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THE STIELTJES INTEGRAL ALONG FRACTAL CURVE

BORIS A. KATS

The present paper is dealing with the integral
�
� f dz over fractal non-

recti�able curve � on the complex plane. In the introduction we observe
its known indirect de�nitions. The Section 2 treats a direct de�nition, the
existence theorems and some properties of the integral, and the next one
concerns the Cauchy type integral along fractals. The �nal section consists of
conjectures and open questions.

1. Introduction.

As known, the modern mechanics and physics consider fractal curves as
adequate model of real boundaries, trajectories, cracks and so on (see [18], [4]).
The property of self-similarity of the fractals is of special signi�cance, because
it simulates homogeneity of their real prototypes.

The various boundary value problems of mechanics and physics under
classical assumptions on smoothness of the boundaries are resolvable in terms
of integrals along these boundaries. For example, the classical investigations of
the plane problems of elasticity theory are based on using of the Cauchy type
integrals along the boundaries and cracks (see [20]). But according the modern
concepts the rough boundaries and cracks have fractal features, and we obtain
the Cauchy type integral along fractal curves. In this connection there arises
initially a question on existence and properties of the integral

(1)

�

�

f (z) dz,
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where � is a fractal curve on the plane of complex variable z, and f (z) is a
function de�ned on this curve.

A number of works treats the integral
�
�

f dmα over fractal fractal set
� of dimension α with respect to its Hausdorff measure mα (for instance,
see [6], where A. Jonsson and H. Wallin study certain analogs of the Besov
spaces with respect to that measures). But the properties of this integral and
the integral (1) have important dissimilarities. For instance, if the Hausdorff
dimension of � ⊂ C is α ∈ (1, 2) and 0 < mα(�) < ∞ then the function
F1(z) = 1

2π i

�
�

dmα(ζ )

ζ−z
is continuous on the whole complex plane C, but the

corresponding integral F2(z) = 1
2π i

�
�

dζ

ζ−z
has unit gap on the curve � in all

known cases of its existence. This opposition is related with the fact that the
formula (1) does not determine a measure in customary sense.

As we mention above, the analysis of certain mechanical problems needs
just the integral (1). Its classical theory is based on recti�ability of the curve,
but the fractal curve � cannot be recti�able. Therefore all publications on this
integral are dealing mainly with various ways for de�nition of the integral (1)
as a new kind of integral.

One of that de�nitions is based on the Stokes formula

(2)

�

�

f (z) dz = −

��

D+

∂ f

∂z
dzdz,

which is valid if the closed recti�able curve � bounds domain D+ , the function
f (z) is continuous in D

+
, and its �rst partial derivatives are integrable in D+ .

Probably, Whitney �rst noted that the right side of equality (2) can be used as
de�nition of the left one for non-recti�able curve �. This de�nition is correct
only if the right side of (2) has the same value for all functions f with common
trace on �. This question is considered in the papers [10], [8] for functions f
satisfying the Hölder condition with exponent ν on the curve �:

sup
�

�
� f (t �) − f (t ��)

�
�

|t � − t ��|ν
: t �, t �� ∈ �, t � �= t ��

�
= hν ( f, �) < ∞.

There is shown that the equality (2) generates correct de�nition of integral along
non-recti�able curve under assumption

(3) ν > d − 1,

where d is the box dimension of the curve � (see its de�nitions in the books
[18] and [4]).
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In what follows Hν(�) stands for the Hölder space consisting of de�ned
on � functions with �nite Hölder coef�cient hν ( f, �).

Seemingly, the minimal condition for applicability of the formula (2) for
determining of the integral (1) is representability of the function f as the trace
on � of some function from the Sobolev class W 1

1 (D+). Thus, the space of all
functions, which are integrable on � in the sense of (2), has to be certain trace
space. In the papers [11], [12] this conjecture is proved for the version of the
Besov spaces introduced by A. Jonsson and H. Wallin [6].

Another approach to de�nition of the integral (1) can be characterized as
geometrical approximation. If a function f (z) is de�ned in certain neighbor-
hood of � then we can approximate the curve by polygons �n , which converge
to it in some sense, and put

�
�

f (z) dz = lim
�
�n

f (z) dz. This scheme is stud-
ied in the papers [8], [9], [7]. Its validity is shown for f ∈ Hν(�) under the
condition (3). In the work [21] the same result is obtained by means of non-
standard analysis: the curve � is approximated by in�nitely close polygon with
in�nite number of corners.

A dual (with respect to the geometrical approximation) de�nition of the
integral (1) is proposed in the paper [13]. It is based on approximation of the
function f . If � is Jordan arc with beginning a and end-point b and polynomial
sequence {pn(z)} converges on � to f (z), then we can put

�
�

f (z) dz =
lim(Pn(b) − Pn(a)) where P �

n(z) = pn(z), n = 1, 2, . . .. There is shown that
the limit exists if the sequence {pn} converges to f in Hν(�), the exponent ν

satis�es condition (3) and the arc � does not coil into spirals at its ends.

In the papers [14], [15] the integral (1) is de�ned as a distribution on the
plane C satisfying certain axioms. Existence of the distribution with required
properties is proved there under the same condition (3).

All these de�nitions of the integral (1) are indirect. In what follows we are
dealing with its direct Stieltjes de�nition.

2. Generalizated recti�ability.

First we de�ne an integral which is slightly more general than the integral
(1).

Let � be Jordan curve on the plane C with beginning a and end-point b.
As we call the point a by beginning and b by end, so we de�ne an intrinsic
ordering relations on the points of this curve: if z1,2 ∈ � and z1 precedes z2 on
the curve �, then we write z1 <� z2 ; the notation z1 ≤� z2 means that either
z1 <� z2 or z1 = z2 . Let τ = {zj }

j=n
j=0 be ordered sequence of points of the

curve �, i.e. a = z0 <� z1 <� z2 <� . . . <� zn = b. We call it by partition
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and put diam(τ ) = max{|zj − zj−1 | : j = 1, 2, . . . , n}. If, in addition, there are

given points {wj }
j=n
j=1 such that zj−1 ≤� wj ≤� zj , j = 1, 2, . . . , n, then we say

that the partition τ is pointed.

De�nition 1. Let functions f (z) and g(z) be de�ned on directed Jordan curve
�. For any pointed partition τ we put S(τ ) =

�n
j=1 f (wj )(g(zj ) − g(zj−1)).

If for any ε > 0 there exists δ > 0 such that |S(τ ) − J | < ε for any
pointed partition of diameter diam(τ ) < δ , then the value J is (Riemann)-
Stieltjes integral of the function f with respect to g(z) along �, and we write
J =

�
�

f dg.

This de�nition gives the integral (1) if g(z) = z.
One can easily adapt the de�nition for closed directed Jordan curve, i.e.

for the case a = b. In what follows we consider closed curves as oriented
counter-clockwise.

Let z = z(x) be continuous one-to-one mapping of segment I = [0, 1] on
the curve �, z(0) = a, z(1) = b. Obviously, the sums S(τ ) coinside with the

Riemann-Stieltjes sums for customary Stieltjes integral
� 1

0
f (z(x)) dg(z(x)).

Therefore �

�

f dg =

� 1

0

f (z(x)) dg(z(x)),

and these integrals exist (or do not exist) simultaneously. The homeomor-
phism z(x) : I �→ � is not unique, but value and existence of the integral
� 1

0 f (z(x)) dg(z(x)) do not depend on the choice of that mapping.

The classical studies of the Stieltjes integral
� 1

0 f dg are based on assump-
tion that the function g has �nite variation on the segment I (see, for instance,
[23]. But if z(x) has �nite variation then its image � is recti�able, what is not
interesting for fractal theory. Therefore we must use here another results on
existence of the Stieltjes integral.

Let �(x) be real continuous increasing function de�ned for x ≥ 0
and �(0) = 0. The value of the least upper bound supτ

�n
j=1 �(

�
� f (zj ) −

f (zj−1)
�
�) = v�( f ; �), taken over the set of all partitions of �, is called �-

variation of f (z) on �. The class V�(�) consists of all functions satisfying
condition v�( f ; �) < ∞. If �(x) = x p, p ≥ 1, then we denote this class by
Vp(�) and corresponding variation by vp( f ; �); it is called by p-variation.

On the segment I these classes were introduced by L.C. Young (see [26],
[27]).

L.C. Young Theorem. [27]. Let functions f and g belong to the classes V�(I)
and V�(I) respectively and have not common discontinuities on I . If inverse
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functions φ(x) = �−1(x) and ψ(x) = �−1(x) satisfy condition

(4)

∞�

n=1

φ(1/n)ψ(1/n) < ∞

then the Stielties integral
� 1

0 f dg exists.

If �(x) = x p , �(x) = xq , then the condition (4) reduces to inequality

(5) 1/p + 1/q > 1.

L.C. Young proved also (see [26]) that

�
�
�
�

� 1

0

f dg

�
�
�
� ≤ cp,qv

1/p
p ( f ; I)v1/q

q (g; I)

if f (0) = 0; here cp,q = 1+ ζ( 1
p

+ 1
q
).

Thus, the integral (1) exists if functions f (z) and g(z) = z belong
to suitable classes V�(�) and V�(�). The following de�nition is geometric
version of the requirement z ∈ V�(�).

De�nition 2. A curve � is called � -recti�able if the value

σ�(�) = sup
τ

n�

j=1

�(
�
�zj − zj−1

�
�)

is �nite; the least upper bound is taken over all partitions τ = {zj }
n
j=1 of the

curve �. For �(x) = x p we call it p-recti�able and write σp instead of σ� .

Now we are able to formulate a theorem on existence of the Stieltjes
integral (1) along non-recti�able curve.

Theorem 1. Let � be Jordan curve and function f (z) be de�ned on it. Then
the following propositions are valid.

i. If the curve � is � -recti�able, f ∈ V�(�) and the condition (4) ful�ls, then
the integral (1) exists.

ii. If the curve � is q -recti�able, f ∈ Vp(�) and the condition (5) ful�ls, then
the integral (1) exists and satis�es inequality

�
�
�
�

�

�

f dz

�
�
�
� ≤ | f (a)(b − a)| + cp,qv

1/p
p ( f ; �)σ 1/q

q (�).
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iii. If the curve � is q -recti�able, f ∈ Hν(�) and

(6) ν > q − 1

then the integral (1) exists and

�
�
�

�

f dz
�
� ≤ | f (a)(b − a)| + cq/ν,qhν( f ; �)σ

ν+1
q

q (�).

iv. If f ∈ V1(�) then the integral (1) exists for any Jordan curve �.
v. If this integral satis�es inequality

�
�
�
�

�

�

f dz

�
�
�
� ≤ C sup{| f (z)| : z ∈ �}

for any continuous f ∈ V1(�) and for certain C > 0 then the curve � is
recti�able.

Proof. Obviously, f (z) ∈ V�(�) if and only if f (z(x)) ∈ V�(I), and propo-
sitions (i) and (ii) follows from mentioned above L.C.Young�s results. If

f ∈ Hν(�) then
�n

j=1

�
� f (zj ) − f (zj−1)

�
�q/ν

≤ h
q/ν
ν ( f ; �)

�n
j=1 |zj − zj−1 |

q ≤

h
q/ν
ν ( f ; �)σq(�). Hence, f ∈ Vp(�) for p = q/ν and vq/ν ( f ; �) ≤

h
q/ν
ν ( f ; �)σq(�). Therefore the condition (6) follows from (5) and proposi-

tion (iii) from (ii). As known, the Stieltjes integral
� 1

0 f dg exists if function
g is continuous and f ∈ V1(I) (see, for example, [23]); this result proves the
proposition (iv). The proposition (v) is a consequence of the Riesz theorem
concerning bounded functionals on the space of continuous functions.

Note 1. The bounds for the integral (1) in the case where the curve � is � -
recti�able and f ∈ V�(�) can be obtained from results of the paper [27] (see
also [17]).

Note 2. A.M. Dyachkov [2] describes the class of all functions f (x) such that

the Stieltjes integral
� 1

0
f (x) dg(x) exists for a �xed function g ∈ V�(I). This

result enables us to desribe the class of all functions f (z) such that the integral

�

�

f (z) dz =

� 1

0

f (z(x)) dz(x)

exists for a given � -recti�able curve � with �xed mapping z(x) : I �→ �.
It is interesting to make this description independent on the choice of the
homeomorphism z(x).
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Note 3. In connection with proposition (v) of the theorem and cited above
result of [13] the following question arises: if |P(b) − P(a)| ≤ C sup{|P �(z)| :
z ∈ �} for any polynomial P and certain C > 0 then the curve � is recti�able,
isn�t it?

Now we describe certain properties of p-recti�able curves.

Theorem 2. A Jordan curve � is p-recti�able if and only if there exists
homeomorphism z = z(x) : I �→ � belonging to Hölder class H1/p(I). The
box dimension d of p-recti�able curve � does not exceed p.

Proof. Let us consider arc �t of the curve � with beginning a and end t ∈ �.
The function s(t) = σp(�t ) continuously increases (in the sense of ordering
relation on � which is de�ned at the beginning of the section). It maps � on
the segment [0, σ ] where σ = σp(�). Then the function x(t) = s(t)/σ is
homeomorphism of � onto I . If t ≤� t � then x(t �) − x(t) ≥ |t � − t |p/σ .
Therefore the inverse function z(x) : I �→ � satis�es inequality |z(x)−z(x �)| ≤
(σ |x − x �|)1/p , i.e. it belongs H1/p(I).

In order to prove the second proposition of the theorem we �x ε > 0
and divide the complex plane into grid of squares with mesh ε . Let N(ε) be
number of squares Q such that intersection Q ∩ � is not empty. Now we
consider a special partition of �. Let z0 = a. We de�ne z1 as the minimal
(with respect to ordering ≤� ) point satisfying conditions |z1 − z0 | = ε and
z0 <� z1 ; if that point does not exist then we put z1 = b. Analogously, z2
is minimal point of the set {z ∈ � : |z2 − z1| = ε, z1 <� z2}, and z2 = b
if this set is empty, and so on. As a result we obtain partition τ = {zj }

m
j=1

such that |zj − zj−1 | = ε for j = 1, . . . , m − 1, and |zm − zm−1| ≤ ε .
Hence, (m − 1)ε p <

�m
j=1 |zj − zj−1 |

p ≤ σ and m < 1 + σε−p . On
the other hand, any arc of � with beginning zj−1 and end zj , j = 1, . . . , m,
is contained in a disk of radius ε which intersects no more than 12 squares.
Thus, N(ε) ≤ 12m < c + cε−p , where constant c does not depend on ε , and
d = lim sup log N(ε)

− log ε
≤ p by de�nition of the box dimension. Theorem is proved.

Note 4. Analogously, � is � -recti�able if and only if there exists homeomor-
phism z = z(x) : I �→ � such that |z(x) − z(x �)| ≤ ψ(c|x − x �|) for any
x , x � ∈ I and certain c > 0, and box dimension d of � -recti�able curve � does
not exceed lim sup log�(ε)

log ε
.

By virtue of Theorem 2 the condition (6) is more restrictive than (3). But
there exist a number of interesting curves such that p = d . For example, the
von Koch snow�ake is p-recti�able for p = log 4

log 3
and its box dimension equals

to log 4
log 3

, too. On the other hand, one can easily �nd curves such that p > d and
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even p > 2. An interest example of that curve is graph of the function

y(x) =

∞�

n=0

2−nαh(2nx), 0 ≤ x ≤ 1,

where 1−periodic hat function h(x) equals to x for 0 ≤ x ≤ 1/2 and to 1−x for
1/2 < x ≤ 1. The immediate calculation shows that the graph is p−recti�able
if and only if p ≥ 1/α, and its box dimension is 2 − α (here 0 < α < 1).

Now we consider relations between the Stieltjes integral along � and
inderect de�nitions of the integral along this curve (see introduction).

Let the curve � be q -recti�able and the function f be de�ned in neighbor-
hood of � and satisfy there the Hölder condition with exponent ν > q − 1.
If �n is polygonal line with beginning a, end b and with corner points
zn,1, zn,2, . . . , zn,kn

on the curve �, then it is image of piecewise linear func-
tion zn(x) de�ned on the segment I . We denote by xn, j pre-image of zn, j .
Let us choose the sequence {�n} so that all corner points of �n are corner
points of �n+1, n = 1, 2, . . ., and the sets ∪∞

n=1 ∪kn

j=1 xn, j and ∪∞
n=1 ∪kn

j=1 zn, j

are dense everywhere on I and � respectively. Then the sequences of func-
tions {zn (x)} and { f (zn (x))} converge to z(x) and f (z(x)) and have bounded
in common q -variations and q

ν
-variations respectively (see [17]). Therefore

lim
� 1
0 f (zn (x)) dzn(x) =

� 1
0 f (z(x)) dz(x) (see [26], [27], [17]), and, conse-

quently, lim
�
�n

f (z) dz(x) =
�
�

f (z) dz .
Let � and �n be closed curves. Then we apply the Stokes� formula to

polygons �n and obtain

Theorem 3. Let D be �nite domain on the complex plane with q-recti�able
Jordan boundary �. If a function f is de�ned in D, belongs to the Hölder
class Hν(D) and has integrable in D derivative ∂ f

∂ z
, then under condition (6)

the Stokes� formula (2) is valid for these domain and function.

Thus, the Young-Stieltjes integration under condition (6) gives the same
result as the integrations in terms of geometrical approximation and by means
of the Stokes� formula. As we has noted above, this conditions coincides with
condition (3) for classical fractal curves such as von Koch snow�ake.

3. The Cauchy type integral and self-similarity.

Let � be closed � -recti�able curve dividing the plane C into two domains
D+ and D− so that ∞ ∈ D−, and f (z) ∈ V�(�). Then the integral

(7) K f (z) =
1

2π i

�

�

f (t)dt

t − z
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exists under condition (4) if the point z does not lie on the curve �. This
expression is known as the Cauchy type integral. It is holomorphic in D+ and
D− and vanishes at the point ∞. This integral is applicable in a number of
boundary value problems (see [20], 45]), and one of its main properties in this
connection is existence of boundary values on the curve �.

If the curve � is piecewise-smooth then the function Kf (z) is continuous

in D
+
and D

−
if f satis�es the Hölder condition with any exponent ν > 0.

This result was proved by Harnak, Morera and Sokhotskii (see [20]). Therefore
we call it by HMS-theorem. If � is recti�able but non-smooth then the HMS-
theorem is not valid in general. E.M. Dynkin [3] proved that the Cauchy type
integral along non-smooth recti�able curve with density f ∈ Hν is continuous

in D
+
and D

−
under condition ν > 1/2. Simultaneously and independently

this result was obtained by T. Salimov [24].
Here we prove non-recti�able versions of both these results. We obtain

certain analog of the Dynkin-Salimov theorem for general q -recti�able curves,
and a version of the HMS-theorem for self-similar ones.

Theorem 4. Let � be closed q-recti�able curve with box dimension d and
f ∈ Hν(�). If the values q, d and ν satisfy conditions (6) and

(8) ν > d/2

then the Cauchy type integral (7) has continuous limit values on � from both
domains D+ and D−.

Proof. Let f w(z) be the Whitney extension of f from � on the whole complex
plane. As shown in [16], the derivative ∂ f w

∂ z
is integrable in D+ with any

exponent less than 2−d
1−ν

. By virtue of Theorem 2 this derivative is integrable
under condition (6). Hence, by virtue of Theorem 3 the Stokes formula is valid
for the function f w and the domain D+ . This formula enables us to represent
the Cauchy type integral in the form

(9) Kf (z) = χ(z) f w(z) −
1

2π i

��

D+

∂ f w

∂ t

dtdt

t − z
,

where function χ(z) equals to 1 in D+ and 0 in D− . If ν > d/2 then 2−d
1−ν

> 2

and ∂ f w

∂ z
is integrable in D+ with exponent exceeding 2. Consequently (see, for

instance, [25]), the integral in the right side of the representation is continuous
in the whole complex plane. Theorem is proved.

If � is recti�able then q = d = 1, and conditions (6), (8) reduce to
inequality ν > 1/2. Thus, Theorem 4 is q -recti�able version of the Dynkin-
Salimov theorem.
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If ν = 1 then the derivative ∂ f w

∂ z
is bounded in D+ for any d . The condition

(6) reduces to inequality q < 2, and we obtain

Theorem 5. Let � be closed q-recti�able curve, q < 2 and f ∈ H1(�). Then
the Cauchy type integral (7) has continuous limit values on � from both domains
D+ and D− .

For q = 1 this result was proved by N.A. Davydov [1].

Note 5. In connection with the proposition (iv) of the Theorem 1 the following
conjecture arises: the Davydov theorem keeps its validity for arbitrary closed
Jordan curve � if f ∈ H1(�) has bounded variation.

The proof of Theorem 4 contains certain additional information. The
product χ(z) f w(z) has the gap f (z) on the curve �. Therefore the difference
of limit values of the integral (7) from D+ and D− at any point z ∈ � equals
to f (z). This property can be applied for resolvation of the Riemann boundary
value problem in just the same way as analogous property of the Cauchy type
integral along piecewise-smooth curve (see [20], [5]). Furthermore, the known
estimations of integral term of the right side of (9) (see, for instance, [25])
togather with mentioned above result from [16] imply that the function K f (z)

satis�es the Hölder condition in the sets D
+
and D

−
with exponent 2ν−d

2−d
− ε

for arbitrarily small ε > 0.
Now we consider a version of HMS-theorem for self-similar curves. Its

proof in the classical (i.e. piecewise smooth) case consists of the following
three steps (see [20]).

Step 1. The improper integral

(10) kf,�(t0) =
1

2π i

�

�

f (t) − f (t0)

t − t0
dt

converges for any point t0 ∈ � if f ∈ Hν(�), ν > 0.
Step 2. If λ iz non-tangential path connecting a point w ∈ C \ � with t0

then

(11)
|z − t0|

dist(z, �)
≤ C, z ∈ λ,

where constant C depends only on the angle between � and λ. Therefore the
difference

1

2π i

�

�

f (t) − f (t0)

t − z
dt − kf,�(t0) =

1

2π i

�

�

z − t0

z − t

f (t) − f (t0)

t − t0
dt
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vanishes for λ � z → t0. Consequently,

Kf (z) =
1

2π i

�

�

f (t) − f (t0)

t − z
dt + f (t0)χ(z)

has non-tangential limits at any point t0 ∈ � from the both sides.

Step 3. The convergence of Kf to its non-tangential boundary limits is
uniform with respect to t0. Therefore this function has boundary limits along
any paths, i.e. it is continuous in closures of domains D±.

At least two of these steps are invalid even for non-smooth recti�able
curves. For example, the arc γ = {t = reir−µ

: 0 ≤ r ≤ 1} is recti�able
for µ < 1 and the function f (t) = |t |ν belongs to Hν(γ ), but the integral
k f,γ (0) = 1

2π i

�
γ

|t |ν dt
t
converges for ν > µ only. Moreover, for � = γ , t0 = 0

and any C > 0 the inequality (11) is not valid for any arc λ with end-point t0,
i.e. there is not any non-tangential path even in the weak sense (11).

But the property of self-similarity ensures convergence of the improper
integral (10) under the same condition (6). We shall say that an arc γ with
beginning (or end) at a point t0 is strictly self-similar at this point if it is
representable in the form ∪∞

j=0γj where arcs γj have not common inner points,
γ 0 does not contain the point t0 and the arc γj+1 is obtained from γj by similarity
mapping t �→ t0 + k(t − t0), |k| < 1, j = 0, 1, . . . ,. The value k is called by
coef�cient of similarity. For example, if � is von Koch snow�ake constructed

on the base of triangle with corners at the points 0, 1 and 1+i
√
3

2
, then its arc γ

with beginning 0 and end-point 1 is strictly self-similar at the point t0 = 0. As
γ0 we can take its subarc with beginning 1

3
and end-point 1, and coef�cient of

similarity is 1/3.

Lemma 1. If q -recti�able arc γ is strictly self-similar at its point t0, f ∈ Hν(γ )

and the condition (6) ful�ls, then the integral k f,γ (t0) converges.

Proof. We can determine the improper integral (8) as the series

kf,γ (t0) =
1

2π i

∞�

j=0

�

γj

f (t) − f (t0)

t − t0
dt .

The obvious changes of variable gives

kf,γ (t0) =
1

2π i

�

γ0

∞�

j=0

( f (t0 + k j (t − t0)) − f (t0))
dt

t − t0
.
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The series
�∞

j=0( f (t0+k j (t−t0))− f (t0)) converges uniformly on γ0 to certain
function f0(t) because

| f (t0 + k j (t − t0)) − f (t0)| ≤ hν ( f ; γ )k jν |t − t0|
ν.

If t �, t �� ∈ γ0 then

| f0(t
�) − f0(t

��)| ≤

∞�

j=0

hν( f ; γ )|k j t � − k j t ��|ν =
hν( f ; γ )

1− |k|ν
|t � − t ��|ν,

i.e. f0 ∈ Hν(γ0). As γ0 does not contain t0 so the function f0(t)(t − t0)
−1

belongs to Hν(γ0) too, and the integral

kf,γ (t0) =
1

2π i

�

γ0

f0(t)dt

t − t0
dt

exists by virtue of Theorem 1.

In what follows we say that closed curve � is uniformly self-similar if any
its point t is beginning and end of arcs γ � ⊂ � and γ �� ⊂ � such that both these
arcs are strictly self-similar at the point t with common coef�cient of similarity
k which does not depend on t . Under that assumption the function kf,�(t) is
de�ned for any t ∈ �. Clearly, the von Koch snow�ake is uniformly self-similar.

In order to perform the steps 2 and 3 we must be able to �nd a family of
arcs λ±(t), t ∈ �, such that any point t ∈ � is end-point of two arcs λ+ ⊂ D+

and λ− ⊂ D− , the inequality (11) ful�ls for all arcs of the family with the same
constant C , and the arcs λ+(t1) and λ+(t2) (respectively, λ−(t1) and λ−(t2))
have a common point in D+ (respectively, D−) if |t1 − t2| ≤ ε . Then we say
that � is uniformly attainable from the both sides. The von Koch snow�ake
satis�es this condition, too. As a result we obtain

Theorem 6. Let a closed q-recti�able curve � be uniformly self-similar and
uniformly attainable from the both sides. If f ∈ Hν(�) and the values q and
ν satisfy condition (6), then the Cauchy type integral (7) has continuous limit
values on � from both domains D+ and D− .

The conditions of the theorem ful�ls for all versions of von Koch curves
(see [4]), i.e. for all curves which are obtained from equilateral polygons
without null angles by means of the Mandelbrot procedure.

If � is recti�able then q = 1, and condition (6) reduce to trivial bound
ν > 0, i.e., the Theorem 6 is q -recti�able version of HMS-theorem. Thus,
the self-similarity yields the same property of the Cauchy type integral along a
curve as the smoothness of this curve.
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4. Open questions.

Naturally, a great body of open questions and conjectures is connected with
the subject under consideration. Above we have described some questions (see
Notes 2, 3, 5). Here we formulate another problems concerning integration
along non-recti�able and fractal curves.

4.1. The Haar expansion.

Lesniewicz and Orlicz [17] apply the Haar and Schauder expansions of f
and g respectively as one of main instruments for investigation of the integral
� 1

0 f dg. Seemingly, the expansions in the Haar functions and another wavelet
type systems of functions give us an intrinsic way for de�nition of the integral�
�

f dz for functions f with rather extensive sets of singularities.

4.2. The Hellinger integral.

V.I. Matsaev and M.Z. Solomiak [19] considered so called Hellinger inte-
gral. Its de�nition can be obtained from the de�nition of Riemann - Stieltjes

integral
� 1

0 f dg by means of change of point values f (yj ), xj−1 ≤ yj ≤ xj ,

in the integral sums by averages 1
xj −xj−1

� xj

xj−1
f (x)dx . That integral exists if f

belongs to certain Besov space. Analogously, we can replace the values f (wj )

in the de�nition 1 by averages 1
µ(γj )

�
γj

f dµ where γj ⊂ � is arc connecting

zj−1 with zj , and µ is certain positive measure on the curve � (for example, the
Hausdorff measure). Probably, that integral exists if the function f belongs to
the version of Besov space introduced in [6].

4.3. Extension of the Stokes formula.

Stokes� formula (2) is proved in Theorem 3 under condition (6). This
condition is rather restrictive. For instance, if � is q -recti�able with q ≥ 2 then
this condition is satis�ed only by constants. On the other hand, the conditions
(4) and (5) make a sense in this situation. The author supposes that Stokes�

formula (2) is valid if the function f (z) is continuous in D
+
and differentiable

in D+, its �rst partial derivatives are integrable in D
+
, its boundary values

belong to V�(�), the curve � is � -recti�able and condition (4) ful�ls.
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4.4. Fractal version of the Privalov theorem.

The HMS-theorem establishes that the Cauchy type integral has continuous
limit values on the curve � if this curve is piecewise-smooth and f satis�es
Holder condition with any exponent ν . I.I. Privalov [22] obtained the following
sharpening of this result: if the piecewise-smooth curve � has not cusps and
ν < 1 then the limit values of the Cauchy type integral (7) on the curve
satisfy the Hölder condition with the same exponent ν . Certain versions of
the Privalov theorem seem to be valid for self-similar curves. Particularly, the
author supposes that the limit values satisfy the Hölder condition with exponent
ν − d + 1.

4.5. Singularities of the Cauchy type integral.

If d/2 ≥ ν > q − 1 (we use notation of Theorem 4) then the Cauchy type
integral exists but it has not limit values at some points of the curve � (cf. [16]).
There is of interest to describe the set of boundary singularities of this integral.
Probably, its Hausdorff dimension cannot exceed q − 1.
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