THE ASYMPTOTIC REPRESENTATION OF THE FUNDAMENTAL MATRIX OF A DISCRETE SYSTEM

RAÚL NAULIN

In this paper by using the notion of discrete dichotomies, an asymptotic representation of Φ , the fundamental matrix of the linear difference equation y(n + 1) = (A(n) + B(n))y(n) is given.

1. Introduction.

An important problem in the theory of difference equations [1] is the description of the solutions of the perturbed system

(1)
$$y(n+1) = (A(n) + B(n))y(n), n \in \mathbb{N},$$

where the solutions of the system

(2)
$$x(n+1) = A(n)x(n), \quad n \in \mathbb{N} = \{0, 1, 2, 3, \ldots\},\$$

or equivalently, the fundamental matrix of (2)

$$\Phi(n) = \prod_{m=0}^{n-1} A(m) = A(n-1) \dots A(2)A(1), \quad \Phi(0) = I,$$

Entrato in Redazione il 9 marzo 1999.

1991 AMS subject classification: Primary 39A11, 39A10

Key words and phrases: Difference equations, Asymptotic integration of nondiagonal systems.

RAÚL NAULIN

is assumed to be known. Among the existing methods in solving this problem [2], [3], [6] we emphasize the theory of asymptotic integration, developed by Levinson for diagonal systems of ordinary differential equations [5], and lately adapted to difference equations by Devinatz and Benzaid-Lytz [2]. This method applies to (1), where $A(n) = \text{diag}\{\lambda_1(n), \lambda_2(n), \dots, \lambda_r(n)\}$, when the coefficients of these diagonal matrices satisfy the so termed Levinson dichotomic conditions (2). A second method relies on the notion of asymptotic equivalence [11] allowing the asymptotic integration of the solutions of (1) under the assumption that (2) has some discrete dichotomy [10], [11].

Definition 1. [7], [11]. Let (h, k) be a pair of sequences of positive numbers. We shall say that (1) has a discrete (h, k)-dichotomy iff there exists an orthogonal projection P and a positive constant $K \ge 1$ such that

(3)
$$\begin{aligned} |\Phi(n)P(\Phi^{-1}(m)| \le Kh(n)h(m)^{-1}, \quad n \ge m, \\ |\Phi(n)(I-O)\Phi^{-1}(m)| \le Kk(n)k(m)^{-1}, \quad m \ge n. \end{aligned}$$

The case when h = k, is sample called an *h*-dichotomy.

If (2) yields a discrete dichotomy, and the sequence $\{B(n)\}$ is summable, then the *h*-bounded solutions (respectively the *k*-bounded solutions) of (1) and (2) are biunivocal correspondence. This correspondence is obtained by means of the solutions of the integral equation

$$y(n) = x(n) + \sum_{m=n_0}^{n-1} \phi(n) P \phi^{-1}(m) b(m) - \sum_{m=n}^{\infty} \phi(n) (I - P) \phi^{-1}(m) B(m).$$

The main result on the asymptotic integration of *h*-bounded solutions establishes that if solutions $\{y(n)\}$, $\{x(n)\}$ of (1), (2) respectively are in correspondence, then

$$y(n) = x(n) + \rho_h(n),$$

where ρ_h denotes a sequence satisfying

$$\lim_{n \to \infty} h(n)^{-1} \rho_h(n) = 0, \quad h(n)^{-1} := 1/h(n).$$

In this paper we will extend this result in the following respect: we will assume that (2) has a family of (h_i, k_i) -dichotomies. Then, for Ψ , the

fundamental matrix of (1), we will obtain the asymptotic formula

$$\Psi(n)E = \sum_{i=1}^{p} ((\Phi(n) + \rho_{h_i}(n))R_i + (\Phi(n) + \rho_{k_i}(n))S_i),$$

where *E* is an invertible matrix, R_i and S_i are orthogonal projections satisfying $\sum_{i=1}^{p} (R_i + S_i) = I$.

2. Preliminaries.

In what follows \mathbb{V}^r will denote the vector space \mathbb{R}^r or \mathbb{C}^r , where a norm $|\cdot|$ is defined. If *A* is $r \times r$ matrix, then |A| will denote the corresponding operator norm. By $x(n, \xi)$ and $y(n, \xi)$ we will denote the solutions of (2) and (1) satisfying $x(0, \xi) = y(0, \xi) = \xi$.

Definition 2. We shall say that the ordered pair of sequences (h, k) are compensated iff $h(n)k(m) \le Ck(n)h(m)$, $n \ge m$ for some constant C.

Definition 3. We shall denote by ℓ_h^{∞} and ℓ_h^1 the following sequential spaces

$$x \in \ell_h^{\infty} \quad iff \quad |x|_h^{\infty} = \sup\{|h(n)^{-1}x(n)| : n \in N\} < \infty.$$
$$x \in \ell_h^1 \quad iff \quad |x|_h^1 := \sum_{n=0}^{\infty} |h(n)^{-1}x(n)| < \infty.$$

The elements of the space ℓ_h^{∞} will be called *h*-bounded sequences. Further, we define the subspaces of initial conditions $V_h = \{\xi \in \mathbb{V}^r : x(\cdot, \xi) \in \ell_h^{\infty}\},$ $V_{h,0} = \{\xi \in V_h : \lim_{n \to \infty} h(n)^{-1}x(n, \xi) = 0\}.$ Q_h and $Q_{h,0}$ will denote projection matrices such that $Q_h[\mathbb{V}^r] = V_h, Q_{h,0}[\mathbb{V}^r] = V_{h,0}$. Similar subspaces and projections defined for Eq. (1) will be distinguished by a tilde: $\widetilde{V}_h, \widetilde{V}_{h,0}, \widetilde{Q}_h$, etc.

In our paper we will deal with the adjoint system:

(4)
$$z(n+1) = A_*(n)z(n),$$

where $C_* = \overline{(C^{-1})}^t$ is the transpose of the complex conjugate of the inverse matrix C^{-1} . Is clear that ϕ_* is the fundamental matrix of (4). If (2) has an (h, k)-dichotomy with an orthogonal projection P, then (4) has a (k^{-1}, h^{-1}) -dichotomy with projection I - P:

(5)
$$\begin{aligned} |\phi_*(n)(I-P)\Phi_*^{-1}(m)| &\leq Kk(n)^{-1}(n)k(m) \quad , n \geq m, \\ |\Phi_*(n)P\Phi_*^{-1}(m)| &\leq kh(n)^{-1}h(m), quadm \geq n. \end{aligned}$$

Its clear that if the pair (h, k) is compensated, then so is the pair (k^{-1}, h^{-1}) .

The proof of the following theorem is contained in [7].

Theorem A. If (2) has an (h, k)-dichotomy with projection matrix P, then (1) has an (h, k)-dichotomy with projection matrix Q iff

(6)
$$V_{h,0} \subset V_{k,0} \subset Q[\mathbb{V}^r] \subset V_h \subset V_k.$$

The projection P of dichotomy (3) can be chosen with the property

(7)
$$\lim_{n \to \infty} h(n)^{-1} \Phi(n) P = 0$$

iff $V_{h,0} = V_{k,0}$.

Theorem A can be applied to (4). Consequently, if (4) has the dichotomy (5), then it has a (k^{-1}, h^{-1}) -dichotomy with projection q iff

(8)
$$V_{k^{-1},0}^* \subset V_{h^{-1},0}^* \subset Q[\mathbb{V}^r] \subset V_{k^{-1}}^* \subset V_{h^{-1}}^*,$$

where $V_{h^{-1}}^*$ is the subspace of initial conditions of (4) of h^{-1} -bounded solutions etc.

The following result was proved in [7].

Theorem B. Let us suppose (2) has an (h, k)-dichotomy with projection P. If $\{|A(n)^{-1}||B(n)|\} \in \ell^1$, then (1) has an (h, k)-dichotomy

(9)
$$\begin{aligned} |\widetilde{\Phi}(n)\widetilde{P}\widetilde{\Phi}^{-1}(m)| &\leq \widetilde{K}h(n)h(m)^{-1}, \quad n \geq m, \\ |\widetilde{\Phi}(n)(I - \widetilde{P})\widetilde{\Phi}^{-1}(m)| &\leq \widetilde{K}k(n)k(m)^{-1}, \quad m \geq n, \end{aligned}$$

where \widetilde{P} is a projection similar to projection P.

3. *h*-bounded solutions.

Before we go ahead, we will establish some correspondence between the h-bounded solutions of (2) with those of its adjoint (4).

Lemma 1. Assume that (2) has an h-dichotomy. If for some subsequence $\{n_j\}$ one has $\lim_{j\to\infty} h(n_j)^{-1}x(n_j,\xi) = 0$, then $\lim_{n\to\infty} h(n)^{-1}x(n,\xi) = 0$.

Proof. Following Proposition 2.2 in [4], let us denote $x(n, \xi) = x_1(n) + x_2(n)$, $x_1(n) = P\Phi(n)\xi$, $x_2(n) = (I - P)\Phi(n)\xi$. It is easy to verify that

$$|h(n)^{-1}x_1(n)| \le K |h(n_j)^{-1}x(n_j)|$$
 $n > n_j,$
 $|h(n)^{-1}x_2(n)| \le K |(n_j)^{-1}x(n_j)|,$ $n < n_j,$

from where the proof of the lemma follows. \Box

Lemma 2. If (2) has an h-dichotomy, then

$$V_{h^{-1}}^* = (I - Q_{h,0})[\mathbb{V}^r], \ V_{h^{-1},0}^* = (I - Q_h)[\mathbb{V}].$$

Proof. The existence of an *h*-dichotomy for (2) with projection *P* implies the existence of two *h*-dichotomy for this system, respectively with projection Q_h and $Q_{h,0}$. Without loss of generality we can assume that $Q_{h,0}$ and Q_h have the diagonal forms $Q_{h,0} = \text{diag}\{I_0, 0, 0\}, Q_h = \text{diag}\{I_0, I_1, 0\}$, where I_0 is a unit matrix of dimensions $r_0 \times r_0, r_0 = \text{dim}[V_{h,0}]$, and I_1 is a unite matrix of dimensions $r_1 \times r_1$, such that $r_0 + r_1 = \text{dim}[V_h]$. According to Lemma 1 in [9] (see also Lemma 5.2 in [4]), there exists a bounded sequence $S : \mathbb{N} \to \mathbb{V}^{r+r}$, such that $S^{-1} : \mathbb{N} \to \mathbb{V}^{r+r}$ exists, is bounded, and the change of variables x(n) = S(n)w(n) reduces (2) to the form

(10)
$$\begin{pmatrix} w_0(n+1) \\ w_1(n+1) \\ w_{\infty}(n+1) \end{pmatrix} = \begin{pmatrix} C^0(n) & 0 & 0 \\ 0 & C^1(n) & 0 \\ 0 & 0 & C^{\infty}(n) \end{pmatrix} \begin{pmatrix} w_0(n) \\ w_1(n) \\ w_{\infty}(n) \end{pmatrix}$$

where

$$w_0(n) \in V^{r_0}, \ C^0(n) \in V^{r_0 \times r_0}, \ w_1(n) \in V^{r_1}, \ C^1(n) \in V^{r_1 \times r_1} \\ w_{\infty}(n) \in V^{r_{\infty}}, \ C^{\infty}(n) \in V^{r_{\infty} \times r_{\infty}}, \ r_{\infty} := r - (r_1 + r_0).$$

By a straightforward calculation, we may verify that the change of variables $z(n) = S_*(n)u(n)$ reduces the adjoint equation of (10) to the diagonal form

(11)
$$\begin{pmatrix} u_0(n+1) \\ u_1(n+1) \\ u_{\infty}(n+1) \end{pmatrix} = \begin{pmatrix} C_*^0(n) & 0 & 0 \\ 0 & C_*^1(n) & 0 \\ 0 & 0 & C_*^{\infty}(n) \end{pmatrix} \begin{pmatrix} u_0(n) \\ u_1(n) \\ u_{\infty}(n) \end{pmatrix}$$

For (10) we have $V_{h,0} = Q_{h,0}[\mathbb{V}^r]$, $V_h = Q_h[\mathbb{V}^r]$. We may write Θ , the fundamental matrix of (10), in the form

$$\Theta(n) = \operatorname{diag}\{U_0(n), U_1(n), U_\infty(n)\},\$$

where $U_0(n) \in V^{r_0 \times r_0}$, $U_1(n) \in V^{r_1 \times r_1}$ and $U_{\infty}(n) \in V^{r_{\infty} \times r_{\infty}}$.

Regarding (11), let us consider the direct sum $\mathbb{V}^r = V_{h^{-1}}^* \otimes W_{h^{-1}}^*$, where $V_{h^{-1}}^*$ is a complementary subspace of $V_{h^{-1}}^*$. For the initial condition $\xi = \operatorname{column}{\xi_1, 0, 0}$, we have $\lim_{n \to \infty} h(n)^{-1} \Theta(n) \xi = 0$, and $\{\Theta(n)\}\xi$ is h^{-1} bounded if $\xi = \operatorname{column}{\xi_1, \xi_2, 0}$. From these properties

$$\lim_{n \to \infty} |h(n)\Theta_*(n)\xi| = \infty, \quad \text{if } \xi_2 = 0, \ \xi_3 = 0, \ \xi_1 \neq 0$$

follows. Otherwise, the boundedness of some subsequence $\Theta_*(n_j)\xi$ would lead to the contradictory equation $|\xi|^2 = \langle h(n_j)^{-1}\Phi(n_j)\xi, h(n_j)\Phi_*(n_j)\xi \rangle >= 0$, where $\langle x, y \rangle = \sum_{i=1}^r x_i \bar{y}_i$. Thus, we have proven

(12)
$$V_{h,0} \subset W_{h^{-1}}^*.$$

Further, for some constants K, M, one satisfies $K \ge |h(n)^{-1}U_1(n)| \ge M > 0$, $\forall n \in \mathbb{N}$. This implies

(13)
$$M^{-1} \ge |h(n)U_{1^*}(n)| \ge K^{-1}, \ \forall n \in \mathbb{N}.$$

The boundedness of $\{h(n)U_{1^*}(n)\}$ and $\{h(n)U_{\infty^*}(n)\}$ (the boundedness of this last sequence follows from the fact that the adjoint (11) has an h^{-1} -dichotomy with projection $I - Q_h$ implies

(14)
$$r_1 + r_\infty \le \dim V_{h^{-1}}^*.$$

Since dim $V_{h,0} = r_0$, from (12) and (14) we obtain $r_0 = \dim W_{h^{-1}}^*$. Therefore

(15)
$$V_{h,0} = W_{h^{-1}}^*.$$

From (14) and (15) we obtain $(I - Q_{h,0})[\mathbb{V}^r] = V_{h^{-1}}^*$.

Let us prove that

(16)
$$\lim_{n \to \infty} |(n)\Theta_*(n)\xi| = 0, \quad \text{if } \xi_1 = 0, \, \xi_2 = 0.$$

Assuming the contrary, from Lemma 1, we would have for all values of n the estimate $K \ge |h(n)U_{\infty^*}(n)| \ge M > 0$, for some constant M. This implies the h^{-1} -boundedness of the sequence $\{U_{\infty}(n)\}$. But this contradicts

$$\lim_{n \to \infty} |\Theta(n)\xi| = \infty, \quad \text{if } \xi_1 = 0, \ \xi_2 = 0, \ \xi_3 \neq 0.$$

From the assertion (16) we have $(I - Q_h)[\mathbb{V}^r] \subset V_{h^{-1},0}^*$. This content and (13) imply $[I - Q_{h,0}][\mathbb{V}^r] \subset V_{h^{-1}}^*$. From (15) we obtain dim $[I - Q_{h,0}][\mathbb{V}^r] = \dim V_{h^{-1}}^*$. Therefore $[I - Q_{h,0}][\mathbb{V}^r] = V_{h^{-1}}^*$. \Box

Definition 4. The dichotomy (3) is said to be exhaustive if $V_k = V$, and precise if $V_{h,0} = \{0\}$.

From Lemma 2 it follows

Theorem 1.

A: If (2) has an h-dichotomy, then

$$Q_{h^{-1}}^*[\mathbb{V}] = (I - Q_{h,0})[\mathbb{V}^r], \ Q_{h^{-1},0}^*[\mathbb{V}^r] = (I - Q_h)[\mathbb{V}^r]$$

B: If (3) is compensated, then the dichotomy (3) is exhaustive iff $V_{k^{-1},0}^* = \{0\}$. C: If (3) is compensated, then the dichotomy (3) is precise iff $V_{h^{-1}}^* = \mathbb{V}^r$.

4. Asymptotic formulae.

If (2) has the (h, k)-dichotomy (3) and this dichotomy is compensated, then according to Theorem A the projections Q_h , $Q_{h,0}$, Q_k satisfy

(17)
$$Q_h Q_{h,0} = Q_{h,0}, \ Q_k Q_h = Q_h Q_k = Q_h$$

We recall that the notation ρ_h will indicate a sequence with the property

(18)
$$\lim_{n \to \infty} h(n)^{-1} \rho_h(n) = 0.$$

4.1. An asymptotic formula to the h-bounded solutions.

Theorem 2. Let us assume that (2) has an h-dichotomy. If

(19)
$$K\widetilde{K}\sum_{m=0}^{\infty}|A(m)^{-1}||B(m)| < 1,$$

then the h-bounded solutions of (2) and the h-bounded solutions of (1) are in biunivocal correspondence, satisfying

(20)
$$y(n) = x(n) + \rho_h(n).$$

The fundamental matrix Ψ of (1), $\Psi(0) = I$, satisfies

(21)
$$\Psi(n)\widetilde{Q}_h = \Phi(n)Q_h + \rho_h Q_h.$$

Proof. According to Theorem B, the assumed *h*-dichotomy of (2) can be accomplished with projection $Q_{h,0}$ satisfying (7). Given $\{x(n)\}$, an *h*-bounded solution of (2), we consider the integral equation

(22)
$$y(n) = x(n) + \sum_{m=0}^{n} \Phi(n)Q_{h,0}\Phi^{-1}(m+1)B(m)y(m)$$

 $-\sum_{m=n}^{\infty} \Phi(n)(I - Q_{h,0})\Phi^{-1}(m+1)B(m)y(m).$

Then, following [7] it is possible to prove that (22) has a unique *h*-bounded solution satisfying Eq. (1) and property (20). If we put n = 0 in (22), then

$$y(0) = x(0) - \sum_{m=0}^{\infty} (I - Q_{h,0}) \Phi^{-1}(m+1)B(m)\Psi(m)y(0).$$

The estimate (9) implies $|\Psi(n)\widetilde{Q}_h| \leq \widetilde{K}h(n)$, for some constant K. Henceforth

$$|\sum_{m=0}^{\infty} (I - Q_{h,0}) \Phi^{-1}(m+1) B(m) \Psi(m) \widetilde{Q}_h| \le k \widetilde{K} \sum_{m=0}^{\infty} |A(m)^{-1}| |B(m)| < 1.$$

From this estimate we obtain $y(0) = \Theta_h x(0)$, where

(23)
$$\Theta_h = \left(I + \sum_{m=0}^{\infty} (I - Q_{h,0}) \Phi^{-1}(m+1) B(m) \Psi(m) \widetilde{Q}_h\right)^{-1}$$

The (22) implies

(24)
$$\Psi(n)\widetilde{Q}_{h}y(0) = \Phi(n)Q_{h}x(0) + \rho_{h}(n)x(0),$$

where

$$\rho_h(n) = \sum_{m=0}^{n-1} \Phi(n) Q_{h,0} \Phi^{-1}(m+1) B(m) \Psi(m) \Theta_h q_h$$
$$- \sum_{m=n}^{\infty} \Phi(n) (I - Q_{h,0}) \Phi^{-1}(m+1) B(m) \Psi(m) \Theta - h Q_h.$$

from (7) and (24) it follows that ρ_h satisfies the property (18).

4.2. An asymptotic formula to the k-bounded solutions.

Let us now assume that (2) has an (h, k)-dichotomy. Since the pair of functions (h, k) is compensated, then (2) has both an h and a k-dichotomy. If (19) is satisfied, Theorem 2 can be applied to this k-dichotomy, and therefore the k-bounded solutions of (2) and (1) are in biunivocal correspondence with k-bounded solutions of (1); this correspondence is obtained by the k-bounded solution of the integral equation

$$y(n) = x(n) + \sum_{m=0}^{n} \Phi(n)Q_{k,0}\Phi^{-1}(m+1)B(m)y(m) - \sum_{m=n}^{\infty} \Phi(n)(I - Q_{k,0})\Phi^{-1}(m+1)B(m)y(m),$$

from where it follows the asymptotic formula

(25)
$$y(n) = x(n) + \rho_k(n),$$

where

$$R_{k}(n) = \sum_{m=0}^{n-1} \Phi(n-1)Q_{k,0}\Phi^{-1}(m+1)B(m)\Psi(m)\Theta_{k}Q_{k}$$
$$-\sum_{m=n}^{\infty} \Phi(n)(I-Q_{k,0}\Phi^{-1}(m+1)B(m)\Psi(m)\Theta_{k}Q_{k},$$

and

$$\Theta_k = \left\{ I + \sum_{m=0}^{\infty} (I - Q_{k,0}) \Phi^{-1}(m+1) B(m) \Psi(m) \widetilde{Q}_k \right\}^{-1}.$$

The asymptotic formula (25) yields the following asymptotic correspondence

(26)
$$\Psi(n)\widetilde{Q}_k = \Phi(n)Q_k + \rho_k(n)Q_k.$$

4.3. An asymptotic formula to the fundamental matrix.

Let us denote $W_k = (Q_k - Q_h)[\mathbb{V}^r]$ and $S_k = Q_k - Q_h$. From (17) we obtain $V_k = V_h \oplus W_k$. From (18) we point out to the important property

$$S_k Q_k = S_k = Q_k S_k.$$

Theorem 3. If (19) is satisfied and (2) has an (h, k)-dichotomy, with a compensated pair (h, k), then the fundamental matrix $\Psi(n)$ of (1) satisfies

(28)
$$\Psi(n)(\widetilde{Q}_h Q_h + \widetilde{Q}_k S_k) = (\Phi(n) + \rho_h(n))Q_h + (\Phi(n) + \rho_k(n))S_k.$$

Moreover, if the (h, k)-dichotomy is exhaustive, then the matrix $(\widetilde{Q}_h Q_h + \widetilde{Q}_k S_k)$ is invertible.

Proof. The first part of the theorem is obtained by adding (21) and (26), previously being multiplied by Q_h and S_k .

Let us denote $E = \widetilde{Q}_h Q_h + \widetilde{Q}_k S_k$. Let $E\xi = 0$. From (27) we may write the decomposition $\xi = \xi_1 + \xi_2, \xi_1 \in Q_h[\mathbb{V}^r], \xi_2 \in (Q_k - Q_h)[\mathbb{V}^r]$. Therefore

$$0 = \Phi(n)\xi_1 + R_h(n)\xi_1 + \Phi(n)\xi_2 + R_k(n)\xi_2.$$

This identity shows that $\xi_2 \in V_{k,0}$. Theorem A implies $\xi_2 \in V_h$. Thus $\xi_2 = 0$. Since $\Phi(n)\xi_1 + R_h(n)\xi_1 = 0$ is an *h*-bounded solution of Eq. (1) and the *h*-bounded solutions of (1), (2) are in biunivocal correspondence given by the nonsingular matrix (23). Therefore $\xi_1 = 0$ implies that *E* is invertible.

It is clear that if the (h, k)-dichotomy is exhaustive and $\widetilde{Q}_h = Q_h$, $\widetilde{Q}_k = Q_k$, then

$$\tilde{Q}_h Q_h + \tilde{Q}_k S_k = I$$

4.4. An asymptotic formula to the inverse matrix.

Condition (19) can be replaced by

(29)
$$K\widetilde{K}\sum_{m=n_0}^{\infty}|A(m)^{-1}||B(m)| < \infty,$$

implying

$$K\widetilde{K}\sum_{m=n_0}^{\infty}|A(m)^{-1}||B(m)|<1,$$

for an n_0 sufficiently large. it is clear that the results of the previous section will remain valid on the interval $\mathbb{N}_{n_0} = \{n_0, n_0 + 1, n_0 + 2, \ldots\}$.

In this section we wish to find an asymptotic formula to the inverse of the fundamental matrix Ψ .

We may write $(A(n) + B(n))^{-1} = A^{-1}(n) + \widetilde{B}(n)$, where we have defined $\widetilde{B}(n) = (A(n) + B(n))^{-1} - A^{-1}(n)$. Condition (29) implies for a large n_0 :

$$K\widetilde{K}\sum_{m=n_0}^{\infty}|A(m)||\widetilde{B}(n)|<\infty$$

Let assume that (2) allows a compensated (h, k)-dichotomy. Then (4) has the compensated (k^{-1}, h^{-1}) -dichotomy (5). If (29) is fulfilled, then from Theorem 3 and $\Psi(n)^{-1} = \Psi_*^t$ we obtain the following asymptotic equation for Ψ^{-1}

$$(Q_{k^{-1}}^* \widetilde{Q}_{k^{-1}}^* + S_{h^{-1}}^* \widetilde{Q}_{h^{-1}}^*) \Psi^{-1}(n) = Q_{k^{-1}}^* (\Phi^{-1}(n) + \rho_{k^{-1}}(n)) + S_{h^{-1}}^* (\Phi^{-1}(n) + \rho_{h^{-1}}(n)),$$

where $S_{h^{-1}}^* = Q_{h^{-1}}^* - Q_{k^{-1}}^*$. this equation can be simplified if we assume that dichotomy (5) is exhaustive. According to Theorem 1, this condition is accomplished if $Q_{h,0} = 0$, that is, if the dichotomy (3) is precise. In such a case applying Theorem 1 we have $Q_{k^{-1}}^* = I - Q_{k,0}$, $Q_{h^{-1}}^* = I$, $\tilde{Q}_{k^{-1}}^* = I - \tilde{Q}_{k,0}$, $\tilde{Q}_{h^{-1}}^* = I$, from where

$$Q_{k^{-1}}^* \widetilde{Q}_{k^{-1}}^* + S_{h^{-1}}^* \widetilde{Q}_{h^{-1}}^* = (I - Q_{k,0})(I - \widetilde{Q}_{k,0}) + Q_{k,0}.$$

In this way we have proven the following

Lemma 3. If the compensated dichotomy (3) is precise then under condition (29) the fundamental matrix Ψ satisfies

$$((I - Q_{k,0})(I - \widetilde{Q}_{k,0}) + Q_{k,0})\Psi^{-1}(n) = Q_{k^{-1}}^*(\Phi^{-1}(n) + \rho_{k^{-1}}(n)) + S_{h^{-1}}^*(\Phi^{-1}(n) + \rho_{h^{-1}}(n)),$$

where the matrix $(I - Q_{k,0})(I - \widetilde{Q}_{k,0}) + Q_{k,0}$ is invertible.

Theorem 4. Let us assume that the discrete dichotomy (3) is compensated, exhaustive and precise. Moreover, let us assume that $\tilde{Q}_h = Q_h$, $\tilde{Q}_k = Q_k$, $\tilde{Q}_{k,0} = Q_{k,0}$, $\tilde{Q}_{h,0} = Q_{h,0}$. If condition (29) is satisfied, then the fundamental matrix ψ of (1) and its inverse have the following asymptotic representation

$$\begin{split} \Psi(n) &= (\Phi(n) + \rho_h(n))Q_h + (\Phi(n) + \rho_k(n))(I - Q_h).\\ \Psi^{-1}(n) &= (I - Q_{k,0})(\Phi^{-1}(n) + \rho_{k^{-1}}(n)) + Q_{k,0}(\Phi^{-1}(n) + \rho_{h^{-1}}(n)) \end{split}$$

From this theorem it follows an asymptotic formula for the Cauchy matrix of (1).

Theorem 5. Under conditions of Theorem 4, the assumption $Q_{k,0} = Q_h$ implies the asymptotic representation

$$\Psi(n)\Psi^{-1}(m) = (\Phi(n) + R_h(n))Q_h(\Phi^{-1}(m) + \rho_{h^{-1}}(m)) + (\Phi(n) + \rho_k(n))(I - Q_h)(\Phi^{-1}(m) + R_{k^{-1}}(m)), \ \forall m, n.$$

5. Dichotomic chains.

Let us consider two ordered sets of positive continuous functions

$$\mathcal{H} = \{h_1, h_2, \dots, h_p\}, \quad \mathcal{K} = \{k_1, k_2, \dots, k_p\},$$

and a collection of projections matrices

$$\mathcal{P} = \{P_1, P_2, \ldots, P_p\}.$$

Definition 5. We shall say that the triplet $(\mathcal{H}, \mathcal{K}, \mathcal{P})$ is a dichotomic chain for (2) *iff*

(L 1) For j = 1, ..., r, (2) has a dichotomy (h_j, k_j, P_j) . (L 2) $V_{k_1} \subset V_{k_2} \subset \cdots \subset V_{k_p}$.

We will employ the abbreviation $(\mathcal{H}, \mathcal{P}) = (\mathcal{H}, \mathcal{H}, \mathcal{P})$. In applications, a convenient algebraic condition implying (L2) is given by

(L 2') For some constant D we have $k_j(n) \leq Dk_{j+1}(n), j = 1, 2, \dots, r-1$.

A more stringent condition than (L 2') is the uniform condition

(L 2'') For some constant D we have

$$k_j(n)k_j(m)^{-1} \le Dk_{j+1}(n)k_{j+1}(m)^{-1}, \quad j = 1, 2, \dots, r-1, \quad n \ge m.$$

Theorem 6. Let us assume that (2) has the dichotomic chain $(\mathcal{H}, \mathcal{K}, \mathcal{P})$, then (2) has a dichotomic chain $(\mathcal{H}, \mathcal{K}, \mathcal{P}')$, where the projections $\mathcal{P}' = \{P'_1, P'_2, \ldots, P'_p\}$ are respectively similar to the projections of the collection $\mathcal{P} = \{P_1, P_2, \ldots, P_p\}$.

Proof. Applying Theorem B to each (h_i, k_i) -dichotomy of $(\mathcal{H}, \mathcal{K}, \mathcal{P})$ we obtain an (h_i, k_i) -dichotomy for (2) with a projection P'_i similar to projection P_i . In [8] it is proven that for any (h, k)-dichotomy of System (2) we have the properties dimension $[V_h] =$ dimension $[\widetilde{V}_h]$, dimension $[\widetilde{V}_h]$, dimension $[V_k] =$ dimension $[\widetilde{V}_k]$. Hence, from (L 2) we obtain $\widetilde{V}_{k_1} \subset \widetilde{V}_{k_2} \subset \cdots \subset \widetilde{V}_{k_p}$. If $\mathcal{P}' = \{P'_1, P'_2, \ldots, P'_p\}$, then $(\mathcal{H}, \mathcal{K}, \mathcal{P}')$ is required dichotomic chain. \Box

Remark 1. In what follows we will assume that all (h, k)-dichotomies of the dichotomic chain $(\mathcal{H}, \mathcal{K}, \mathcal{P})$ (respectively $(\mathcal{H}, \mathcal{K}, \mathcal{P}')$) are defined with a same constant K (respectively \tilde{K}).

Assume that (2) has the dichotomic chain $(\mathcal{H}, \mathcal{K}, \mathcal{P})$. We will perform the following construction: Let us define $U_{h_1} = V_{h_1}$. Further, if $V_h = V_{k_1}$ we define $W_{k_1} = \{0\}$. If V_{h_1} is properly contained in V_{k_1} , then we define W_{k_1} as a complementary subspace to V_{h_1} in the space V_{k_1} . In both cases we can write the disjoint summa $V_{k_1} = \{0\} + U_{h_1} + W_{k_1}$. thus in the space U_{h_1} we keep all the initial conditions corresponding to the h_1 -bounded solutions of (2). To the space W_{k_1} we assign the initial conditions of k_1 -bounded solutions that are not h_1 -bounded. We repeat this process for the space V_{k_2} in the following manner: If $V_{k_2} = V_{k_1}$, we define $U_{k_2} = W_{k_2} = \{0\}$. If V_{k_1} is properly contained in V_{k_2} , then we define U_{h_2} as the subspace of the initial condition of the h_2 bounded solutions not contained in V_{h_1} and the subspace W_{k_2} groups the initial conditions of k_2 -solutions not included in U_{h_2} ; therefore V_{k_2} can be written as a disjoint sum $V_{k_2} = V_{k_1} + U_{k_2} + W_{k_2}$. Carrying out this process further, we obtain the decomposition:

(30)
$$V_{k_{1}} = \{0\} + U_{h_{1}} + W_{k_{1}} \\ V_{k_{2}} = V_{k_{1}} + U_{h_{2}} + W_{k_{2}} \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ V_{k_{p}} = V_{k_{r-1}} + U_{h_{p}} + W_{k_{p}}$$

In applications the table (30) does not give a good decomposition of the subspaces of initial conditions corresponding to solutions with different growths; for example if $k_1 = k_2 = \cdots = k_p$, all subspaces of table (30) would be trivial, except U_{h_1} and maybe W_{k_1} . This situation can be improved by asking from the dichotomic chain the property defined as follows.

Definition 6. We shall say that the LD $(\mathcal{H}, k, \mathcal{P})$ is a stratified iff

$$U_{h_1} \subset V_{k_1} \subset U_{h_2} \subset V_{k_2} \subset \ldots \subset U_{h_p} \subset V_{k_p}.$$

This property is given if for some constant D we have $k_j(t) \leq Dh_{j+1}(t)$, j = 1, 2, ..., r - 1. We emphasize that the dichotomic chain $(\mathcal{H}, \mathcal{P})$ is stratified.

6. Asymptotic integration.

In this section we generalize the asymptotic formula (28) under the existence of a dichotomic chain for (2). Let us consider a chain $(\mathcal{H}, \mathcal{K}, \mathcal{P})$. According to the table (30), we define the projections matrices R_j , S_j such that $R_j[\mathbb{V}^r] = U_{h_j}$, $S_j[\mathbb{V}^r] = W_{k_j}$. From the construction of subspaces U_{h_j} and V_{k_j} we have $R_j R_i = 0$, $S_j S_i = 0$, if $i \neq j$, $R_j S_i = 0$ for all indexes *i*, *j*. Moreover, since the range of projections R_j and S_j are respectively contained in V_{h_j} and V_{k_j} , we have the identities

$$(31) Q_{h_j}R_j = R_j, \ Q_{k_j}S_j = S_j.$$

Theorem 7. Let us assume that (2) has the dichotomic chain $(\hbar, \mathcal{K}, \mathcal{P})$ and condition (19) is satisfied (see Remark 1), then the fundamental matrix Ψ of (2), $\Psi(t_0) = I$, has the property

(32)
$$\Psi(n)E = \sum_{j=1}^{r} (\Phi(n) + \rho h_j(n)))R_j + \sum_{j=1}^{r} (\Phi(n) + \rho k_j(n)))S_j,$$

where some of projections R_j or S_j in (32) could be equal zero, and E is defined by

(33)
$$E = \sum_{j=1}^{p} (\widetilde{Q}_{h+j}R_j + \widetilde{Q}_{k_j}S_j)$$

Proof. Applying Theorem 2 to each (h_j, k_j) -dichotomy we obtain from (21), (26) the decompositions $\Psi(n)\widetilde{Q}_{h_j} = (\Phi(n) + \rho h_j(n))Q_{h_j}$ and $\Psi(n)\widetilde{Q}_{k_j} = (\Phi(n) + \rho k(n))Q_{k_1}$. Respectively multiplying each of these formulas by R_j and S_j and using (31) we obtain $\Psi(n)\widetilde{Q}_{k_j}R_j = (\Phi(n) + o(h_j(n)))R_j$ and $\Psi(n)\widetilde{Q}_{k_j}S_j = (\Phi(n) + o(k(n)))S_j$. From these formulas it follows (32).

Definition 7. The chain $(\mathcal{H}, k, \mathcal{P})$ is called exhaustive iff $V_{k_p} = [\mathbb{V}^r]$.

For exhaustive chains the projections defined by the table (30) have the property

$$I = Q_{k_p} = \sum_{j=1}^{p} R_j + \sum_{j=1}^{p} S_j$$

From this identity, we can establish the following version of the Levinson asymptotic theorem for (1).

Theorem 8. Under conditions of Theorem 2, if the chain $(\mathcal{H}, \mathcal{K}, \mathcal{P})$ is exhaustive, then the matrix *E* defined by (33) is invertible.

Proof. Let $E\xi = 0$. Then

$$0 = \sum_{j=1}^{p} (\Phi(n) + \rho h_j(n)) R_j \xi + \sum_{j=1}^{p} (\Phi(n) + \rho k_j(n)) S_j \xi.$$

From the construction of table (30), we obtain that the solution $\Phi(n)S_p\xi$ of (2) satisfies $\Phi(n)S_p\xi = \rho_{k_p(n)}$; therefore $S_p\xi \in V_{k_p,0}$. Applying Theorem A to the dichotomy (h_p, k_p, P_p) we obtain $S_p\xi \in V_{h_p}$. since $S_p\xi \in W_{k_p}$ the last row of table (30) says that $S_p\xi = 0$. henceforth

$$0 = \sum_{j=1}^{p} (\Phi(n) + \rho h_j(n)) R_j \xi + \sum_{j=1}^{p-1} (\Phi(n) + \rho k_j(n)) S_j \xi$$

The right hand side of this last equation is an h_p -bounded solution of (2). But under condition (19), the h_p -bounded solutions of (1), (2) are in biunivocal correspondence. Therefore

(34)
$$0 = \sum_{j=1}^{r} \Phi(n) R_j \xi + \sum_{j=1}^{r-1} \Phi(t) S_j \xi + \Phi(n) R_p \xi.$$

Since $\sum_{j=1}^{r-1} \Phi(n) R_j \xi + \sum_{j=1}^{r-1} \Phi(n) S_j \xi \in V_{k_{r-1}}$ and $\Phi(n) R_p \xi \in U_{h_p}$, we obtain from the last row of table (30) $R_p \xi = 0$. Inasmuch as $R_p \xi = 0$ and $S_p \xi = 0$, we obtain from (34)

$$0 = \sum_{j=1}^{r-1} (\Phi(n) + \rho h_j(n)) R_j + \sum_{j=1}^{r-1} (\Phi(n) + \rho k_j(n)) S_j.$$

By repeating this reasoning we will obtain $R_j \xi = 0$, $S_j \xi = 0$, $\forall j$ implying $\xi = \sum_{i=1}^r (R_j + S_j) \xi = 0$. Therefore, *E* is an invertible matrix \Box

Dichotomic chains can be used in obtaining an asymptotic decomposition of the inverse matrix Ψ^{-1} . This can be accomplished in a similar way to the decompositions obtained in Subsection 4.4.

Acknowledgements. Supported by Proyecto CI-5-025-00730/95.

REFERENCES

- [1] R.P. Agarwal, *Difference Equations and Inequalities, (Theory, Methods and Application),* Pure and Applied Matematics, Marcel Dekker, New York, 1992.
- [2] Z. Benzaid D.A. Lutz, Asymptotic representation of perturbed systems of linear difference equations, Studies in Appl. Math., 77 (1978), pp. 195–221.
- [3] Ch.V. Coffman, Asymptotic behavior of solutions of ordinary difference equations, Trans. Amer. Math. Soc., 10–1 (1964), pp. 22–51.
- [4] W.A. Coppel, *Dichotomies in Stability Theory*, Lectures Notes in Mathematics 629, Berlin, 1978.
- [5] N. Levinson, *The asymptotic nature of solutions of linear differential equations*, Duke Math. J., 15 (1948), pp. 111–126.
- [6] Z-H. Li, *The asymptotic estimates of solutions of difference eqautions*, J. Math. Anal. Appl., 94 (1983), pp. 181–192.
- [7] R. Naulin M. Pinto, *Stability of discretes dichotomies for linear difference systems*, J. of Difference Eqns. and Appl., 3 (1995), pp. 101–123.
- [8] R. Naulin M. Pinto, *Projections for dichotomies in linear differential equations*, Applicable Analysis, 69–3 (1998), pp. 239–255.
- [9] G. Papaschinopoulos, Exponential separation, exponential dichotomy, and almost periodicity of linear difference equations, J. Math. Anal. appl., 120–1 (1986), pp. 276–287.
- [10] M. Pinto, *Asymptotic equivalence of difference systems*, J. Difference Eqns. and Appl., 1 (1995), pp. 249–262.
- [11] M. Pinto, *Discrete dichotomies*, Computers Math. Applic., 28 (1994), pp. 259-270.

Departamento de Matemáticas, Universidad de Oriente, Cumaná 6101 A-285 (VENEZUELA)