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APPLICATION OF THE RESIDUE THEOREM
TO BILATERAL HYPERGEOMETRIC SERIES

WENCHANG CHU - XTAOXIA WANG - DEYIN ZHENG

The application of the residue theorem to bilateral hypergeometric se-
ries identities is systematically reviewed by exemplifying three classes of
summation theorems due to Dougall (1907), Jackson (1949, 1952) and
Slater-Lakin (1953).

1. Introduction and Preliminaries

The Cauchy residue theorem is fundamental in the theory of complex variables
and important in the evaluation of improper real integrals (cf. [10, §72-§75] for
example). The purpose of the present paper is to illustrate the application of the
residue theorem to bilateral hypergeometric series identities by exemplifying
three classes of summation theorems due to Dougall [4], Jackson [6, 7] and
Slater-Lakin [9].

To make the paper self-contained, we first recall the concept of residue and
the residue theorem, which can be found in [10, §67-568].

Definition 1 (Residue). Let f(z) be an analytic function in 0 < |z—a| < R with
z = a being an isolated singular point of it. Then the integral

1
fff(z)dz where C:|z—a|=p and 0<p <R
2mi Jc
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is called the residue of f(z) at z = a and denoted by Resf(z). It is not difficult to
=a

check that if f(z) has a pole of order n at z = a, then its residue can be evaluated
through

gﬁf()_hmfﬂq'@_“yf@f )

—adz"1 (n—1)!

Theorem 2 (Residue theorem). Let C be a simple closed contour within and on
which a function f(z) is analytic except for a finite number of singular points
ai,ap,- - ,ay interior to C. Then there holds the formula

1 n
3 /108 = Y Resr (2

Corollary 3 (Partial fraction decomposition [11, §3.2]). Let f(z) be a meromor-
phic function with all the singular points {a;};_, being simple poles subject to
0 <lai| < |az| < ---. Denote by by the residue of f(z) at ai. For each n, if there
exists a contour C, containing exactly {a}}_, such that f(z) = o(R,) on C, as
n — oo and the minimum distance R, from the origin to C, in the complex plane
is proportional to the circumference ¢(C,) of C,. Then there holds the partial
fraction expansion formula:

0105 b

Z akz ak

Proof. Consider the auxiliary function F (&) := 5{ 5(5) ik Then all the singular
points of F (&) are simple poles z, 0 and {ak}k>1 with the respective residues of

F (&) being given by 1@ @ and {ak =) } ©_;- Let C, be the circle of radius
R, centered at the orlgln which contains z,0,ay,a;,--- ,a, as interior points.
Then the residue theorem tells us that

I I G (I

2mi Jo, E(E—2) z Eoa(a—z)

In order to confirm the corollary, it suffices to show that hm §C é d<§ =0.
This is justified by the following estimation:

f(6)
cné §(E—-2)

Before proceeding to deal with bilateral hypergeometric series, we display the

O(Rn)
~ R,—|7]

dé ‘ ) X max
EeCy




THE RESIDUE THEOREM AND BILATERAL HYPERGEOMETRIC SERIES 129

following simple examples:

n 2z . z—sing
n;l(_l) 2 —n?x?  zsing ’ (2a)
1 T
Z AZ +n2 2)42 ), Coth(ﬂl) (2b)
LGS S S W
n;)/l“rnz ~ 2A% " 2Asinh(mA)’ (20)
& coth(nm) 77}
n; T 180 2d)
= psechm(n+3) @
ngo(_l) S (2n+1)5 768 (2e)
f (_l)nil B E (2f)
(2n—1){cosh ( j)"‘COS%(n_%)}_ 8.

All these six formulae can be shown by the residue theorem with the integral
contours being circles or squares centered at the origin and the respective inte-
grands being specified as:

z—sinz cot(7z)
Fala)i= zsinz ’ F(2) = A2+ 72
csc(mz) cot(rz) coth(rmz)
yg(Z) = m, j\d(Z) = Z3 s
F(2) = Tsec(nz) F(0) = Tsec(nz)
=S cosh(mz)’ A z{cosh & 4 cos =2}~

Now we take (2e) as example to illustrate the method. As exercises, the reader
can show the others. Define the function by

T
o cos(mz) cos(mzi)

msec(mz)
7> cosh(7z)

f(2)=

It is not hard to see that f(z) has the pole of order 5 at z = 0 and the simple
poles z=n+ 3 and z = (n+ 3)i with n € Z. Denote by [¢"] f(z) the coefficient
of Z" in the Laurent series of f(z). Then we can compute, by means of (1), the
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following residues:

D4 o
132(8) fz) = T!{ZSf(Z)}z:o - 4!{ T }Z_O

cos(mz) cos(mzi)
{1=(72)? /214 (m2)* 4+ H1+(72)? 21+ (m)* J4 1+ } 6’
o 5(_1\n+1
Res f(i) = Ii r(z—n—1/2) _ 25(—1) ;
2=n+1/2 z—n+1/2 22 cos(mz) cosh(wz)  (2n+1)3coshm(n+1/2)
_ n{z—(n+1/2)i} 2°(—1)n !
z:(nf?/Z)if(Z) z—>(nlfll/2)i 2 cos(mz)cosh(mz)  (2n+1)3coshm(n+1/2)

Let C, be the square encircled by four lines z = £n and z = =£ni. Then the con-
tour integral ﬁ ¢, f(2) dz tends to zero when n — oo because of the asymptotic
relation

n
‘ for ze€C,.

75 cos Tz Cos TZi

~
2>

According to Theorem 2, the sum of the residues of f(z) in the whole complex
plane results in zero:
+oo —_1)* 25 71'5
2 Z ( ) =
n—w(2n+1)>coshm(n+3) 6

which is obviously equivalent to (2e). a

2. Dougall’s Bilateral Series Formulae

This section will prove the two formulae on bilateral ,H, and 5Hs-series due to
Dougall [4]. Following the notation of [1, Chapter 1], the unilateral and bilateral
series read respectively as

qu |:a17a27"'7ap ‘Z:| _ i (al)l’l(az)n“ (ap)n§7
b17b27"'7bq n=0 (b])n(bz)n(bq)n !

oz ] § ey,
b17 b27 Ty bq n——oo (bl)n(b2)n o (bq)”

where the shifted factorial is defined through the I'-function
I“ los]
(= LM i ) = / e tdr for R(x) > 0.
I'(x) 0
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In particular, we have explicitly
(x)o=1 and (x),=x(x+1)---(x+n—1) for neN.

There are several important properties of the I'-function (cf. [1, §1.2 and §1.5]
for example). We shall frequently use, without explanation, the shifted and
duplicative relations

(_l)n 22x—1

NG

T()C(x+1/2)

as well as the reflection formulae:

T T
C(x)I(1—x)= d TR +x)rl—x = .
(x)T(1—%) sin(7x) an GH+AIG =) cos(7x)
In addition, all the singular points of I'-function are simple poles z = —n for

n € Ny with the residues being given by

L C(l+n+z+A)  (=1)
Z:R_els_nl"(m—k)—Zﬂlir/{lin(z—l—?w—n) iy oAl

Theorem 4 (Dougall [4]). For four complex numbers a,b,c,d subject to the
condition R(c+d —a—b) > 1, there holds the nonterminating bilateral series
identity:

a, b _~|1=a,1=b,cd,c+d—a—-b—1
24> [c, d’l]r[ c—a,d—a,c—b,d—b ]

Proof. Define the complex function by

f(z) :==mcot(nz) x T [a+z, b+z} .

c+z, d+z

All of its singular points z =n, —a—m, —b —m with n € Z and m € Ny are
simple poles. In view of (1), we compute the sum of the residues of f(z) at the
poles z = n:

+oo oo
R.i= ¥ Resf(e)= ) lim(z=mf(c)

n—=—oo

+o0
a+n, b+n| _la, b a, b
= Z F[c—l—n, d+n}_r[c, d}sz[c, d 1}

n—=—oo
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Similarly, the sum of the residues of f(z) at the poles z = —a — m may be refor-
mulated as:
o0

Ra::ioZRes f(z):Z lim (z4+a+m)f(z)
m=0

=—a—m z——a—m
m=0

+oo —1)y" o
= —mcot(ma) Z QF b=a=m
= m! c—a—md—a—m

—T b—a l+a—c,1+a—d
= —T F ’ 1.
tan(ma) [c—a,d—a]2 1[ l+a—-b ]

Evaluating the last o Fj-series by means of the Gauss summation theorem [2,
§1.3]

oF [“’ b(1]:r[”_“—b} with R(c—a—b) >0,
c c—a,c—b

we get the following closed expression for R,:

- b—al+a—byc+d—a—b—1
“ " tan(ra) c—a,d—a,c—b,d—b

Observing that f(z) is symmetric with respect to a and b, we write down the
sum of the residues of f(z) at the poles z = —b —m:

-7 [a—b,l%—b—a,c—i—d—a—b—l}

Rbizz Res f(Z)_ c—b,d—b,c—a,d—a

= =—b-m 7 tan(7h)

Let C, (&) be the circle of radius n+ € centered at the origin with the € > 0 being
chosen such that C, (&) does not pass any pole of f(z).
For sufficient large |z|, there holds the asymptotic relation (cf. [1, §1.4]):

a+z, b+z Rat+b—c—d
r ’ ~ |g|Rlatb=e=d), 3

[c—l—z, d—I—z} & ©)
When n — oo, we have also for any z = x+yi € C,(¢€):

COS2TTx + COS2Tyi
COS27x — COS2Myi

o).

|cot(rz)|> = cot mzcot nZ =

Therefore for sufficient large n, the following inequality holds

L f 0w < ofnre i)

Z€C, ()
R(14+a+b—c—d)
< O4(n+e) .
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When R(c+d —a—b) > 1, we have consequently the limiting relation:

1
M%cn(s)f(z)dz—}o as n — oo, 4)

According to Theorem 2, the sum of the residues of f(z) at all the poles is equal
to zero: R, +R, +R;, = 0, which reads explicitly as:

a, b a, b . 7n b—a,l+a—b,c+d—a—b—1
F[Q d]ZHZ [G d‘l]_tan(na)r[ c—a,d—a,c—b,d—>b ]

T a—bl+b—a,c+d—a—b—1
tan(7h) c—b,d—b,c—a,d—a ’

The last expression can be simplified, by means of the reflective property of the
I"-function, as

P 2 2
F[a,b]sz {a,b 1]_F{c+d a—b 1}{ n?cotma n’cotmh }

c,d c,d c—b,d—b,c—ad—a | \sinm(b—a) + sinzw(a—b)
T ctd—a—b—-1 2 - a,1—a,b,1—b,c+d—a—b—1
- " |l¢—b,d—b,c—a,d—a| sinwasinth ~ |c—b,d—b,c—a,d—al’

This is a restatement of the bilateral , H,-series identity displayed in Theorem 4.
O

We prove next the sHs-series identity discovered by Dougall in 1907. The
difference between the proof we are going to present and the original one due
to Dougall lies in the simplification of the trigonometric expression, where our
approach is more accessible.

Theorem 5 (Dougall [4]). For five complex numbers a,b,c,d,e satisfying the
condition R(1+2a—b—c—d—e) >0, there holds the following nonterminat-
ing well-poised bilateral hypergeometric series identity:

H l+a/2, b, c, d, e ‘ |
33 a/2, l14a—b, l+a—c, l+a—d, l+a—e
-T 1-b,1—c,1-d,1—e, 1+a—b,1+a—c,1+a—d, 1+a—e, 14+2a—b—c—d—e
o l+a,1—a,1+a—b—c,1+a—b—d,1+a—b—e, 1+a—c—d,1+a—c—e, | +a—d—e ’

Proof. Similar to the proof of Theorem 4, define the function

().:M b+z,c+z,d+z,e+z
" atan(mz) |l4+a—-b+zl4+a—c+zl+ta—d+zl4+a—e+z]’
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It is obvious that all the singular points of g(z) are simple poles z =n, —b —m,
—c—m, —d —m, —e —m where n € Z and m € Ny. The sum of residues of g(z)
at z = n can be expressed in terms of bilateral series:

oo oo
Ha= Y, Resg(z)= n;@;gg(z—n)g(d

n—=—oo

B i" a-+2n b+n,c+n,d+ne+n
_n:ﬂc a l+a—b+nl+a—c+nl+a—d+nl4+a—e+n
b,c,d,e, 1+a/2, b, c, d, e
=I sHs 1.
1+a—b,1+a—c,1+a—d,1+a—e 0/2, 1+a—b, 1+a—c, 1+a—d, 1+a—e
The sum of residues of g(z) at z = —b — m can be reformulated as follows:
oo +oo
Ryp:=Y, Res g(z)=) lim (z+b+m)g(z)
m:OZZ_b_m m:Oz%fbfm
_E‘i_io(—l)m(ZbﬂHZm) c—b—m,d—b—m,e—b—m
o a.=o m!tan(f[b) l+a72b7m,l+a7b7c7m,1+a7b7d7m,1+a7bfefm_
_ 7w(2b—a) c—b,d—b,e—b 1
 atan(zh) l+a—2b,14+a~b—c,1+a-b—d,1+a—b—e]

X sFy

2b—a, 14+(2b—a)/2, b+c—a, b+d—a, b+e—a
(2b—a)/2, 14+b—c, 14+b—d, 1+b—e

Recalling the Dougall-Dixion formula [2, P27]

@ 1+a/2, b, c, d ‘1
ST a/2, l1+a—b, 14+a—c, 1+a—d

_r [1—|—a—b, l+a—c,1+a—d, l—l-a—b—c—d}

)1

l4+a,1+a-b—-c,1+a-b—-d,1+a—c—d
provided that R(1 +a —b —c—d) > 0 for convergence, we can evaluate the
following sFy(1)-series:
E 2b—a, 14+(2b—a)/2, b+c—a, b+d—a, b+e—a ‘ ]
ST (2b—a)/2, 1+b—c, 14+b—d, 1+b—e
_r 1+b—c, 14+b—d, 1+b—e, 14+2a—b—c—d—e
- |1+2b—a,14+a—c—d,14+a—e—d, l+a—c—e '
This leads us to the following closed expression:
73 cot(xh) sin7w(a — 2b)
asin(b—c)sinw(b—d)sinm(b—e)
« 14+2a—b—c—d—e
1+a—b—c,0+a—b—d,1+a—b—e,1+a—c—d,1+a—c—e,l+a—d—e '

Xy =
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Observe that g(z) is symmetric in b, ¢, d and e. We get the sum of residues of
g(z) at the poles z = —c — m by interchanging b and ¢ in “R;,” as follows:

= 3 cot(rme) sinmw(a — 2¢)
Ko = R =— - -
mzz'oz:—%sfmg(z) asinzm(c—b)sinm(c —d)sinw(c —e)

142a—b—c—d—e
x I .
14+a—b—c,1+a—c—d,1+a—c—e,l+a—b—d,1+a—b—e,1+a—d—e

Interchanging b and d in “R;,”, we find the sum of residues of g(z) atz=—d —m:

73 cot(nd) sinm(a — 2d)

Ry = i Res g(z) =

==—d-m”"  asinm(d—b)sinm(d —c)sinm(d —e)
14+2a—b—c—d—e
x T .
1+a—b—d,1+a—c—d,1+a—d—e, | +a—b—c,1+a—b—e,1 +a—c—e

Interchanging b and e in “R;,”, we get the sum of residues of g(z) atz = —e —m:

> 3 cot(me) sin7(a — 2e)
% = R =
¢ mz:"oz:—%s—mg(z) asinm(e —b)sinm(e —c)sinw(e —d)

14+2a—b—c—d—e
x I’ .
1+a—b—e,1+a—c—e,1+a—d—e,|+a—b—c,1+a—b—d,1+a—c—d

Denote by C,(¢€) the circle |z| = n+ € where € > 0 is chosen such that C,(€)
does not pass through any pole of g(z). By means of the same argument as for
(4), we have

1
— d
2mi ‘%Cn(.g) g(Z) .

< o{m+e) max |g(2) 1}

< ﬁ{(YH_8)—292(1+2a—b—c—d—e)}

which leads us to the limiting relation: lim 5= - (¢)8(2) dz = 0. In view of
n—oo n

Theorem 2, the sum of residues of g(z) over all the poles vanishes:
Ry + Ry + R + Ry + %, = 0.

Writing the last relation explicitly as

r [ b,c,d, e ] H [ l+a/2,b,c,d,e 1] (52)
1+a—b,1+a—c,14+a—d,1+a—e a/2,14a—b,1+a—c,1+a—d,1+a—e
3
ﬂ . — — —
:AXF|: 142a—b—c—d—e ].(Sb)
a 1+a—b—e,14+a—c—e,1+a—d—e,1+a—b—c,1+a—b—d,1+a—c—d
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where A is given by the trigonometric sum

cot(mh)sinm(a — 2b)

A= sinzt(c—b)sinzw(d —b)sinz(e — b)
cot(re) sinw(a — 2¢)

sinz(b—c)sinm(d — c¢)sinzm(e —c¢)
cot(nd) sinm(a —2d)

sinw(b—d)sinm(c—d)sinm(e—d)
cot(re) sinw(a — 2e)
sint(b—e)sinm(c—e)sinm(d —e)

If we can show that A has the following closed form:

sin(ma)

A = 6
sin(7h) sin(7c) sin(wd) sin(me) (62)
b,c,d,e,1—b,1—c,1—d,1—e

l—a, a

= 77T (6b)

then substituting this into (5b) and simplifying the result, we establish Dougall’s
bilateral 5 Hs-series identity displayed in Theorem 5.

It remains to confirm (6a-6b). For this reason, consider the rational function
defined by

U() = e“cotzsin(a+2z)
o= sin(b +z)sin(c +z)sin(d +z)sin(e+z)
Then U(z) can be decomposed in partial fractions
Uz) = 4 + b + ¢ + b + E
“7 Sinz sin(b+z) sin(c+z) sin(d+z) sin(e+z)

where the coefficients A, B,C,D and E are determined as follows:

(7

A = sina

~ sinbsincsindsine’
B — e~ cotbsin(a —2b)

~ sin(b—c)sin(b—d)sin(b—e)’
c - e “cotcsin(a —2c)

~ sin(c—b)sin(c —d)sin(c —e)’
D — e cotdsin(a—2d)

~ sin(d —b)sin(d —c)sin(d —e)’

e cotesin(a —2e)

E =

sin(e —b)sin(e — c)sin(e —d) "
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Keep in mind of the limiting relation

sinMi . isinhM Ai
im ————— = lim — B " =e
M—wsin(A +Mi)  M—esinAcoshM +icos A sinh M

Multiplying across (7) by sinz and then letting z = Mi, we find that

A}Iim U(Mi)sin(Mi) =0

which can be restated explicitly as
A+ Be" + Ce + De + Ee®' = 0.

From this equation, we derive (6a-6b) after having replaced each parameter by
its 7-times. O

3. Jackson’s Bilateral Series Identities

By specializing hypergeometric transformations, M. Jackson derived several bi-
lateral series identities. We prove two typical ones through the residue theorem.

Theorem 6 (Jackson [6, Eq 2.3]). For six complex numbers a,b,c,e, f,g with
e+ f=1+42aand2g=1+Db+c satisfying R(1+2a—b—c) > 0, there holds
the bilateral series identity:

H |:Cl7b,C ‘1:| 2b+c—2ar|:e’f,g,1—a,l—bjl_c71+a_g:|
3Hj3 = ! —b1- ¢
e.f8 T 1+§ b71+§ c’1+£ b’l+]2‘ ¢

x { sin(7ra) cos "%  sin (e — a) cos 25 }

Proof. This identity is the common generalization of the two identities due to
Watson [2, §3.3] and Whipple [2, §3.4]. Define the function

(0) = T b+z, c+z
"sin(mz) |[1—a—zetzf+z8+z]°

Then all the singular points of F(z) are simple poles z=n, —b—m and —c —m
with n € Z and m € Ny. From (1), we get the sum of residues of F(z) atz=n
as follows:

oo oo
b+n, c+n
- _ _1\n )
Ro= ) IESZF(Z)_ 2 (=) F[l—a—n,e—i—n,f—i—mg—i—n]

n—-—oo n—=-—oo
b, ¢ a, b, ¢
“rliai gl ¥l
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Instead, the sum of residues of F(z) at z = —b — m results in the closed expres-
sion:
o1 c—b—m
Ry:= Res F(z —
b mzoz——b m SlIl(TL'b) ZO m! |:1—a+b+m,e—b—m,f—b—m,g—b—m:|

-7 c—b l+b—e l4+b—f 1+b—g
= 3 1

sin(b) ~ [1-atbe-bf-bigb l+b—a, 1+b—c
—ir‘ %71+%,C—b,1+a—g
= sin(wb) ~ |e—b,f—b,g—b, 1+efc 1+12‘7c72+12,7672+g,f

= F[H—e—b l+e—c 1+f=b 1+f—0]
2 9 2 0 2 0 2

9]
#(b—c)
p)

sin(7h) sin

where we have utilized the 3F,-series identity due to Watson [2, §3.3]:

a, b, c
F Y ? ’1 —
3 2|:1+g+h’26, :|

1 1 1+a+b a+b—1
2 3te T, T

I4+a 14b 1-a 1-b
2 20 2 16 7 *tc

provided that R(1 4 2¢ —a — b) > 0 for convergence. In view of the symmetry,
we obtain the sum of residues of F(z) at the poles z = —c —m by interchanging
b and c in “R;” as follows:

Z ResF

— l4+e—b l+e—c 1+f—b 1+f—c
m=0<" <" F[2a27272]

obte2ag(1+a—g)  sinm(5E )smn(Tf)
n(c=b)
2

sin(7e) sin

Similar to the proofs of Dougall’s formulae, when R(1 +2a—b—c) > 0, we
can properly choose the contour C, such that

1
m?ﬁ,lF(Z)dz_)O as n— oo,

According to Theorem 2, the sum of residues of F(z) over all the poles vanishes:
R, + Ry + R, =0, which can explicitly be restated as

r b, c H a,b,c 2b+e=2n (1 4a—g)
l—a,e f,g|> " e f.g [1+e b Tigwe TH[~b Tifc]
sinz(25¢ )smn(Tf) smﬂf( )s1n71:(Tf)

X + .

—b) (2 9)

sin(7h) sin meb) > sin(7c) sin

Simplifying the trigonometric fractions inside the braces {--- }
{ sin(7a) cos M +sinm(e —a)cos @ }/ sin(7h) sin(7c),

we find the bilateral series identity displayed in (8). O
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Theorem 7 (Jackson [7, Eq 1.2]). For four complex numbers a,b,c,d satisfying
the condition R(1 + a — 2b) > 0, there holds the well-poised bilateral series

identity:

o 1+a/2, 3+a-b, b+c, b+d, b—c, b—d o
6 6Lz/z,;+b,1+a—b—c,1+a—b—d,1+a—b+c,1+a—b+d ]
_F[;+b,1—bic,1—bid,1+a—bic,1+a—bid]
- Tva—b,1+a—2b1+a,1—b+ =
cosw(a—b)cos (mb) + cos (mc) cos (nd)
21+42a=4b cog t(a — b)

where I'(u £ v) denotes the I'-function product with parameters u+v and u — v.
Proof. Similar to the proof of Theorem 6, consider the function

Glz) = n(a+2z) L fa—b+z, b+ctz, b+d+z, b—c+z, b—d+z .
asin(mz) = | d+b+z 1+a—b—ctz, 1+a—b—d+z, 1+a—b+c+z, 1+a—b+d+z
It is not difficult to see that all the singular points of G(z) are simple poles z = n,
-m—a+b—1/2, - m—b—c, —m—b+c, —m—b—d and —m —b+d with
n € Z and m € Ny.
The sum of residues of G(z) at the poles z = n reads as follows:

- _r 1/24a—b,b+c,b+d,b—c,b—d
1/2+b,1+a—b—c,1+a—b—d,1+a—b+c,1+a—b+d
l+a/2,1/24a—b,b+c,b+d,b—c,b—d
X 6H6 ‘ —1].
a/2,1/2+ b, 1+a—b—c,1+a—b—d, 1+a—b+c, 1+a—b+d
The sum of residues of G(z) at the poles z=—m—a+b— % can be expressed
in terms of well-poised ¢F5(—1)-series as follows:

Res  G(z)

0z=—m—a-+b—}%

m(l14+a—2b+2m) [2b—atc—m—12b—atd—m—1
2b—a—m,%ic—m,%id—m

agki

Ry =

m

I
gk

m!acosm(a—D)

m=0
_ w(l4+a—2b) _|2b—atc—32b—atd—]
~ acosm(a—Db) 2b—a,te,ttd

1+a—2b, 3*e=2b IT+e, I+d 1]

F. ; B
X 6 5[ W7 %+a—2bic, %—&—a—Zbid
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Reformulating the last ¢ F5(—1)-series through the limiting version of Whipple’s
transformation [2, §4.4]

F a, 1+3, b, c, d, e ‘_1
673 ¢ l4+a—b,1+a—c 1+a—d,1+a—e
T l+a—d,1+a—e 2 l+a—b—c, d, e ‘1

T M4alt+a—d—e|¥? | 14a-b, 1+a—c

and then evaluating 3 F;-series by means of Dixon’s formula [2, §3.1]

P [ a,b,c

1} :r[1+‘2‘,1+a—b,1—|—a—c,1+§—b—c]
1+a—b,1+a—c

l+a,1+5—-b1+5—c,1+a—b—c

where R(1 4§ —b—c) >0, we get the following closed expression:

34+a-2b 1 1
6F5[1+a—2b, a2 Ite, 1ta 1]

Lrazdb 34 q-2b+c, 34ta-2b+d|
_p|3ta2be ra2bia l+a—2b—c—d,}—c,1—d .
T | 24a-2b, 14a—2btetd | 22 %+a—2b—c,%—|—a—2b—d
o= 3+a—2b+c,3+a—-2b+d

T 212047 |1 +a—2b,24a—2b, Fa2bEcEd |

Substituting this into the expression for %}, and simplifying the result, we finally
obtain

24177211717[3
B —
b al[l+a—2b,(2+a—2b+c+d)/2]
sin7w(2b — a) cos(mc) cos(md)
cosm(a—b)cosm(a—2b+c)cosm(a—2b+d)’
Analogously, the sum of residues of G(z) at the poles z = —m — b — ¢ can also

be expressed in terms of well-poised ¢F5(—1)-series:

(2b+2c—a+2m)
m!asinm(b+c)

Z.:=)Y Res G(z)= i r

mZOZ:fmfbfc m—0
“T %—|—a—2b—c—m,—2c—m,—c:|:d—m
T—c—ml4+a—2b—m1+a—2b—2c—m,1+a—2b—ctd—m
_ w(2b+2c—a) s+a—2b—c,—2c,—c+d
" asinm(b+c)  |3—c¢, 1+a—2b,1+a—2b—2¢c,1+a—2b—c+td

2b+2c—a, 1+b+c—3, %—i—c, 2b—a, 2b+c—a+d
X6F5 a 1 ’—1 .
b+c—3, 5 +2b+c—a, 1+ 2c, 1+c+d
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The last ¢F5(—1)-series can also be reformulated by the limiting version of
Whipple’s transformation and then be evaluated by means of Dixon’s formula
as follows:

R [2bt2e—al+bte—g, I+e, 2b—a,2b+c—a:|:d‘_1
673 b+c—24 1 42bte—a, 1+2, 1+c+d
14+2¢,14+c—d 2b+c+d—a2b—a,s+d
=T 3 1 ‘1
1+2b+2¢—a, | +atc—2b—d l+c+d,5+2b+c—a

l+c,14+c+d, i +2b+c—a

1 + 2b + 2o — a, 1—a+22b+cid7 2+a*22b+Cid

= xT

Substituting this into the expression for Z, and simplifying the result, we have

24b72a71 3

T
al[l+a—2b,(2+a—2b+c+d)/2]
sin7(a —2b — 2c) cos =22 1

sin(zwe)sin(b+c)sinw(ctd)cosmw(a—2b—c)’

B, =

Interchanging ¢ and d in “%,”, we get the sum of residues of G(z) at the poles
z=—m—b—d:

> 24b72a717.c3/a
Ka = Res G(z) =
4 mgoz:fbfisdfm @) HH"I_N%W]
sinz(a — 2b — 2d) cos 2=
>< .
sin(nd) sin(b+d)sinm(d +c)cosm(a—2b—d)

Replacing ¢ by —c in “Z,”, we obtain the sum of residues of G(z) at the poles
z=—m—b+c:

> 24b—2a—1ﬂ3/a

;@/ = R G =

¢ mgozzfn?fslﬂ»c (Z) 1—‘[1 +a—2b, W]
sin ﬂ((l —2b+ ZC) CcOS %75

. sin(zc)sinzt(b —c)sinm(d +c)cosw(a—2b+c)’

Replacing d by —d in “Z%,”, we find the sum of residues of G(z) at the poles
z=-—-m—b+d:

d 94b—2a—1,3 Ja
%/ = R G =
d mgoz:—me—sb—&-d (2) [[1+a—2b, W]

sin7(a —2b +2d) cos ¢ 1p
X .
sin(nwd) sinw(b—d)sinm(c £ d)cosn(a—2b+d)
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When R(3+3a—6b) > 1, we can devise properly the contours C,, such that the
contour integral 51 f- G(z) dz tends to zero as n — oo. According to the residue
theorem, the sum of residues of G(z) over all the poles vanishes. We can show
that

24b72a71 7'[3/(,1

[1 ta— 2b, 2+a—22bicid]

%a:—{%b+%c.+%;+<%’d+%’;,}:r (8a)

sin(zwa){cos(a — b) cos(mb) + cos(rmc) cos(nd)}
sint(btc)sinm(b+td) cosm(a—b)
This is a restatement of the identity displayed in Theorem 7, where the restricton
R(3+3a—6b) > 1 has been replaced by R(3 + 3a — 6b) > 0, the convergent
condition justified by analytic continuation.
In order to confirm (8a-8b), we have to prove the equivalent trigonometric
formula:

(8b)

sinw(a — 2b) cos(mc) cos(md)

cosm(a—b)cosm(a—2b+c)cosm(a—2b+d) ©a)
B sinzr(a — 2b — 2c) cos =2t cog 4=2bc=d 9b)

sin(ze)sinw(b+¢)sinm(c+d)sinm(c —d)cosm(a—2b—c)
N sin7t(a —2b — 2d) cos =22t p cos 4=2bc=d 90)

sin(nd)sinw(b+d)sinm(c+d)sinmw(c —d)cosn(a—2b—d)
sin7(a —2b + 2c¢) cos 422kt gp cog 4=2bte—d ©d)

sin(mwe) sinzw(b — ¢)sinw(c+d)sinzw(c —d)cosw(a —2b+¢)
B sin7t(a — 2b + 2d) cos =2t g cos 4=2bretd 1 ©)

sin(nd)n(b—d)sinm(c+d)sinm(c —d)cosn(a—2b+d)

sin(wa){cos w(a — b) cos(nwb) + cos(mc) cos(nd)} of)

“sin(b+c)sinz(b—c)sinm(b+d)sinz(b—d)cosm(a—b)’
Consider the rational function defined by
V() = sin(a +2z){cos(a — b+ z)cos(b+z) +cosccosd }

4= sin(b—c+z)sin(b+c+z)sin(b—d+z)sin(b+d+z)cos(a—b+2z)

and the partial fraction decomposition:

A B C

+ = + =

cos(la—b+z) sin(b—c+z) sin(b—d+z)

D N E
sin(b+c+z) sin(b+d+z)
Determining the coefficients A,B,C,D,E and then letting z = 0, we recover

the identity displayed in (9). The details will not be reproduced due to space
limitation. 0

Vz) =
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4. Bilateral Series due to Slater and Lakin

For the alternating bilateral hypergeometric series of higher order, Slater-Lakin
[9, 1953] found the following general result.

Theorem 8. For complex numbers o and {BY._, subject to the condition
R{(1+a)—2Y5_, B} > 1, there holds the transformation formula:

1+a/27 ﬁa B7 Ty ﬁ
1+2H£+1{ a2, 1+a1—[31, 1+0¢2—[32, . 1+064—ﬁg‘_1}
_ i (1+a—BIT(1—B) - [ﬁ, Bil+a— ﬁ,-]
A al'(a—20) Bj, 1+ o —B;— B

/#k

X 14eky

[zﬁk—a, U+ Be—0t/2, {Be+ Bj— o} jx ‘ _1}
Be—a/2, {1+ Bc—PBj}tjx '

Proof. For the function defined by

m(o+2z)
F(o) = +2z) H T(Bx+2)
asin(nz) 2 T(14+0—PBr+z)’
all the singular points are simple poles z = n, —f —m withn € Z , m € Ny and
k=1,2,---,£. Then the sum of residues of .7 (z) at z = n reads as the following

bilateral well-poised series:

—+oo
. O“
R .—n;w ZEEJ Z }gl}llz n).7(2)

v § 0+ 2n (B +n)
= L g

L T
k=1 F +o— Bk) n=—co k:l + - Bk)
1+a/27B1aﬁ27"'7B€ s F(Bk)
= H — 1 - F
148+ o/2,1+0—PB,1+0—Pa, - 1+0—f kI;II F(l -I-Oc—ﬁk)

For other poles z = —f —m with k = 1,2,--- ¢, the corresponding sum of
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residues of . (z) is given by the sum of well-poised hypergeometric series:

¢
Xp ::];

1m

oo

oo ‘

Z Res F(z)= Z Z lim  (z+ B +m)F(2)
- k=

1

0z="B—m 1 m=02——B—m
T i o — 2B —2m L(Bj— B —m)
orsin(7fy) a=om! T(1+ o —= 2B —m) 54 T(1+o—pi—p—m)
T H (ﬁj ﬁk)
asin(mBe) (0 —2) 544 T(1+ 0t — B — B)
[Zﬁk—a, L+ Be—a/2, {Be+Bj— o}z ’ _1]
Br—a/2,  {1+B—Bj}jz '

Denote by C,(€) the circles |z| = n+ € with € > 0 being properly chosen such
that C,,(€) does not pass through any pole of .% (z). By using the same argument
as (4), we have the following estimation:

1 oL
2mé@¢@&

:
r

X

1+¢Fy

< o{mreymux] ()}

z2€Cy

ﬁ’{ (n+ €)?~Tie R(1+a-25) }

IN

When ¥t R(1+ o —2f) > 2, the contour integral 55 $c.(e) F (2) dz tends
to zero as n — . Hence we have Zq + % = 0, which is equivalent to the
transformation formula stated in Theorem 8, after having replaced the condition
Yo RO +a—2B) >2by R{(1+a)—2Y,_, B} > 1, the convergence
condition in view of analytic continuation. O

In addition, the residue theorem can also be employed to discover and prove
summation formulae of basic hypergeometric series. For example, by comput-
ing the contour integral for the function defined by

:1

4
Y () = [617 4, c/z gqz/a ‘ ] Xk/z (/2 @)n
¢, q/a, z, q/z i (e

Chu [3] found in 1994 the following interesting bilateral g-series identity:

a, d7 qnlxlv Tty éxf ‘ -4
2+0Yie+2 Lv ad, x1, -, a9 "/a

— |: q, q, C/d7 qd/a :| ﬁ Xk/dan
Q/a) ¢, qd7 Q/d k=1 Xk Q)n/\

where a, ¢, d, {xk}izl are complex numbers and A, {nk}izl nonnegative integers
satisfying the conditions n = Y'{_,n and |g/a| < |¢*| < |¢"/c|.
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The examples presented in this paper have demonstrated that the residue
theorem is indeed efficient to deal with hypergeometric series identities. There
exist other important summation formulae (for example. Jackson [6, 7]), which
can be obtained via the residue theorem. The interested reader is encouraged
to try further. For other applications of the residue theorem to combinatorial
computation, refer to two monographs due to Egorychev [5] and Reidel [8].
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