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THE ASYMPTOTIC REPRESENTATION OF THE

FUNDAMENTAL MATRIX OF A DISCRETE SYSTEM

RAÚL NAULIN

In this paper by using the notion of discrete dichotomies, an asymptotic
representation of �, the fundamental matrix of the linear difference equation
y(n + 1) = (A(n) + B(n))y(n) is given.

1. Introduction.

An important problem in the theory of difference equations [1] is the
description of the solutions of the perturbed system

(1) y(n + 1) = (A(n) + B(n))y(n), n ∈ N,

where the solutions of the system

(2) x(n + 1) = A(n)x(n), n ∈ N = {0, 1, 2, 3, . . .},

or equivalently, the fundamental matrix of (2)

�(n) =

n−1�

m=0

A(m) = A(n − 1) . . . A(2)A(1), �(0) = I,
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is assumed to be known. Among the existing methods in solving this problem
[2], [3], [6] we emphasize the theory of asymptotic integration, developed
by Levinson for diagonal systems of ordinary differential equations [5], and
lately adapted to difference equations by Devinatz and Benzaid-Lytz [2]. This
method applies to (1), where A(n) = diag{λ1(n), λ2(n), . . . , λr (n)}, when
the coef�cients of these diagonal matrices satisfy the so termed Levinson
dichotomic conditions (2). A second method relies on the notion of asymptotic
equivalence [11] allowing the asymptotic integration of the solutions of (1)
under the assumption that (2) has some discrete dichotomy [10], [11].

De�nition 1. [7], [11]. Let (h, k) be a pair of sequences of positive numbers.
We shall say that (1) has a discrete (h, k)-dichotomy iff there exists an orthog-
onal projection P and a positive constant K ≥ 1 such that

(3)
|�(n)P(�−1(m)| ≤ Kh(n)h(m)−1, n ≥ m,

|�(n)(I − O)�−1(m)| ≤ Kk(n)k(m)−1, m ≥ n.

The case when h = k, is sample called an h-dichotomy.
If (2) yields a discrete dichotomy, and the sequence {B(n)} is summable,

then the h-bounded solutions (respectively the k-bounded solutions) of (1) and
(2) are biunivocal correspondence. This correspondence is obtained by means
of the solutions of the integral equation

y(n) = x(n) +

n−1�

m=n0

φ(n)Pφ−1(m)b(m)

−

∞�

m=n

φ(n)(I − P)φ−1(m)B(m).

The main result on the asymptotic integration of h-bounded solutions estab-
lishes that if solutions {y(n)}, {x(n)} of (1), (2) respectively are in correspon-
dence, then

y(n) = x(n) + ρh(n),

where ρh denotes a sequence satisfying

lim
n→∞

h(n)−1ρh(n) = 0, h(n)−1 := 1/h(n).

In this paper we will extend this result in the following respect: we
will assume that (2) has a family of (hi , ki )-dichotomies. Then, for � , the
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fundamental matrix of (1), we will obtain the asymptotic formula

�(n)E =

p�

i=1

((�(n) + ρhi (n))Ri + (�(n) + ρki (n))Si),

where E is an invertible matrix, Ri and Si are orthogonal projections satisfying�p
i=1(Ri + Si) = I .

2. Preliminaries.

In what follows Vr will denote the vector space Rr or Cr , where a norm
| · | is de�ned. If A is r × r matrix, then |A| will denote the corresponding
operator norm. By x(n, ξ) and y(n, ξ) we will denote the solutions of (2) and
(1) satisfying x(0, ξ) = y(0, ξ) = ξ .

De�nition 2. We shall say that the ordered pair of sequences (h, k) are com-
pensated iff h(n)k(m) ≤ Ck(n)h(m), n ≥ m for some constant C.

De�nition 3. We shall denote by �∞
h and �1

h the following sequential spaces

x ∈ �∞
h iff |x |∞h = sup{|h(n)−1x(n)| : n ∈ N} < ∞.

x ∈ �1
h iff |x |1h :=

∞�

n=0

|h(n)−1x(n)| < ∞.

The elements of the space �∞
h will be called h-bounded sequences. Further,

we de�ne the subspaces of initial conditions Vh = {ξ ∈ V
r : x(·, ξ) ∈ �∞

h },
Vh,0 = {ξ ∈ Vh : limn→∞ h(n)−1x(n, ξ) = 0}. Qh and Qh,0 will denote
projection matrices such that Qh[Vr ] = Vh , Qh,0[V

r ] = Vh,0. Similar
subspaces and projections de�ned for Eq. (1) will be distinguished by a tilde:
�Vh, �Vh,0, �Qh , etc.

In our paper we will deal with the adjoint system:

(4) z(n + 1) = A∗(n)z(n),

where C∗ = (C−1)
t

is the transpose of the complex conjugate of the inverse
matrix C−1 . Is clear that φ∗ is the fundamental matrix of (4). If (2) has an
(h, k)-dichotomy with an orthogonal projection P , then (4) has a (k−1, h−1)-
dichotomy with projection I − P :

(5)
|φ∗(n)(I − P)�−1

∗ (m)| ≤ Kk(n)−1(n)k(m) , n ≥ m,

|�∗(n)P�−1
∗ (m)| ≤ kh(n)−1h(m), quadm ≥ n.

Its clear that if the pair (h, k) is compensated, then so is the pair (k−1, h−1).
The proof of the following theorem is contained in [7].
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Theorem A. If (2) has an (h, k)-dichotomy with projection matrix P , then (1)

has an (h, k)-dichotomy with projection matrix Q iff

(6) Vh,0 ⊂ Vk,0 ⊂ Q[Vr ] ⊂ Vh ⊂ Vk.

The projection P of dichotomy (3) can be chosen with the property

(7) lim
n→∞

h(n)−1�(n)P = 0

iff Vh,0 = Vk,0.

Theorem A can be applied to (4). Consequently, if (4) has the dichotomy
(5), then it has a (k−1, h−1)-dichotomy with projection q iff

(8) V ∗
k−1,0 ⊂ V ∗

h−1,0 ⊂ Q[Vr ] ⊂ V ∗
k−1 ⊂ V ∗

h−1,

where V ∗
h−1 is the subspace of initial conditions of (4) of h−1-bounded solutions

etc.

The following result was proved in [7].

Theorem B. Let us suppose (2) has an (h, k)-dichotomy with projection P. If
{|A(n)−1||B(n)|} ∈ �1, then (1) has an (h, k)-dichotomy

(9)
|��(n)�P��−1(m)| ≤ �Kh(n)h(m)−1, n ≥ m,

|��(n)(I − �P)��−1(m)| ≤ �Kk(n)k(m)−1, m ≥ n,

where �P is a projection similar to projection P.

3. h-bounded solutions.

Before we go ahead, we will establish some correspondence between the
h-bounded solutions of (2) with those of its adjoint (4).

Lemma 1. Assume that (2) has an h-dichotomy. If for some subsequence {nj }

one has lim
j→∞

h(nj )
−1x(nj , ξ) = 0, then lim

n→∞
h(n)−1x(n, ξ) = 0.
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Proof. Following Proposition 2.2 in [4], let us denote x(n, ξ) = x1(n)+ x2(n),
x1(n) = P�(n)ξ , x2(n) = (I − P)�(n)ξ . It is easy to verify that

|h(n)−1x1(n)| ≤ K |h(nj )
−1x(nj )| n > nj ,

|h(n)−1x2(n)| ≤ K |(nj )
−1x(nj )|, n < nj ,

from where the proof of the lemma follows. �

Lemma 2. If (2) has an h-dichotomy, then

V ∗
h−1 = (I − Qh,0)[V

r ] , V ∗
h−1,0 = (I − Qh)[V].

Proof. The existence of an h-dichotomy for (2) with projection P implies the
existence of two h-dichotomy for this system, respectively with projection Qh

and Qh,0. Without loss of generality we can assume that Qh,0 and Qh have
the diagonal forms Qh,0 = diag{I0, 0, 0}, Qh = diag{I0, I1, 0}, where I0 is a
unit matrix of dimensions r0 × r0, r0 = dim[Vh,0], and I1 is a unite matrix of
dimensions r1 × r1, such that r0 + r1 = dim[Vh]. According to Lemma 1 in [9]
(see also Lemma 5.2 in [4]), there exists a bounded sequence S : N → Vr+r ,
such that S−1 : N → V

r+r exists, is bounded, and the change of variables
x(n) = S(n)w(n) reduces (2) to the form

(10)

�
w0(n + 1)

w1(n + 1)

w∞(n + 1)

�

=

�
C0(n) 0 0

0 C1(n) 0
0 0 C∞(n)

��
w0(n)

w1(n)

w∞(n)

�

where

w0(n) ∈ Vr0 , C0(n) ∈ Vr0×r0 , w1(n) ∈ Vr1 , C1(n) ∈ Vr1×r1 ,

w∞(n) ∈ Vr∞ , C∞(n) ∈ Vr∞×r∞ , r∞ := r − (r1 + r0).

By a straightforward calculation, we may verify that the change of variables
z(n) = S∗(n)u(n) reduces the adjoint equation of (10) to the diagonal form

(11)

�
u0(n + 1)

u1(n + 1)

u∞(n + 1)

�

=

�
C0

∗ (n) 0 0
0 C1

∗ (n) 0
0 0 C∞

∗ (n)

��
u0(n)

u1(n)

u∞(n)

�

For (10) we have Vh,0 = Qh,0[V
r ], Vh = Qh[Vr ]. We may write �, the

fundamental matrix of (10), in the form

�(n) = diag{U0(n),U1(n),U∞(n)},
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where U0(n) ∈ Vr0×r0 , U1(n) ∈ Vr1×r1 and U∞(n) ∈ Vr∞×r∞ .
Regarding (11), let us consider the direct sum Vr = V ∗

h−1 ⊗ W ∗
h−1 ,

where V ∗
h−1 is a complementary subspace of V ∗

h−1 . For the initial condition

ξ = column{ξ1, 0, 0}, we have lim
n→∞

h(n)−1�(n)ξ = 0, and {�(n)}ξ is h−1-

bounded if ξ = column{ξ1, ξ2, 0}. From these properties

lim
n→∞

|h(n)�∗(n)ξ | = ∞, if ξ2 = 0, ξ3 = 0, ξ1 �= 0

follows. Otherwise, the boundedness of some subsequence �∗(nj )ξ would lead
to the contradictory equation |ξ |2 =< h(nj )

−1�(nj )ξ, h(nj )�∗(nj )ξ >= 0,
where < x , y >=

�r
i=1 xi ȳi . Thus, we have proven

(12) Vh,0 ⊂ W ∗
h−1 .

Further, for some constants K , M , one satis�es K ≥ |h(n)−1U1(n)| ≥ M > 0,
∀n ∈ N. This implies

(13) M−1 ≥ |h(n)U1∗ (n)| ≥ K−1, ∀n ∈ N.

The boundedness of {h(n)U1∗(n)} and {h(n)U∞∗ (n)} (the boundedness
of this last sequence follows from the fact that the adjoint (11) has an h−1-
dichotomy with projection I − Qh implies

(14) r1 + r∞ ≤ dim V ∗
h−1.

Since dimVh,0 = r0 , from (12) and (14) we obtain r0 = dim W ∗
h−1 . Therefore

(15) Vh,0 = W ∗
h−1 .

From (14) and (15) we obtain (I − Qh,0)[V
r ] = V ∗

h−1 .
Let us prove that

(16) lim
n→∞

|(n)�∗(n)ξ | = 0, if ξ1 = 0, ξ2 = 0.

Assuming the contrary, from Lemma 1, we would have for all values of n
the estimate K ≥ |h(n)U∞∗ (n)| ≥ M > 0, for some constant M . This implies
the h−1-boundedness of the sequence {U∞(n)}. But this contradicts

lim
n→∞

|�(n)ξ | = ∞, if ξ1 = 0, ξ2 = 0, ξ3 �= 0.

From the assertion (16) we have (I − Qh)[V
r ] ⊂ V ∗

h−1,0
. This content and

(13) imply [I − Qh,0][V
r ] ⊂ V ∗

h−1 . From (15) we obtain dim[I − Qh,0][V
r ] =

dim V ∗
h−1 . Therefore [I − Qh,0][V

r ] = V ∗
h−1. �

De�nition 4. The dichotomy (3) is said to be exhaustive if Vk = V , and precise
if Vh,0 = {0}.
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From Lemma 2 it follows

Theorem 1.
A: If (2) has an h-dichotomy, then

Q∗
h−1[V] = (I − Qh,0)[V

r ], Q∗
h−1,0[Vr ] = (I − Qh)[V

r ].

B: If (3) is compensated, then the dichotomy (3) is exhaustive iff V ∗
k−1,0

= {0}.
C: If (3) is compensated, then the dichotomy (3) is precise iff V ∗

h−1 = V
r .

4. Asymptotic formulae.

If (2) has the (h, k)-dichotomy (3) and this dichotomy is compensated,
then according to Theorem A the projections Qh , Qh,0, Qk satisfy

(17) QhQh,0 = Qh,0 , QkQh = QhQk = Qh .

We recall that the notation ρh will indicate a sequence with the property

(18) lim
n→∞

h(n)−1ρh(n) = 0.

4.1. An asymptotic formula to the h-bounded solutions.

Theorem 2. Let us assume that (2) has an h-dichotomy. If

(19) K �K

∞�

m=0

|A(m)−1 ||B(m)| < 1,

then the h-bounded solutions of (2) and the h-bounded solutions of (1) are in
biunivocal correspondence, satisfying

(20) y(n) = x(n) + ρh(n).

The fundamental matrix � of (1), �(0) = I , satis�es

(21) �(n)�Qh = �(n)Qh + ρhQh .
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Proof. According to Theorem B, the assumed h-dichotomy of (2) can be
accomplished with projection Qh,0 satisfying (7). Given {x(n)}, an h-bounded
solution of (2), we consider the integral equation

y(n) = x(n) +

n�

m=0

�(n)Qh,0�
−1(m + 1)B(m)y(m)(22)

−

∞�

m=n

�(n)(I − Qh,0)�
−1(m + 1)B(m)y(m).

Then, following [7] it is possible to prove that (22) has a unique h-bounded
solution satisfying Eq. (1) and property (20). If we put n = 0 in (22), then

y(0) = x(0) −

∞�

m=0

(I − Qh,0)�
−1(m + 1)B(m)�(m)y(0).

The estimate (9) implies |�(n)�Qh| ≤ �Kh(n), for some constant K . Henceforth

|

∞�

m=0

(I − Qh,0)�
−1(m + 1)B(m)�(m)�Qh | ≤ k �K

∞�

m=0

|A(m)−1 ||B(m)| < 1.

From this estimate we obtain y(0) = �h x(0), where

(23) �h =
�
I +

∞�

m=0

(I − Qh,0)�
−1(m + 1)B(m)�(m)�Qh

�−1

The (22) implies

(24) �(n)�Qhy(0) = �(n)Qhx(0) + ρh(n)x(0),

where

ρh(n) =

n−1�

m=0

�(n)Qh,0�
−1(m + 1)B(m)�(m)�hqh

−

∞�

m=n

�(n)(I − Qh,0)�
−1(m + 1)B(m)�(m)� − hQh .

from (7) and (24) it follows that ρh satis�es the property (18). �
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4.2. An asymptotic formula to the k-bounded solutions.

Let us now assume that (2) has an (h, k)-dichotomy. Since the pair of
functions (h, k) is compensated, then (2) has both an h and a k-dichotomy. If
(19) is satis�ed, Theorem 2 can be applied to this k-dichotomy, and therefore
the k-bounded solutions of (2) and (1) are in biunivocal correspondence with
k-bounded solutions of (1); this correspondence is obtained by the k-bounded
solution of the integral equation

y(n) = x(n) +

n�

m=0

�(n)Qk,0�
−1(m + 1)B(m)y(m)

−

∞�

m=n

�(n)(I − Qk,0)�
−1(m + 1)B(m)y(m),

from where it follows the asymptotic formula

(25) y(n) = x(n) + ρk(n),

where

Rk(n) =

n−1�

m=0

�(n − 1)Qk,0�
−1(m + 1)B(m)�(m)�k Qk

−

∞�

m=n

�(n)(I − Qk,0�
−1(m + 1)B(m)�(m)�k Qk,

and

�k =

�

I +

∞�

m=0

(I − Qk,0)�
−1(m + 1)B(m)�(m)�Qk

�−1

.

The asymptotic formula (25) yields the following asymptotic correspondence

(26) �(n)�Qk = �(n)Qk + ρk(n)Qk .
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4.3. An asymptotic formula to the fundamental matrix.

Let us denote Wk = (Qk − Qh)[V
r ] and Sk = Qk − Qh . From (17) we

obtain Vk = Vh ⊕ Wk . From (18) we point out to the important property

(27) SkQk = Sk = QkSk .

Theorem 3. If (19) is satis�ed and (2) has an (h, k)-dichotomy, with a com-
pensated pair (h, k), then the fundamental matrix �(n) of (1) satis�es

(28) �(n)(�QhQh + �QkSk) = (�(n) + ρh(n))Qh + (�(n) + ρk(n))Sk.

Moreover, if the (h, k)-dichotomy is exhaustive, then the matrix (�QhQh+ �QkSk)
is invertible.

Proof. The �rst part of the theorem is obtained by adding (21) and (26),
previously being multiplied by Qh and Sk .

Let us denote E = �QhQh + �QkSk . Let Eξ = 0. From (27) we may write
the decomposition ξ = ξ1 + ξ2, ξ1 ∈ Qh[V

r ], ξ2 ∈ (Qk − Qh)[V
r ]. Therefore

0 = �(n)ξ1 + Rh(n)ξ1 + �(n)ξ2 + Rk(n)ξ2.

This identity shows that ξ2 ∈ Vk,0. Theorem A implies ξ2 ∈ Vh . Thus ξ2 = 0.
Since �(n)ξ1 + Rh(n)ξ1 = 0 is an h-bounded solution of Eq. (1) and the
h-bounded solutions of (1), (2) are in biunivocal correspondence given by the
nonsingular matrix (23). Therefore ξ1 = 0 implies that E is invertible. �

It is clear that if the (h, k)-dichotomy is exhaustive and �Qh = Qh ,
�Qk = Qk , then

�QhQh + �QkSk = I.

4.4. An asymptotic formula to the inverse matrix.

Condition (19) can be replaced by

(29) K �K

∞�

m=n0

|A(m)−1||B(m)| < ∞,

implying

K �K

∞�

m=n0

|A(m)−1||B(m)| < 1,
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for an n0 suf�ciently large. it is clear that the results of the previous section will
remain valid on the interval Nn0

= {n0, n0 + 1, n0 + 2, . . .}.
In this section we wish to �nd an asymptotic formula to the inverse of the

fundamental matrix � .
We may write (A(n)+ B(n))−1 = A−1(n)+ �B(n), where we have de�ned

�B(n) = (A(n) + B(n))−1 − A−1(n). Condition (29) implies for a large n0:

K �K

∞�

m=n0

|A(m)||�B (n)| < ∞.

Let assume that (2) allows a compensated (h, k)-dichotomy. Then (4) has the
compensated (k−1, h−1)-dichotomy (5). If (29) is ful�lled, then from Theorem
3 and �(n)−1 = � t

∗ we obtain the following asymptotic equation for �−1

(Q∗
k−1

�Q∗
k−1 + S∗

h−1
�Q∗

h−1)�
−1(n) =

Q∗
k−1(�

−1(n) + ρk−1 (n)) + S∗
h−1(�

−1(n) + ρh−1(n)),

where S∗
h−1 = Q∗

h−1 − Q∗
k−1 . this equation can be simpli�ed if we assume

that dichotomy (5) is exhaustive. According to Theorem 1, this condition is
accomplished if Qh,0 = 0, that is, if the dichotomy (3) is precise. In such a case
applying Theorem 1 we have Q∗

k−1 = I − Qk,0, Q∗
h−1 = I , �Q∗

k−1 = I − �Qk,0 ,
�Qh−1 = I , from where

Q∗
k−1

�Q∗
k−1 + S∗

h−1
�Q∗

h−1 = (I − Qk,0)(I − �Qk,0) + Qk,0.

In this way we have proven the following

Lemma 3. If the compensated dichotomy (3) is precise then under condition
(29) the fundamental matrix � satis�es

((I − Qk,0)(I − �Qk,0) + Qk,0)�
−1(n) =

Q∗
k−1(�

−1(n) + ρk−1 (n)) + S∗
h−1(�

−1(n) + ρh−1(n)),

where the matrix (I − Qk,0)(I − �Qk,0) + Qk,0 is invertible.

Theorem 4. Let us assume that the discrete dichotomy (3) is compensated,
exhaustive and precise. Moreover, let us assume that �Qh = Qh, �Qk = Qk ,
�Qk,0 = Qk,0 , �Qh,0 = Qh,0. If condition (29) is satis�ed, then the fundamental
matrix ψ of (1) and its inverse have the following asymptotic representation

�(n) = (�(n) + ρh(n))Qh + (�(n) + ρk(n))(I − Qh).

�−1(n) = (I − Qk,0)(�
−1(n) + ρk−1 (n)) + Qk,0(�

−1(n) + ρh−1(n)),
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From this theorem it follows an asymptotic formula for the Cauchy matrix
of (1).

Theorem 5. Under conditions of Theorem 4, the assumption Qk,0 = Qh

implies the asymptotic representation

�(n)�−1(m) = (�(n) + Rh(n))Qh(�
−1(m) + ρh−1(m))

+ (�(n) + ρk(n))(I − Qh)(�
−1(m) + Rk−1(m)), ∀m, n.

5. Dichotomic chains.

Let us consider two ordered sets of positive continuous functions

H = {h1, h2, . . . , hp}, K = {k1, k2, . . . , kp},

and a collection of projections matrices

P = {P1, P2, . . . , Pp}.

De�nition 5. We shall say that the triplet (H, K, P) is a dichotomic chain for
(2) iff

(L 1) For j = 1, . . . , r , (2) has a dichotomy (hj , kj , Pj ).
(L 2) Vk1

⊂ Vk2
⊂ · · · ⊂ Vkp .

We will employ the abbreviation (H, P) = (H, H, P). In applications, a
convenient algebraic condition implying (L2) is given by

(L 2�) For some constant D we have kj (n) ≤ Dkj+1(n), j = 1, 2, . . . , r − 1.

A more stringent condition than (L 2�) is the uniform condition

(L 2��) For some constant D we have

kj (n)kj (m)−1 ≤ Dkj+1(n)kj+1(m)−1, j = 1, 2, . . . , r − 1, n ≥ m.

Theorem 6. Let us assume that (2) has the dichotomic chain (H, K, P),
then (2) has a dichotomic chain (H, K, P

�), where the projections P
� =

{P �
1, P

�
2, . . . , P �

p} are respectively similar to the projections of the collection
P = {P1, P2, . . . , Pp}.



THE ASYMPTOTIC REPRESENTATION OF THE. . . 135

Proof. Applying Theorem B to each (hi , ki )-dichotomy of (H, K, P) we
obtain an (hi , ki )-dichotomy for (2) with a projection P �

i similar to projection
Pi . In [8] it is proven that for any (h, k)-dichotomy of System (2) we have
the properties dimension [Vh] = dimension [�Vh], dimension [�Vh], dimension
[Vk] = dimension [�Vk]. Hence, from (L 2) we obtain �Vk1

⊂ �Vk2
⊂ · · · ⊂ �Vkp .

If P � = {P �
1, P

�
2, . . . , P �

p}, then (H, K, P �) is required dichotomic chain. �

Remark 1. In what follows we will assume that all (h, k)-dichotomies of the
dichotomic chain (H, K, P) (respectively (H, K, P

�)) are de�ned with a same
constant K (respectively �K ).

Assume that (2) has the dichotomic chain (H, K, P). We will perform
the following construction: Let us de�ne Uh1

= Vh1
. Further, if Vh = Vk1

we de�ne Wk1
= {0}. If Vh1

is properly contained in Vk1
, then we de�ne Wk1

as a complementary subspace to Vh1
in the space Vk1

. In both cases we can
write the disjoint summa Vk1

= {0} + Uh1
+ Wk1

. thus in the space Uh1
we

keep all the initial conditions corresponding to the h1-bounded solutions of (2).
To the space Wk1

we assign the initial conditions of k1 -bounded solutions that
are not h1-bounded. We repeat this process for the space Vk2

in the following
manner: If Vk2

= Vk1
, we de�ne Uk2

= Wk2
= {0}. If Vk1

is properly contained
in Vk2

, then we de�ne Uh2
as the subspace of the initial condition of the h2-

bounded solutions not contained in Vh1
and the subspace Wk2

groups the initial
conditions of k2-solutions not included in Uh2

; therefore Vk2
can be written as

a disjoint sum Vk2
= Vk1

+ Uk2
+ Wk2

. Carrying out this process further, we
obtain the decomposition:

(30)

Vk1
= {0} + Uh1

+ Wk1

Vk2
= Vk1

+ Uh2
+ Wk2

...
...

...
...

Vkp = Vkr−1
+ Uhp

+ Wkp

In applications the table (30) does not give a good decomposition of the sub-
spaces of initial conditions corresponding to solutions with different growths;
for example if k1 = k2 = · · · = kp , all subspaces of table (30) would be trivial,
except Uh1

and maybe Wk1
. This situation can be improved by asking from the

dichotomic chain the property de�ned as follows.

De�nition 6. We shall say that the LD (H, k, P) is a strati�ed iff

Uh1
⊂ Vk1

⊂ Uh2
⊂ Vk2

⊂ . . . ⊂ Uhp
⊂ Vkp.
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This property is given if for some constant D we have kj (t) ≤ Dhj+1(t),
j = 1, 2, . . . , r − 1. We emphasize that the dichotomic chain (H, P) is
strati�ed.

6. Asymptotic integration.

In this section we generalize the asymptotic formula (28) under the exis-
tence of a dichotomic chain for (2). Let us consider a chain (H, K, P). Ac-
cording to the table (30), we de�ne the projections matrices Rj , Sj such that
Rj [V

r ] = Uhj
, Sj [V

r ] = Wkj . From the construction of subspaces Uhj
and Vkj

we have Rj Ri = 0, Sj Si = 0, if i �= j , Rj Si = 0 for all indexes i, j . Moreover,
since the range of projections Rj and Sj are respectively contained in Vhj

and
Vkj , we have the identities

(31) Qhj
Rj = Rj , Qkj Sj = Sj .

Theorem 7. Let us assume that (2) has the dichotomic chain (h, K, P) and
condition (19) is satis�ed (see Remark 1), then the fundamental matrix � of
(2), �(t0) = I , has the property

(32) �(n)E =

r�

j=1

(�(n) + ρhj (n)))Rj +

r�

j=1

(�(n) + ρkj (n)))Sj ,

where some of projections Rj or Sj in (32) could be equal zero, and E is de�ned
by

(33) E =

p�

j=1

(�Qh+ j Rj + �Qkj Sj )

Proof. Applying Theorem 2 to each (hj , kj )-dichotomy we obtain from (21),
(26) the decompositions �(n)�Qhj

= (�(n) + ρhj (n))Qhj
and �(n)�Qkj =

(�(n) + ρk(n))Qk1
. Respectively multiplying each of these formulas by Rj

and Sj and using (31) we obtain �(n)�Qkj Rj = (�(n) + o(hj (n)))Rj and

�(n)�Qkj Sj = (�(n) + o(k(n)))Sj . From these formulas it follows (32). �

De�nition 7. The chain (H, k, P) is called exhaustive iff Vkp = [Vr ].
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For exhaustive chains the projections de�ned by the table (30) have the
property

I = Qkp =

p�

j=1

Rj +

p�

j=1

Sj .

From this identity, we can establish the following version of the Levinson
asymptotic theorem for (1).

Theorem 8. Under conditions of Theorem 2, if the chain (H, K, P) is exhaus-
tive, then the matrix E de�ned by (33) is invertible.

Proof. Let Eξ = 0. Then

0 =

p�

j=1

(�(n) + ρhj (n))Rjξ +

p�

j=1

(�(n) + ρkj (n))Sjξ.

From the construction of table (30), we obtain that the solution �(n)Spξ of (2)
satis�es �(n)Spξ = ρkp (n) ; therefore Spξ ∈ Vkp,0. Applying Theorem A to the
dichotomy (hp, kp, Pp) we obtain Spξ ∈ Vhp

. since Spξ ∈ Wkp the last row of
table (30) says that Spξ = 0. henceforth

0 =

p�

j=1

(�(n) + ρhj (n))Rjξ +

p−1�

j=1

(�(n) + ρkj (n))Sjξ.

The right hand side of this last equation is an hp -bounded solution of (2). But
under condition (19), the hp -bounded solutions of (1), (2) are in biunivocal
correspondence. Therefore

(34) 0 =

r�

j=1

�(n)Rj ξ +

r−1�

j=1

�(t)Sjξ + �(n)Rpξ.

Since
�r−1

j=1 �(n)Rj ξ +
�r−1

j=1 �(n)Sj ξ ∈ Vkr−1
and �(n)Rpξ ∈Uhp

, we obtain
from the last row of table (30) Rpξ = 0. Inasmuch as Rpξ = 0 and Spξ = 0,
we obtain from (34)

0 =

r−1�

j=1

(�(n) + ρhj (n))Rj +

r−1�

j=1

(�(n) + ρkj (n))Sj .

By repeating this reasoning we will obtain Rj ξ = 0, Sjξ = 0, ∀ j implying
ξ =

�r
j=1(Rj + Sj )ξ = 0. Therefore, E is an invertible matrix �
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Dichotomic chains can be used in obtaining an asymptotic decomposition
of the inverse matrix �−1 . This can be accomplished in a similar way to the
decompositions obtained in Subsection 4.4.
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