UNIQUENESS RESULT FOR ELLIPTIC EQUATIONS IN UNBOUNDED DOMAINS

PAOLA CAVALIERE - MARIA TRANSIRICO - MARIO TROISI

Following the stream of ideas in two recent papers ([1], [8]), one can establish a uniqueness result for the Dirichlet problem for a class of elliptic second order differential equations with discontinuous coefficients in unbounded domains of $\mathbb{R}^{n}, n \geq 3$.

Introduction.

Let us assign an open subset Ω of $\mathbb{R}^{n}, n \geq 3$, and consider the uniformly elliptic differential operator

$$
L_{o}:=\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}},
$$

where $a_{i j}=a_{j i}$ belong to $L^{\infty}(\Omega) \cap V M O(\Omega)$.
In [4] it is shown that if Ω is bounded, $\partial \Omega$ is $\left.\left.C^{1,1}, p \in\right] 1,+\infty[, q \in] 1, p\right]$, $f \in L^{p}(\Omega), u \in W^{2, q}(\Omega) \cap \stackrel{o}{W}^{1, p}(\Omega)$ and $L_{o} u=f$ a.e. in Ω, then $u \in W^{2, p}(\Omega)$ and one has

$$
\|u\|_{W^{2}, p(\Omega)} \leq c\left(\|f\|_{L^{p}(\Omega)}+\|u\|_{L^{p}(\Omega)}\right),
$$

with c independent of u and f.
Entrato in Redazione il 22 aprile 1999.

Using this regularization result and the Aleksandrov-Pucci maximum principle, it is proved the following uniqueness result: the solution of the Dirichlet problem

$$
\left\{\begin{array}{l}
L_{o} u=0 \quad \text { a.e. in } \Omega \\
u \in W^{2, p}(\Omega) \cap \stackrel{o}{W^{1, p}}(\Omega),
\end{array}\right.
$$

$1<p<+\infty$, is zero in Ω.
In [7], [8], the same results are obtained, still with Ω bounded, for operator with lower order terms

$$
L:=\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}+a
$$

under suitable summability assumptions on a_{i} and a.
In [1] it is considered the case Ω unbounded. It is shown that if Ω is sufficiently regular, the coefficients a_{i} and a are in suitable spaces of Morrey type, $\left.p \in] 1,+\infty\left[, q_{o}, q \in\right] 1, p\right], f \in L^{p}(\Omega), u \in W_{\text {loc }}^{2, q}(\bar{\Omega}) \cap{ }_{o}^{o}{ }_{\text {loc }}^{1, q}(\bar{\Omega}) \cap L^{q_{o}}(\Omega)$ and $L u=f$ a.e. in Ω, then $u \in W^{2, p}(\Omega)$ and one has

$$
\|u\|_{W^{2, p}(\Omega)} \leq c\left(\|f\|_{L^{p}(\Omega)}+\|u\|_{L^{q_{o}}(\Omega)}\right),
$$

with c independent of u and f.
In this paper our purpose is to prove that if Ω is unbounded and sufficiently regular and the coefficients a_{i}, a are in suitable local Lebesgue spaces, then the solution of the Dirichlet problem

$$
\text { (D) }\left\{\begin{array}{l}
L u=0 \quad \text { a.e. in } \Omega \\
u \in W_{\operatorname{loc}}^{2, p}(\bar{\Omega}) \cap{ }_{W}^{1, p}(\bar{\Omega}) \\
\lim _{|x| \rightarrow+\infty} u(x)=0
\end{array}\right.
$$

$1<p<+\infty$, is zero in Ω.
The result follows on some results of [1], that we quote and precise, and of [8].

1. Notation and function spaces.

Throughout this paper we use the following notation: E, a generic Lebesgue measurable subset of $\mathbb{R}^{n} ; \Sigma(E)$, the Lebesgue σ-algebra on $E ;|A|$, the Lebesgue measure of $A \in \Sigma(E) ; \mathscr{D}(A)$, the class of restrictions to A of the
functions $\zeta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp} \zeta \cap \bar{A} \subset A ; L_{\mathrm{loc}}^{p}(A)$, the class of the functions g, defined on A, such that $\zeta g \in L^{p}(A)$ for all $\zeta \in \mathscr{D}(A) ;|g|_{p, A}$, the $L^{p}(A)$-norm of $g ; B(x, r)$, the open ball centered at x with radius r and $B_{r}:=B(0, r) ; \Omega$, an unbounded open subset of \mathbb{R}^{n} and $\Omega(x, r):=\Omega \cap B(x, r) ; W_{\mathrm{loc}}^{k, p}(\bar{\Omega})$ (resp. $\stackrel{o}{W_{\mathrm{loc}}^{k, p}}(\bar{\Omega})$), the set of the functions $u: \Omega \rightarrow \mathbb{R}$ such that $\zeta u \in W^{k, p}(\Omega)$ (resp. $\left.{ }^{o}{ }^{k, p}(\Omega)\right)$ for all $\zeta \in \mathcal{D}(\bar{\Omega})$.

Now we recall the definitions of the function spaces we deal with.
We denote by $M^{p, \lambda}(\Omega), p \in\left[1,+\infty\left[, \lambda \in\left[0, n\left[\right.\right.\right.\right.$, the subset of $L_{\mathrm{loc}}^{p}(\bar{\Omega})$ consisting of the functions g for which

$$
\begin{equation*}
\|g\|_{M^{p, \lambda}(\Omega)}:=\sup _{\substack{r \in \neq 1] \\ x \in \Omega}} r^{-\frac{\lambda}{p}}|g|_{p, \Omega(x, r)}<+\infty \tag{1.1}
\end{equation*}
$$

endowed with the norm defined in (1.1) and by $M_{\text {loc }}^{p, \lambda}(\bar{\Omega})$ the set of the functions $u: \Omega \rightarrow \mathbb{R}$ such that $\zeta u \in M^{p, \lambda}(\Omega)$ for all $\zeta \in \mathscr{D}(\bar{\Omega})$. Moreover $\tilde{M}^{p, \lambda}(\Omega)$ is the closure of $L^{\infty}(\Omega)$ in $M^{p, \lambda}(\Omega)$ and in the following $\tilde{M}^{p}(\Omega):=\tilde{M}^{p, 0}(\Omega)$.

When Ω has a condition like Campanato, more precisely

$$
\begin{equation*}
A:=\sup _{\substack{x \in \Omega \\ r \in[0,1]}} \frac{|B(x, r)|}{|\Omega(x, r)|}<+\infty \tag{1.2}
\end{equation*}
$$

it is possible to introduce two different function spaces, $B M O(\Omega, t)$ and $V M O(\Omega)$, as follows.

$$
\begin{aligned}
& B M O(\Omega, t):=\left\{g \in L_{\mathrm{loc}}^{1}(\bar{\Omega}):[g]_{B M O(\Omega, t)}:=\right. \\
&\left.=\sup _{\substack{x \in \Omega \\
r \in \in 0, t]}} \frac{1}{|\Omega(x, r)|} \int_{\Omega(x, r)}\left|g-g_{\Omega(x, r)}\right|<+\infty\right\}
\end{aligned}
$$

where

$$
g_{\Omega(x, r)}:=\frac{1}{|\Omega(x, r)|} \int_{\Omega(x, r)} g
$$

As in [6], we set

$$
B M O(\Omega):=B M O\left(\Omega, t_{A}\right)
$$

where

$$
t_{A}:=\sup _{t \in \mathbb{R}_{+}}\left\{\sup _{\substack{x \in \Omega \\ r \in 10, t]}} \frac{|B(x, r)|}{|\Omega(x, r)|} \leq A\right\}
$$

and define

$$
V M O(\Omega):=\left\{g \in B M O(\Omega):[g]_{B M O(\Omega, t)} \rightarrow 0 \quad \text { as } \quad t \rightarrow 0^{+}\right\} .
$$

We point out that (1.2) holds for Ω when it satisfies the regularity assumption $\left(\mathcal{P}_{\Omega}\right)$ below. For more informations about the previous function spaces we refer to [5], [6], [2].

2. Assumption and main results.

Let Ω be an unbounded open subset of $\mathbb{R}^{n}, n \geq 3$, and $\left.p \in\right] 1,+\infty[$.
We suppose from now on that $\partial \Omega$ satisfies the uniform $C^{1,1}$-regularity property:
(\mathcal{P}_{Ω}) there exist a locally finite open cover $\left(U_{i}\right)_{i \in \mathbb{N}}$ of $\partial \Omega$ and corresponding $C^{1,1}$-diffeomorphisms $\Phi_{i}: U_{i} \rightarrow B_{1}$ such that:
९) for some $\delta>0,\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)<\delta\} \subset \bigcup_{i \in \mathbb{N}} \Phi_{i}^{-1}\left(B_{\frac{1}{2}}\right)$;
$\diamond)$ for each $i \in \mathbb{N}, \Phi_{i}\left(U_{i} \cap \Omega\right)=\left\{x \in B_{1}: x_{n}>0\right\} ;$
\&) there is an $m_{0} \in \mathbb{N}$ such that any $m_{0}+1$ distinct sets U_{i} have empty intersection;
๑) the components of Φ_{i} and Φ_{i}^{-1} have $C^{1,1}$-norm bounded independently of i.

We consider the operator

$$
\begin{equation*}
L:=\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}+a \tag{2.1}
\end{equation*}
$$

and on the coefficients of L we make the following assumptions:

$$
\left\{\begin{array}{l}
a_{i j}=a_{j i} \in L^{\infty}(\Omega) \cap V M O(\Omega), \quad i, j=1, \cdots, n, \tag{2.2}\\
\exists \Lambda>0: \sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq \Lambda|\xi|^{2} \quad \text { a.e. } \quad x \in \Omega, \forall \xi \in \mathbb{R}^{n} ;
\end{array}\right.
$$

$$
\begin{align*}
a_{i} \in L_{\mathrm{loc}}^{r}(\bar{\Omega}) \text { where } \quad r>n \text { for } \quad p \leq n, \tag{2.3}\\
r=p \text { for } p>n, i=1, \cdots, n ;
\end{align*}
$$

$$
\left\{\begin{array}{l}
a \in L_{\mathrm{loc}}^{s}(\bar{\Omega}) \text { where } s>\frac{n}{2} \text { for } p \leq \frac{n}{2}, s=p \text { for } p>\frac{n}{2} ; \tag{2.4}\\
a \leq 0 \text { a.e. in } \Omega .
\end{array}\right.
$$

In this paper our main results are:

Theorem. Assume (2.2), (2.3), (2.4). Then the solution of the Dirichlet problem

$$
\text { (D) }\left\{\begin{array}{l}
L u=0 \quad \text { a.e. in } \quad \Omega \\
u \in W_{\operatorname{loc}}^{2, p}(\bar{\Omega}) \cap \stackrel{o}{W_{l o c}^{1, p}(\bar{\Omega})} \\
\lim _{|x| \rightarrow+\infty} u(x)=0
\end{array}\right.
$$

is zero in Ω.
Corollary. Assume (2.2), (2.3), (2.4), with $a_{i} \in \tilde{M}^{r}(\Omega)$ and $a \in \tilde{M}^{s}(\Omega)$ when $p \leq n$. Then the solution of the Dirichlet problem
$\left(D_{0}\right)$

$$
u \in W_{\mathrm{loc}}^{2, p}(\bar{\Omega}) \cap \stackrel{o}{W}^{1, p}(\Omega), \quad L u=0
$$

is zero in Ω.

3. Tools.

One of the tools of the proof, as we have already said in the introduction, is the stream of results of [1]. Now we quote and precise some of them.

Let us consider the parameters $k \in \mathbb{N}, \tau, \alpha, r \in[1,+\infty[, \lambda \in[0, n[$ such that:
($\star) \quad\left\{\begin{array}{l}\alpha \tau \leq r, \text { with } \alpha \tau<r \text { when } \tau=\frac{n}{k}>1 \text { and } \lambda=0, \lambda>n-k r \\ \frac{1}{\alpha} \geq 1-\tau\left(\frac{k}{n}-\frac{1}{r}\right) \text { if } n<k r ; \frac{1}{\alpha}>1-\frac{\tau}{n r}(\lambda-n+k r) \text { if } n \geq k r .\end{array}\right.$
Proposition 1. Let $k \in \mathbb{N}, \tau, \alpha, r \in[1,+\infty[, \lambda \in[0, n[$ satisfy (\star), then the multiplication operator for a function $g \in M^{r, \lambda}(\Omega)$, defined in $W^{k, \tau}(\Omega)$, has values in $L^{\alpha \tau}(\Omega)$ and there exists $c \in \mathbb{R}_{+}$, independent of g and u, such that

$$
|g u|_{\alpha \tau, \Omega} \leq c\|g\|_{M^{r, \lambda}(\Omega)}\|u\|_{W^{k, \tau}(\Omega)}
$$

Moreover if $g \in \tilde{M}^{r, \lambda}(\Omega)$, for every $\epsilon \in \mathbb{R}_{+}$there exists $c_{\epsilon} \in \mathbb{R}_{+}$, independent of u, such that

$$
|g u|_{\alpha \tau, \Omega} \leq \epsilon\|u\|_{W^{k, \tau}(\Omega)}+c_{\epsilon}|u|_{\tau, \Omega} .
$$

Proof. This follows from Theorem 3.2 and Corollary 3.3 of [1], observing that $\gamma:=k / n-(\alpha-1) / \tau \alpha>0$ and

$$
r \gamma<1 \quad \Rightarrow \quad n \geq k r \quad \Rightarrow \quad \lambda>n(1-r \gamma)
$$

If $k=1,2$ we can consider the numbers $q \in] 1,+\infty\left[, r_{k}, \lambda_{k}\right.$ such that

$$
\begin{equation*}
r_{k} \geq q, \quad \lambda_{k} \in\left[0, n[\cap] n-k r_{k},+\infty[\right. \tag{A}
\end{equation*}
$$

One can show:

Proposition 2. Assume (A). Then for any $p \in] 1, q[$ there exist $v \in \mathbb{N} \backslash\{1\}$ and $\beta \in] 1,+\infty[$ such that

$$
\begin{array}{lll}
I) & \beta^{v}=\frac{q}{p}, \quad \beta^{v-1} \neq \frac{n}{k p} ; & \\
\left.I I_{a}\right) & \frac{1}{\beta} \geq 1-p\left(\frac{k}{n}-\frac{1}{r_{k}}\right) & \text { if } n<k r_{k} \\
\left.I I_{b}\right) & \frac{1}{\beta}>1-\frac{p}{n r_{k}}\left(\lambda_{k}-n+k r_{k}\right) & \text { if } n \geq k r_{k}
\end{array}
$$

Proof. Fixed $p \in] 1, q\left[\right.$, obviously the right sides of $I I_{a}$) and $I I_{b}$) are fixed quantities strictly less than 1 . So the result follows from a right use of the exponential function with basis p / q.
Remark 1. In the hypothesis (\mathcal{A}), keeping in mind the previous result, we can set

$$
p_{h}:=\beta^{h-1} p, \quad \forall h=1, \cdots, v
$$

and observe that
$(* *)$

$$
\left\{\begin{array}{l}
\beta p_{h}<q, \quad \text { if } h<v ; \quad \beta p_{v}=q ; \quad p_{v} \neq \frac{n}{k} \\
\frac{1}{\beta} \geq 1-p_{h}\left(\frac{k}{n}-\frac{1}{r_{k}}\right) \quad \text { if } \quad n<k r_{k} \\
\frac{1}{\beta}>1-\frac{p_{h}}{n r_{k}}\left(\lambda_{k}-n+k r_{k}\right) \quad \text { if } \quad n \geq k r_{k}
\end{array}\right.
$$

Proposition 3. Fixed $k=1$ or 2, consider the correspondent parameters satysfing (A) and the numbers p_{h}, previously defined, then the multiplication operator for a function $g \in M^{r_{k}, \lambda_{k}}(\Omega)$, defined in $W^{k, p_{h}}(\Omega)$, has values in $L^{\beta p_{h}}(\Omega)$ and there exists $c \in \mathbb{R}_{+}$, independent of g and u, such that

$$
|g u|_{\beta p_{h}, \Omega} \leq c\|g\|_{M^{r_{k}, \lambda_{k}}(\Omega)}\|u\|_{W^{k, p_{h}}(\Omega)} .
$$

Proof. The result follows from Proposition 1, Proposition 2 and Remark 1.

4. Proofs.

For the proofs of the main results we need the following lemmas.
Lemma 4.1. Assume (2.2), $\left.\left.a_{i} \in M_{\mathrm{loc}}^{r_{1}, \lambda_{1}}(\bar{\Omega}), a \in M_{\mathrm{loc}}^{r_{2}, \lambda_{2}}(\bar{\Omega}), p \in\right] 1, q\right]$ with r_{k}, λ_{k}, q satisfy (A). Then for any u solution of the problem

$$
\left\{\begin{array}{l}
u \in W_{\mathrm{loc}}^{2, p}(\bar{\Omega}) \cap \stackrel{o}{W_{\mathrm{loc}}^{1, p}(\bar{\Omega})} \\
L u \in L_{\mathrm{loc}}^{q}(\bar{\Omega})
\end{array}\right.
$$

one has $u \in W_{\text {loc }}^{2, q}(\bar{\Omega})$.

Proof. The way of proceeding is analogous to that of Theorem 5.1 of [1]. Since our assumptions on the lower order terms' coefficients of L are weaker than there, it seems better to remake the all proof. We just need to prove that if u is also in $W_{\text {loc }}^{2, p_{h}}(\bar{\Omega})$ then

$$
\begin{equation*}
u \in W_{\mathrm{loc}}^{2, \beta p_{h}}(\bar{\Omega}) \tag{4.1}
\end{equation*}
$$

where β, p_{h} are the quantities defined in Proposition 2 and in the Remark 1.
We observe that if $u \in W_{\text {loc }}^{2, p_{h}}(\bar{\Omega})$ then, for every $\zeta \in \mathscr{D}(\bar{\Omega}), \zeta u \in W^{2, p_{h}}(\Omega)$ and so, by Proposition 3, one has:

$$
\sum_{i=1}^{n} a_{i}(\zeta u)_{x_{i}}+a \zeta u \in L^{\beta p_{h}}(\Omega)
$$

Since $L u \in L_{\text {loc }}^{q}(\bar{\Omega})$, it follows that

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j} u_{x_{i} x_{j}} \in L_{\mathrm{loc}}^{\beta p_{h}}(\bar{\Omega}) \tag{4.2}
\end{equation*}
$$

As consequence of known results (see Theorem 4.2 of [3] and Theorem 3.2 of [4]), the assumption on u together with (4.2) give (4.1).
Lemma 4.2. Assume (2.2), $\left.\left.a_{i} \in \tilde{M}^{r_{1}, \lambda_{1}}(\Omega), a \in \tilde{M}^{r_{2}, \lambda_{2}}(\Omega), p \in\right] 1, q\right]$ with r_{k}, λ_{k}, q satisfy (A), $p_{0} \in[1, q]$. Then for any u solution of the problem

$$
\left\{\begin{array}{l}
u \in W_{\mathrm{loc}}^{2, p}(\bar{\Omega}) \cap \stackrel{o}{W}_{\mathrm{loc}}^{1, p}(\bar{\Omega}) \cap L^{p_{0}}(\Omega) \\
L u \in L^{q}(\Omega)
\end{array}\right.
$$

one has $u \in W^{2, q}(\Omega)$.
Proof. Once observed that, by Lemma 4.1, u belongs to $W_{\text {loc }}^{2, q}(\bar{\Omega})$, one can go on as in the proof of theorem 5.1 of [1] to obtain the desired result.
Proof of the Theorem. First we point out that for every p a solution u of (\mathscr{D}) belongs to $C(\bar{\Omega})$ and $u=0$ on $\partial \Omega$. This follows just from the Sobolev imbedding theorem when $p>\frac{n}{2}$ and also from Lemma 4.1 when $\left.\left.p \in\right] 1, \frac{n}{2}\right]$, that we apply with $r_{1}=r, r_{2}=s, \lambda_{1}=\lambda_{2}=0, q=\min \{r, s\}$.

Moreover owing to the behaviour of u at infinity, u attains its maximum and minimum in Ω. Then to prove the result one can just follow the Vitanza argument ([8, Theorem 3.1]), which is based on a local analysis.

Proof of the Corollary. Arguing as in the proof of the Theorem, using Lemma 4.2 instead of Lemma 4.1, one shows that a solution u of $\left(\mathscr{D}_{0}\right)$ belongs to $W^{2, t}(\Omega)$ for a $t>n / 2$.

It is well known that this implies

$$
u \in W^{o}{ }^{1, t_{1}}(\Omega) \quad \text { with } \quad t_{1}>n .
$$

So u goes to zero at infinity. Hence it is also a solution of (\mathscr{D}) and therefore $u=0$ in Ω.

REFERENCES

[1] P. Cavaliere - M. Longobardi - A. Vitolo, Imbedding estimates and elliptic equations with discontinuous coefficients in unbounded domains, Le Matematiche, 20 (1996), pp. 87-104.
[2] P. Cavaliere - G. Manzo - A. Vitolo, Spaces of Morrey type and BMO spaces in unbounded domains of \mathbb{R}^{n}, Rend. Acc. Naz. Sci. XL Mem. Mat., 20 (1996), pp. 123-140.
[3] F. Chiarenza - M. Frasca - P. Longo, Interior $W^{2, p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche di Mat., 40 (1991), pp. 149-168.
[4] F. Chiarenza - M. Frasca - P. Longo, $W^{2, p}$-solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), pp. 841-853.
[5] M. Transirico - M. Troisi - A. Vitolo, Spaces of Morrey type and elliptic equations in divergence form on unbounded domains, Boll. Un. Mat. Ital. (7), 9-B (1995), pp. 153-174.
[6] M. Transirico - M. Troisi - A. Vitolo, BMO spaces on domains of \mathbb{R}^{n}, Ricerche Mat., 45 (1996), pp. 355-378.
[7] C. Vitanza, $W^{2, p}$ regularity for a class of elliptic second order equations with discontinuous coefficients, Le Matematiche, 47 (1992), pp. 177-186.
[8] C. Vitanza, A new contribution to the $W^{2, p}$ regularity for a class of elliptic second order equations with discontinuous coefficients, Le Matematiche, 48 (1993), pp. 287-296.

> Facoltà di Scienze, Università di Salerno,
> Via S. Allende, 84081 Barinissi $(S A)(I T A L Y)$

