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SOME FAMILIES OF MIXED GENERATING FUNCTIONS

AND GENERALIZED POLYNOMIALS

G. DATTOLI - S. LORENZUTTA - H.M. SVRIVASTAVA - A. TORRE

The main object of this paper is to show that combined use of the
Lagrange expansion and certain operational techniques allows to derive mixed
generating functions of various families of generalized polynomials in a
straightforward manner. Relevant connections with many other recent works
on this subject are also discussed.

1. Introduction.

The use of operational techniques has provided a fairly powerful tool
for the study of generating functions and Burchnall type identities [3] for
multivariable and multiindex Hermite polynomials [6].

In this paper we will show that the same method can be applied to
extend mixed generating functions, of the type discussed by Carlitz[4] and
Srivastava[13], to the case of generalized polynomials. We, therefore recall a
few identities which will be exploited in the forthcoming sections (cf. [5] und
[8]).
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1.1 Decoupling identities.

Weyl identity:

(1.1) eA+B = eA · eB · e−K/2,

where the operators A and B do not commute and

(1.2) [A, B] = AB − BA = k, [k, A] = [k, B] = 0.

Berry identity:

(1.3) eA+B = e
µ2

12 · e−
µ

2
·A1/2+A · eB ,

where the operators A and B satisfy the relation

(1.4) [A, B] = µ · A1/2,

µ being an arbitrary complex number.

1.2 Crofton-type identities:.

(1.5) eα·

�
d
dx

�m
f (x) = f

�
x + m · α ·

� d

dx

�m−1�
· eα·( ddx )

m

Henceforth we will omit the exponential operator on the r.h.s., because it is
assumed to act on unity; an extension to the multivariable case is given by

e
1
2 ∂
T
Z
M∂x f

�
x , y) = f (x + (a · ∂x + b · ∂y), y + (b · ∂x + c · ∂y)

�

,(1.6)

∂z =

�
∂x
∂y

�

,M =

�
a b
b c

�

.

According to the above identities, the generating function of the Kampé de
Fériet polynomials [7] can be obtained from that of the ordinary polynomials;
indeed we have

(1.7) ey·∂
2
x ex·t = e(x+2·y·∂x )·t = ex·t+y·t

2

,



SOME FAMILIES OF MIXED GENERATING FUNCTIONS. . . 149

which follows from Eqs. (1.5) and (1.1). The Kampé de Fériet polynomials are
de�ned by the relations

∞�

n=0

t n

n!
· Hn(x , y) = ext+yt

2

, Hn(x , y) = n!

[n/2]�

s=0

ys · xn−2·s

s!(n − 2 · s)!
(1.8)

Hn(x , y) = ey∂
2
x (xn),

the last of which is often overlooked. The Hn(x , y) reduce to the Hermite
polynomials in the following particular cases: Hn(x) = Hn(2x , −1) and
Hen(x) = Hn(x , −1

2
).

We introduce the negative derivative operator D−1
x whose action on mono-

mials is just speci�ed by

(1.9) D−n
x

xm

m!
=

xn+m

(n +m)!
,

while that on a generic function of x can be expressed in terms of the Cauchy
integral (within the present formalism the lower limit of integration is taken to
be zero)

(1.10) D−n
x f (x) =

1

(n − 1)!

� x

0

(x − t)n−1 f (t) · dt .

It should be remarked in passing that, for n a complex number with
�(n) > O , (1.10) de�nes the familiar Riemann-Liouville fractional integral
of order n (see,for example [1], Chapter 5). The following identity, which
immediately follows from (9),

(1.11) e−yD
−1
x

� xn

n!

�
= xn · Cn (yx),

will be exploited in our investigation. The function Cn (x), usually called the
Tricomi function, is of the Bessel type and is de�ned by the series:

(1.12) Cn (x) =

∞�

r=0

(−1)r · xr

r!(n + r)!
.

The paper is organized as follows. In Section 2 we will exploit operational
methods to derive mixed generating functions for multivariable and multiindex
polynomials.In Section 3, also devoted to concluding remarks, we will comment
on the use of the operational methods, to obtain further general families of
generating functions valid for multivariable Hermite polynomials.
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2. Mixed generating functions and general families of generalized polyno-
mials.

According to Carlitz [4] and to successive investigations by Srivastava [13],
the Lagrange expansions [11]

f (z)

1− w · φ�(z)
=

∞�

n=0

wn

n!
Dnλ

�
f (λ) · [φ(λ)]n

�

λ=z0
,(2.1)

z = z0 + w · φ(z); Dλ =
d

dλ
,

can be used as a �exible tool to derive entirely new classes of generating
functions [14].

To give an idea df how the identity (2.1) works, we consider the in�nite
sum

(2.2) S(x , y; t) =

∞�

n=0

t n

n!
· (x + n · y)n,

where x , y and t are independent of n. By rearranging the r.h.s. of (2.2) as

(2.3) S(x , y; t) =

∞�

n=0

t n

n!
Dnλ

�
ex·λ · (ey·λ)n

�

λ=0
,

we can use the identity (2.1) and derive the result [12]:

(2.4) S(x , y; t) =
eξ ·x

1− y · ξ
,

�
ξ = t · ey·ξ

�

We can now exploit the last of the identities (1.8) to get

(2.5) eη·∂ 2x S(x , y; t) =

∞�

n=0

t n

n!
· Hn(x + n · y, η).

Therefore, by combining (2.4) and (1.7), we �nally obtain the mixed
generating function:

(2.6)

∞�

n=0

t n

n!
· Hn(x + n · y, η) =

eξ ·x+ξ 2·η

1− y · ξ
, (ξ = teyξ )
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which is well known (see Refs.[4] and [13]), but derived earlier within the
framework of a different procedure.

The two-variable and two-index polynomials [10]:

(2.7) hm,n(x , t; τ) = m!n!

min(m,n)�

s=0

τ s xm−s yn−s

s!(m − s)!(n − s)!

are de�ned by the generating function

(2.8)

∞�

m,n=0

um

m!
·
vn

n!
· hm,n(x , y; τ) = eu·x+v·y+τ ·u·v.

According to the Crofton identities (1.5) we can rewrite the r.h.s. of (2.8)
as follows

(2.9) eu·x+v·y+τ ·u·v = eτ ·∂ 2x·y eu·xev·y .

This last relation (2.9) can be exploited, along with (2.4), to derive the
mixed generating function:

(2.10)

∞�

m,n=0

um

m!
·
vn

n!
·hm,n(x+m · ξ, y+n ·η; τ) =

ex·w1+y·w2+τw1·w2

(1− ξ · w1)(1− η · w2)
,

where w1 = u · eξ ·w1 and w2 = v · eη·w2 .
A more general class of polynomials with two variables and two indices

introduced by Hermite himself (see Refs.[1] and [10]), can be speci�ed by a set
of identities which are a direct generalization of the identities (1.8) and (2.4),
namely

∞�

m,n=0

um

m!
·
vn

n!
· Hm,n(x , y) = ew

T Mz−
1
2
wT Mw, w =

�
u
v

�

, z =

�
x
y

�

(2.11)

(a, c) > 0, � = a · c − b2 > 0,

and [7]

Hm,n(x , y) = Hm,n

�
ax + by, −

1

2
a; bx + cy, −

1

2
c| − b)

�
=(2.12)

= m!n!

min(m,n)�

s=0

(−b)sHm−s

�
ax + by, −1

2
a
�
· Hn−s

�
bx + cy, −1

2
c
�

s!(m − s)!(n − s)!
,

Hm,n(x , y) = e−
1
2
∂ Tz M

−1∂z [(ax + by)m(bx + cy)n].
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By combining the above identities with the previously developed concepts,
we end up with the mixed generating function:

∞�

m,n=0

um

m!
·
vn

n!
· Hm,n

�
x +

1

�
· (cmp − bnq), y +

1

�
· (anq − bmp)

�
=(2.13)

=
eψ

T Mz− 1
2ψ

T Mψ

(1− pψ1)(1− qψ2)
,

where

(2.14) ψ =

�
ψ1

ψ2

�

, ψ1 = u · epψ1, and ψ2 = u · eqψ2

An analogous relation can also be obtained for the associated polynomials
Gm,n(x , y) de�ned by

(2.15) Gm,n(x , y) = e−
1
2 ∂
T
z M

−1∂z [xm · yn]

The operational method can be extended to other classes of polynomials as
e.g. the two-variable Laguerre polynomials introduced in [9], according to the
relation

(2.16) Ln(x , y) = (y − D−1
x )n,

which yields

Ln(x , y) =

n�

s=0

n!(−1)s · yn−s · xs

(s!)2(n − s)!
,(2.17)

∞�

n=0

t n

n!
· Ln(x , y) = ey·tC0(x · t).

By exploiting the Eqs.(2.16), (2.3), (2.4) and the identity (1.11) we �nd that

∞�

n=0

t n

n!
Ln(x , y + n · z) =

∞�

n=0

t n

n!
Dnλ

�
eλ·(y−D−1

x )(eλ·z)n
�
λ=0

=(2.18)

=
ew·y · C0(x · w)

1− z · w
, w = t · ez·w

This last relation (2.18) will be examined more closely in the following section.
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3. Concluding remarks.

Before discussing more general cases and commenting on the results
obtained in the preceding sections, let us consider the following in�nite sum:

(3.1) Sn(x , y) =

∞�

m=0

tm

m!
(x +m · y)n.

In analogy with (2.2), we rewrite the r.h.s of (3.1) as

∞�

m=0

tm

m!
(x +m · y)n =

∞�

m=0

tm

m!
Dnλ

�
eλ·(x+m·y)

�
λ=0

=(3.2)

= Dnλ
�
eλ·x · ete

yλ�
λ=0

=

∞�

s=0

�
n
s

�

xn−s · Fs(t, y),

Fs(t, y) = Dsλ
�
et ·e

yλ�
λ=0

By applying the above elementary results and the operational rules con-
cerning the generalized Hermite polynomials, we get

(3.3)

∞�

m=0

tm

m!
· Hn(x +m · y, η) =

n�

s=0

�
n
s

�

Hn−s(x , η) · Fs(t, y).

The above result (3.3) can be combined with Lagrange�s expansion (2.1)
to get mixed generating functions of the type:

(3.4)

∞�

m,n=0

un

n!
·
tm

m!
Hn(x+n · y, z+m ·q) =

ew·x+z·w2
· et ·e

q·w2

1− y · w
,
�
w = u ·ey·w

�
.

The relevant proof can be given by noting that

∞�

m,n=0

un

n!
·
tm

m!
Hn(x + n · y, z + m · q) =(3.5)

=

∞�

m,n=0

un

n!
·
tm

m!
Dnλ [e

λ·(x+n·y)+λ2 (z+mq)]λ=0 =

=

∞�

n=0

un

n!
Dnλ [e

λ·x+λ2 ·z+t ·eq·λ
2

· (eλ·y)n]λ=0.
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The last identity (3.5) and (2.4) yield (3.4).

Let us now consider a further generalization of the Hermite polynomials,
which can be obtained means of the identity:

(3.6) ex2 ·∂
2
x1

+x3·∂ 3
x1 · ex1·t = ex1 ·t+x2·t

2+x3·t
3

=

∞�

n=0

t n

n!
· Hn(x1, x2, x3),

where

(3.7) Hn(x1, x2, x3) = n!

[n/3]�

s=0

xs3 · Hn−3s(x1, x2)

s!(n − 3 · s)!
.

The �rst of the identities (3.6) can be derived by using Eqs. (1.5), (1.1) and
(1.3). It is worth noting that they satisfy the differential equation:

(3.8)
� 3�

m=1

m · xm · Dmx1

�
Hn(x1, x2, x3) = n · Hn(x1, x2, x3),

and the generating function:

∞�

n=0

t n

n!
· Hn+l (x1, x2, x3) = eP3(t) · Hl

�
P �
3(t),

1

2!
P ��
3 (t),

1

3
P ���
3 (t)

�
,(3.9)

P3(t) = x1 · t + x2 · t2 + x3 · t3.

where the primes denote derivatives with respect to t.

The extension of (3.4) to the polynomials (3.7) is quite straightforward and
indeed we get

∞�

n1 ,n2 ,n3=0

�3
j=1

u
nj
j

nj !
· Hn1 (x1 + n1 · y1, x2 + n2 · y2, x3 + n3 · y3) =(3.10)

=
eP3(w)

1− y1 · w
· �3

j=2e
uj ·e

yj ·w
j

,
�
w = u1e

y1w
�
.

It is evident that the extension to more variables is always possible. In this
case the Hn(x1, x2, · · · , xN ), are essentially the Bell polynomials [2] and the
identities (3.6) to (3.10) can be suitably generalized.



SOME FAMILIES OF MIXED GENERATING FUNCTIONS. . . 155

Before concluding this paper, we mention a further class of polynomials,
known as Appell polynomials, denoted by fn (x) and satisfying the relations:

∞�

n=0

t n

n!
· fn (x) = A(t) · ex·t , A(0) �= 0(3.11)

Dx fn (x) = n · fn−1 (x),

where A(t) is a generic function of t. From the operational point of view, we
have

(3.12)

∞�

n=0

t n

n!
· fn (x) = A(Dx ) · ex·t .

The fn (x) can be expressed in the form

(3.13) fn (x) = A(Dx ) · (xn)

and the following identity can also be shown fairly easily:

(3.14)

∞�

n=0

t n

n!
· fn (x + n · y) = A(w) ·

ex·w

1− y · w
, w = t · ey·w

This general result (3.14) was also proved by Carlitz [4] in a different manner.
It is �nally worth noting that, within this respect (2.18), cannot be consid-

ered to be new. The polynomials Ls(x , y) indeed exhibit a two-fold nature. As
to the y-variable, they should be viewed as belonging to the Appell class (see
the second of (2.17)),while as to the x -variable, they belong to a further class of
polynomials satisfying the relations:

(3.15)

∞�

n=0

t n

n!
· gn(x) = B(t) · C0(x · t), −DxxDX (gn(x)) = n · gn−1(x)
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Further comments on this last point will be presented elsewhere.
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