_{h_{+j}} R_{j}+\widetilde{Q}_{k_{j}} S_{j}\right) \tag{3}
\end{equation*}
$$

Proof. Applying Theorem 2 to each $\left(h_{j}, k_{j}\right)$-dichotomy we obtain from (21), (26) the decompositions $\Psi(n) \widetilde{Q}_{h_{j}}=\left(\Phi(n)+\rho h_{j}(n)\right) Q_{h_{j}}$ and $\Psi(n) \widetilde{Q}_{k_{j}}=$ $(\Phi(n)+\rho k(n)) Q_{k_{1}}$. Respectively multiplying each of these formulas by R_{j} and S_{j} and using (31) we obtain $\Psi(n) Q_{k_{j}} R_{j}=\left(\Phi(n)+o\left(h_{j}(n)\right)\right) R_{j}$ and $\Psi(n) \widetilde{Q}_{k_{j}} S_{j}=(\Phi(n)+o(k(n))) S_{j}$. From these formulas it follows (32).

Definition 7. The chain $(\mathscr{H}, k, \mathcal{P})$ is called exhaustive iff $V_{k_{p}}=\left[\mathbb{V}^{r}\right]$.

For exhaustive chains the projections defined by the table (30) have the property

$$
I=Q_{k_{p}}=\sum_{j=1}^{p} R_{j}+\sum_{j=1}^{p} S_{j}
$$

From this identity, we can establish the following version of the Levinson asymptotic theorem for (1).

Theorem 8. Under conditions of Theorem 2, if the chain $(\mathscr{H}, \mathcal{K}, \mathcal{P})$ is exhaustive, then the matrix E defined by (33) is invertible.
Proof. Let $E \xi=0$. Then

$$
0=\sum_{j=1}^{p}\left(\Phi(n)+\rho h_{j}(n)\right) R_{j} \xi+\sum_{j=1}^{p}\left(\Phi(n)+\rho k_{j}(n)\right) S_{j} \xi .
$$

From the construction of table (30), we obtain that the solution $\Phi(n) S_{p} \xi$ of (2) satisfies $\Phi(n) S_{p} \xi=\rho_{k_{p}(n)}$; therefore $S_{p} \xi \in V_{k_{p}, 0}$. Applying Theorem A to the dichotomy (h_{p}, k_{p}, P_{p}) we obtain $S_{p} \xi \in V_{h_{p}}$. since $S_{p} \xi \in W_{k_{p}}$ the last row of table (30) says that $S_{p} \xi=0$. henceforth

$$
0=\sum_{j=1}^{p}\left(\Phi(n)+\rho h_{j}(n)\right) R_{j} \xi+\sum_{j=1}^{p-1}\left(\Phi(n)+\rho k_{j}(n)\right) S_{j} \xi .
$$

The right hand side of this last equation is an h_{p}-bounded solution of (2). But under condition (19), the h_{p}-bounded solutions of (1), (2) are in biunivocal correspondence. Therefore

$$
\begin{equation*}
0=\sum_{j=1}^{r} \Phi(n) R_{j} \xi+\sum_{j=1}^{r-1} \Phi(t) S_{j} \xi+\Phi(n) R_{p} \xi \tag{34}
\end{equation*}
$$

Since $\sum_{j=1}^{r-1} \Phi(n) R_{j} \xi+\sum_{j=1}^{r-1} \Phi(n) S_{j} \xi \in V_{k_{r-1}}$ and $\Phi(n) R_{p} \xi \in U_{h_{p}}$, we obtain from the last row of table (30) $R_{p} \xi=0$. Inasmuch as $R_{p} \xi=0$ and $S_{p} \xi=0$, we obtain from (34)

$$
0=\sum_{j=1}^{r-1}\left(\Phi(n)+\rho h_{j}(n)\right) R_{j}+\sum_{j=1}^{r-1}\left(\Phi(n)+\rho k_{j}(n)\right) S_{j}
$$

By repeating this reasoning we will obtain $R_{j} \xi=0, S_{j} \xi=0, \forall j$ implying $\xi=\sum_{j=1}^{r}\left(R_{j}+S_{j}\right) \xi=0$. Therefore, E is an invertible matrix

Dichotomic chains can be used in obtaining an asymptotic decomposition of the inverse matrix Ψ^{-1}. This can be accomplished in a similar way to the decompositions obtained in Subsection 4.4.

Acknowledgements. Supported by Proyecto CI-5-025-00730/95.

REFERENCES

[1] R.P. Agarwal, Difference Equations and Inequalities, (Theory, Methods and Application), Pure and Applied Matematics, Marcel Dekker, New York, 1992.
[2] Z. Benzaid - D.A. Lutz, Asymptotic representation of perturbed systems of linear difference equations, Studies in Appl. Math., 77 (1978), pp. 195-221.
[3] Ch.V. Coffman, Asymptotic behavior of solutions of ordinary difference equations, Trans. Amer. Math. Soc., 10-1 (1964), pp. 22-51.
[4] W.A. Coppel, Dichotomies in Stability Theory, Lectures Notes in Mathematics 629, Berlin, 1978.
[5] N. Levinson, The asymptotic nature of solutions of linear differential equations, Duke Math. J., 15 (1948), pp. 111-126.
[6] Z-H. Li, The asymptotic estimates of solutions of difference eqautions, J. Math. Anal. Appl., 94 (1983), pp. 181-192.
[7] R. Naulin - M. Pinto, Stability of discretes dichotomies for linear difference systems, J. of Difference Eqns. and Appl., 3 (1995), pp. 101-123.
[8] R. Naulin - M. Pinto, Projections for dichotomies in linear differential equations, Applicable Analysis, 69-3 (1998), pp. 239-255.
[9] G. Papaschinopoulos, Exponential separation, exponential dichotomy, and almost periodicity of linear difference equations, J. Math. Anal. appl., 120-1 (1986), pp. 276-287.
[10] M. Pinto, Asymptotic equivalence of difference systems, J. Difference Eqns. and Appl., 1 (1995), pp. 249-262.
[11] M. Pinto, Discrete dichotomies, Computers Math. Applic., 28 (1994), pp. 259270.

Departamento de Matemáticas,
Universidad de Oriente, Cumaná 6101 A-285 (VENEZUELA)

