CHARACTERIZATION OF NON-CONNECTED BUCHSBAUM CURVES IN \mathbb{P}^n

MARTA CASANELLAS

In this paper we characterize non-connected Buchsbaum curves C in \mathbb{P}^n and we give a sharp bound for the number of disjoint connected components of C.

Introduction.

The purpose of this note is to classify non-connected Buchsbaum curves C in \mathbb{P}^n_k . It is well known that the only non-connected Buchsbaum curve C in \mathbb{P}^3_k is the disjoint union of two lines (cf. [4] Theorem 2.1 and [3] Remark 3.11 (5)). Moreover it is easy to check that the Hartshorne-Rao module, $M(C) := \bigoplus_{t \in \mathbb{Z}} H^1(\mathbb{P}^n, I_C(t))$, of two disjoint lines, $C = L_1 \stackrel{\emptyset}{\cup} L_2 \subset \mathbb{P}^3_k$, is

$$M(C)_t = \begin{cases} k & \text{if } t = 0\\ 0 & \text{if } t \neq 0. \end{cases}$$

It is natural to ask whether this result generalizes to higher dimensional projective spaces and if it is possible to characterize all non-connected Buchsbaum curves $C \subset \mathbb{P}_k^n$.

Entrato in Redazione il 27 luglio 1999.

Partially supported by Comissionat per a Universitats i Recerca del departament de presidència de la Generalitat de Catalunya.

¹⁹⁹¹ Mathematics Subject Classification: 14H45, 14M05, 13C13. *Keywords and phrases*: Buchsbaum curves, connected curves.

We will see that in \mathbb{P}_k^4 there are non-connected Buchsbaum curves $C \subset \mathbb{P}_k^4$ of arbitrary degree but, indeed, all of them have Hartshorne-Rao module

$$M(C)_t = \begin{cases} k & \text{if } t = 0\\ 0 & \text{if } t \neq 0. \end{cases}$$

This result is no longer true in \mathbb{P}_k^n , $n \ge 5$. We will prove the existence of non-connected Buchsbaum curves $C \subset \mathbb{P}_k^n$, $n \ge 5$, of arbitrary degree with arbitrary Buchsbaum invariant (see Definition 1.3) and whose Hartshorne-Rao modules have arbitrary diameter (see Definition 1.1). Nevertheless, all of them are characterized by the following theorem:

Theorem 1. Every non-degenerate Buchsbaum curve $C \subset \mathbb{P}_k^n$ is connected unless it is of the form $C = C_1 \cup C_2$ with C_1, C_2 disjoint Buchsbaum curves and $< C_1 > \cap < C_2 >= \emptyset$ (being $< C_i >$ the least linear subspace of \mathbb{P}_k^n containing C_i).

As application of Theorem 1, we will give, in terms of n, a sharp bound for the number of disjoint connected components of Buchsbaum curves $C \subset \mathbb{P}_k^n$ (Corollary 2.6).

In Section 1 we fix the notation and definitions needed in the sequel.

In Section 2 we prove the above theorem using algebraic tools. Then we remark the differences between the cases n = 3, 4 and $n \ge 5$, and we give some examples.

1. Notation and conventions.

Let k be an algebraically closed field of characteristic 0, $S = k[X_0, X_1, ..., X_n]$, $\mathbf{m} = (X_0, ..., X_n)$ and $\mathbb{P}^n = \text{Proj } S$.

By a *curve* we mean a locally Cohen-Macaulay, equidimensional, closed subscheme of \mathbb{P}^n of dimension 1.

Let *C* be any closed subscheme of \mathbb{P}^n , then I(C) will denote its saturated ideal and I_C its sheafification. *C* is said to be *degenerate* if it is contained in a hyperplane of \mathbb{P}^n .

We say that C has degenerate hyperplane section if for a general hyperplane $H, C \cap H$ is degenerate respect to H.

We will denote by < C > the least linear subspace of \mathbb{P}^n containing C as a subscheme.

If \mathcal{F} is a sheaf of $\mathcal{O}_{\mathbb{P}^n}$ -modules we define $H^i_*(\mathcal{F}) := \bigoplus_{t \in \mathbb{Z}} H^i(\mathbb{P}^n, \mathcal{F}(t)),$ i = 0, ..., n. **Definition 1.1.** Given a curve $C \subset \mathbb{P}^n$, the *Hartshorne-Rao module* M(C) is the graded *S*-module defined by

$$M(C) = \bigoplus_{t \in \mathbb{Z}} H^1(\mathbb{P}^n, I_C(t)).$$

If C is locally Cohen-Macaulay and equidimensional, then M(C) has finite length and we can define the *diameter* of M(C), diam M(C), to be the number of components from the first one different from zero to the last (inclusive).

Definition 1.2. A curve $C \subset \mathbb{P}^n$ is called *arithmetically Buchsbaum* (or simply *Buchsbaum*) if and only if M(C) is annihilated by the maximal ideal (X_0, \ldots, X_n) of S.

In other words, a curve C is Buchsbaum if the multiplication in M(C) by any linear form is the zero map.

Definition 1.3. If $C \subset \mathbb{P}^n$ is a Buchsbaum curve, the integer

$$N = \sum_{i} \dim_k M(C)_i$$

is called the Buchsbaum invariant of C.

For instance, if diam M(C) = 1 then C is trivially a Buchsbaum curve. This is the case of the disjoint union of two lines in \mathbb{P}^3 . In \mathbb{P}^3 , the simplest nontrivial example of a Buchsbaum curve is a degree 10 curve (cf. [5] Example 1.5.6). We will see in Remark 3.3 that we can find examples of Buchsbaum curves in \mathbb{P}^7 with diam M(C) = 2 and degC = 6.

Remark 1.4. Let M(C) be the Hartshorne-Rao module of a Buchsbaum curve $C \subseteq \mathbb{P}^n$, then $M(C)_t = 0$ for all t < 0. This is easy to see considering a general hyperplane H and the following exact sequence:

$$0 \longrightarrow I_C(t) \xrightarrow{\times H} I_C(t+1) \longrightarrow I_{C \cap H,H}(t+1) \longrightarrow 0 , \quad t \in \mathbb{Z}.$$

Taking cohomology we get the long exact sequence

$$0 \longrightarrow H^{0}(\mathbb{P}^{n}, I_{C}(t)) \longrightarrow H^{0}(\mathbb{P}^{n}, I_{C}(t+1)) \longrightarrow$$
$$\longrightarrow H^{0}(H, I_{C \cap H, H}(t+1)) \longrightarrow M(C)_{t} \xrightarrow{\times H} M(C)_{t+1} \longrightarrow \cdots$$

and for t < 0 we have

$$0 \longrightarrow M(C)_t \xrightarrow{\times H} M(C)_{t+1} .$$

So if C is Buchsbaum, $M(C)_t$ must be 0 for t < 0.

For more general results on Buchsbaum curves the reader can see, for instance, [3].

2. Non-connected Buchsbaum curves in \mathbb{P}^n .

We begin this section with the following basic lemma.

Lemma 2.1. Let $C_1, C_2 \subseteq \mathbb{P}^n$ be two disjoint curves such that their union $C_1 \cup C_2$ is a non-degenerate curve, then the following two conditions are equivalent:

- $(i) < C_1 > \cap < C_2 > = \emptyset$
- (*ii*) $I(C_1) + I(C_2) = (X_0, \dots, X_n)$

Proof. (i) \Rightarrow (ii): Since $C_1 \cup C_2$ is non-degenerate $\langle C_1 \rangle \cup \langle C_2 \rangle \rangle = \mathbb{P}^n$, which together with the hypothesis (i) implies that

$$\dim \langle C_1 \rangle + \dim \langle C_2 \rangle = n - 1.$$

Let $r = \dim \langle C_1 \rangle$, $\dim \langle C_2 \rangle = n - r - 1$ and call L_1, \ldots, L_{n-r} the n-r k-independent linear forms in $I(C_1)$, and H_1, \ldots, H_{r+1} those in $I(C_2)$. They must be all k-linearly independent because $\langle C_1 \rangle \cap \langle C_2 \rangle = \emptyset$. Thus $\dim_k(I(C_1) + I(C_2)) = \dim_k S_1 = n + 1$, so $I(C_1) + I(C_2) = (X_0, \ldots, X_n)$.

(ii) \Rightarrow (i): Since $C_1 \cup C_2$ is non-degenerate, $I(C_1)$ and $I(C_2)$ cannot have any linear form in common. Therefore, ordering if necessary, we may assume under the hypothesis (ii) that $X_0, \ldots, X_t \in I(C_1)$ and $X_{t+1}, \ldots, X_n \in I(C_2)$, and this implies $\langle C_1 \rangle \cap \langle C_2 \rangle = \emptyset$. \Box

Lemma 2.2. Let $C = C_1 \cup C_2 \subseteq \mathbb{P}^n$ be the disjoint union of two Buchsbaum curves. Assume that C is non-degenerate and $\langle C_1 \rangle \cap \langle C_2 \rangle = \emptyset$, then C is a Buchsbaum curve.

Proof. By Lemma 2.1 < $C_1 > \cap < C_2 >= \emptyset$ is equivalent to $I(C_1)+I(C_2) = (X_0, \ldots, X_n)$. Consider the following exact sequence

$$0 \longrightarrow I(C) \longrightarrow I(C_1) \oplus I(C_2) \longrightarrow I(C_1) + I(C_2) \longrightarrow 0;$$

sheafifying and taking cohomology we obtain the exact diagram

$$0 \longrightarrow I(C) \longrightarrow I(C_1) \oplus I(C_2) \longrightarrow S \longrightarrow M(C) \longrightarrow M(C_1) \oplus M(C_2)$$

$$M \longrightarrow M(C_2)$$

$$M \longrightarrow M(C_1) \oplus M(C_2)$$

$$M \longrightarrow M(C_1) \oplus M(C_2)$$

$$M \longrightarrow M(C_1) \oplus M(C_2)$$

$$M \longrightarrow M(C_2)$$

$$M \longrightarrow M(C_1) \oplus M(C_2)$$

$$M \longrightarrow M(C_2)$$

$$M \longrightarrow$$

191

because $H^0_*(I_{C_1} + I_{C_2}) = S$ since C_1 and C_2 are disjoint (use the Nullstellensatz). Thus, $H^0_*(I_{C_1} + I_{C_2})/(I(C_1) + I(C_2)) \cong S/\mathbf{m} \cong k$ as graded S-modules and the next sequence is exact:

$$0 \longrightarrow S/\mathbf{m} \cong k \longrightarrow M(C) \xrightarrow{\varphi} M(C_1) \oplus M(C_2) \longrightarrow 0$$

Let *H* be a linear form in *S* and consider the commutative diagram for $t \ge 1$, $t \in \mathbb{Z}$:

$$\begin{array}{ccc} M(C)_t & \xrightarrow{\cong} & M(C_1)_t \oplus M(C_2)_t \\ \times H & & \times H \\ M(C)_{t+1} & \xrightarrow{\cong} & M(C_1)_{t+1} \oplus M(C_2)_{t+1} \end{array}$$

Since C_1 , C_2 are Buchsbaum curves, the multiplication by H in M(C) must be also the zero morphism. For t = 0 we have

Thus, for all $f \in M(C)_0$, $\varphi_1(H,f) = H.\varphi_0(f) = 0$, and using that φ_1 is injective we conclude that C is a Buchsbaum curve.

Now we will see that the only non-connected Buchsbaum curves in \mathbb{P}^n are those described in Lemma 2.2.

Theorem 2.3. Let $C \subseteq \mathbb{P}^n$ be a non-degenerate Buchsbaum curve. Then C is connected unless $C = C_1 \cup C_2$ with C_1, C_2 disjoint Buchsbaum curves and $< C_1 > \cap < C_2 > = \emptyset$.

Proof. By Lemma 2.1 we have to see that $I(C_1) + I(C_2) = (X_0, ..., X_n)$ to prove $\langle C_1 \rangle \cap \langle C_2 \rangle = \emptyset$.

By the following exact sequence,

$$0 \longrightarrow I(C) \longrightarrow I(C_1) \oplus I(C_2) \longrightarrow \\ \longrightarrow H^0_*(I_{C_1} + I_{C_2}) \longrightarrow M(C) \longrightarrow M(C_1) \oplus M(C_2) \longrightarrow \cdots$$

and since $C_1 \cap C_2 = \emptyset$, we obtain the short exact sequence:

$$0 \longrightarrow S/(I(C_1) + I(C_2)) \longrightarrow M(C) \longrightarrow M(C_1) \oplus M(C_2) \longrightarrow 0$$

Note that $k \subset S/(I(C_1) + I(C_2))$ so $k \subset M(C)_0$. Suppose that there exists $i \in 0, ..., n$ such that $X_i \notin I(C_1) + I(C_2)$. Then $0 \neq [X_i] \in S/(I(C_1) + I(C_2)) \subseteq M(C)$ and the multiplication by X_i

$$M(C)_0 \xrightarrow{\times X_i} M(C)_1$$
$$1 \longmapsto X_i$$

would not be the zero map, which is in contradiction with the assumption of C being Buchsbaum.

Therefore $I(C_1) + I(C_2) = (X_0, ..., X_n)$ and the quotient $S/(I(C_1) + I(C_2))$ is *k*.

Now we have to show that C_1 and C_2 are Buchsbaum curves. We use the exact sequence of graded *S*-modules

$$0 \longrightarrow k \longrightarrow M(C) \xrightarrow{\varphi} M(C_1) \oplus M(C_2) \longrightarrow 0.$$

Let *H* be a linear form in *S* and consider the multiplication by *H*. Let $t \in \mathbb{Z}$, if $t \ge 1$ the multiplication by *H* in $M(C_i)_t$ is the zero map because φ_t are isomorphisms.

If t = 0, we have the following commutative diagram

For all $(s_1, s_2) \in M(C_1)_0 \oplus M(C_2)_0$, there exists $f \in M(C)_0$ such that $\varphi_0(f) = (s_1, s_2)$. Now, since *C* is Buchsbaum, H.f = 0, so $\varphi_1(H.f) = 0$ and by the commutativity of the diagram we get $H.(s_1, s_2) = 0$. Thus C_1 and C_2 are also Buchsbaum curves. \Box

Remark 2.4. Applying this theorem to the case n = 4, we get that the only non-connected Buchsbaum curves $C \subset \mathbb{P}^4$ are the union of a curve contained in a plane π and a line skew with π . As a consequence, every non-connected Buchsbaum curve $C \subseteq \mathbb{P}^n$, $n \leq 4$, is contained in a hyperquadric and has

$$M(C)_t = \begin{cases} k & \text{if } t = 0\\ 0 & \text{if } t \neq 0. \end{cases}$$

For $n \ge 5$, as a result of Theorem 2.3, we have that every non-connected Buchsbaum curve $C = C_1 \cup C_2 \subseteq \mathbb{P}^n$ also lies in a hyperquadric Q (we can take Q equal to the union of one hyperplane containing C_1 and one containing C_2). But in the proof of the theorem we have seen that for $t \ge 1$, $M(C)_t \cong$ $M(C_1)_t \oplus M(C_2)_t$, so we will have non-connected Buchsbaum curves for which M(C) has arbitrary diameter and arbitrary Buchsbaum invariant.

In this way we can find non-connected Buchsbaum curves $C \subseteq \mathbb{P}^7$ of degree 6 and diam M(C) > 1:

Let $C_1 \subset H_1 \cong \mathbb{P}^3$ be the curve obtained from the union X of two disjoint lines, performing a basic double link with a plane and a quadric containing X (for the definition and facts about basic double links see, for instance, [1]). Then

$$M(C_1)_t = \begin{cases} k & \text{if } t = 1\\ 0 & \text{if } t \neq 1 \end{cases}$$

and deg(C_1) = 4. Now take $C_2 \subset H_2 \cong \mathbb{P}^3$ to be the disjoint union of two lines such that $H_1 \cap H_2 = \emptyset$. If we let $C = C_1 \cup C_2 \subset \mathbb{P}^7$, then *C* is a Buchsbaum curve (by lemma 2.2) of degree 6 and

$$M(C)_t = \begin{cases} k^2 & \text{if } t = 0\\ k & \text{if } t = 1\\ 0 & \text{if } t \neq 0, 1. \end{cases}$$

Remark 2.5. In \mathbb{P}^3 and \mathbb{P}^4 Buchsbaum non-connected curves *C* coincide with those non-connected curves having degenerate hyperplane section: Let $H \subseteq \mathbb{P}^n$ be a general hyperplane and consider the exact sequence

$$0 \longrightarrow I_C \xrightarrow{\times H} I_C(1) \longrightarrow I_{C \cap H,H}(1) \longrightarrow 0$$

taking cohomology we get the exact sequence

$$0 \longrightarrow H^{0}(I_{C}) \longrightarrow H^{0}(I_{C}(1)) \longrightarrow H^{0}(I_{C\cap H,H}(1)) \longrightarrow M(C)_{0} \xrightarrow{\times H} M(C)_{1} \longrightarrow \cdots$$

C is a Buchsbaum curve, thus the last morphism is 0 and $h^0(I_{C\cap H,H}(1)) \neq 0$, i.e. the general hyperplane section of *C* is degenerate.

For n = 3, the proof results by [4]; Theorem 2.1 shows that in this case C must be the union of two skwe lines. For n = 4, we may use the results of [2] where curves in \mathbb{P}^4 are characterized.

In \mathbb{P}^n , $n \ge 5$ this is no longer true. Consider the following example:

In \mathbb{P}^5 let $C = C_1 \cup C_2$, $C_1 \cap C_2 = \emptyset$, with C_1 a plane curve and C_2 the disjoint union of two lines in \mathbb{P}^3 . Then $\langle C_1 \rangle \cap \langle C_2 \rangle \neq \emptyset$ (so *C* is not a Buchsbaum curve) and the general hyperplane section will be degenerate:

$$\dim < C \cap H >= \dim < C_1 \cap H > + \dim < C_2 \cap H > -$$
$$-\dim(< C_1 \cap H > \cap < C_2 \cap H >) = 1 + 1 - (-1) = 3.$$

As application of Theorem 2.3, we will bound the number of disjoint connected components of Buchsbaum curves $C \subset \mathbb{P}^n$ in terms of n and we will prove that the bound we give is optimal. To this end, for any $x \in \mathbb{R}$, set $[x] := \max\{m \in \mathbb{Z} \mid m \leq x\}$. We have

Corollary 2.6. Let $C \subset \mathbb{P}^n$, $n \geq 2$, be a Buchsbaum curve. Denote by m(C) the number of disjoint connected components of C. Then $m(C) \leq [\frac{n+1}{2}]$. Moreover there exist Buchsbaum curves $C \subset \mathbb{P}^n$ which attain this bound.

Proof. We proceed by induction on n. Since all plane curves are connected and the only non-connected Buchsbaum curve in \mathbb{P}^3 is the disjoint union of two skew lines, the result is true for n = 2 and n = 3.

We assume $n \ge 4$. By Theorem 2.3 if $C \subset \mathbb{P}^n$ is a non-connected Buchsbaum curve, we can write $C = C_1 \cup C_2$ with C_1, C_2 Buchsbaum curves spanning disjoint linear subspaces. Set $< C_1 > \cong \mathbb{P}^i, < C_2 > \cong \mathbb{P}^j$ with $1 \le i \le j$; so $i + j \le n - 1$. If C has the maximum number of disjoint connected components among Buchsbaum curves in \mathbb{P}^n , we need i + j = n - 1, so j = n - 1 - i. Now applying the induction hypothesis to the Buchsbaum curves $C_1 \subseteq \mathbb{P}^i$, and $C_2 \subseteq \mathbb{P}^{n-1-i}$, we get

$$m(C) = m(C_1) + m(C_2) \le \left[\frac{i+1}{2}\right] + \left[\frac{n-i}{2}\right] \le \left[\frac{n+1}{2}\right]$$

which proves what we want.

To prove the existence of curves $C \subset \mathbb{P}^n$ attaining this bound, one can consider the following curves:

(1) If *n* is odd, take *C* equal to the disjoint union of $\frac{n+1}{2}$ lines $L_1, \ldots, L_{\frac{n+1}{2}}$ such that $L_t \cap \langle L_1 \cup \ldots \cup L_{t-1} \rangle = \emptyset$, $t = 2, \ldots, \frac{n+1}{2}$.

(2) If *n* is even, take *C* equal to the union of $\frac{n}{2} - 1$ disjoint lines $L_t, \ldots, L_{\frac{n}{2}-1}$ and a curve contained in a plane π such that $L_t \cap < L_1 \cup \ldots \cup L_{t-1} >= \emptyset$, $t = 2, \ldots, \frac{n}{2} - 1$, and $\pi \cap < L_1 \cup \ldots \cup L_{\frac{n}{2}-1} >= \emptyset$. These curves exist, are Buchsbaum according to Lemma 2.2, and satisfy the bound for m(C).

Remark 2.7. It is easy to check by induction on n, that any curve attaining this bound for m(C) is as (1),(2) in the proof of the corollary.

REFERENCES

- [1] G. Bolondi J. Migliore, *The Lazarsfeld-Rao Problem for Buchsbaum Curves*, Rend. Sem. Mat. Univ. Padova, 82 (1989).
- [2] N. Chiarli S. Greco U. Nagel, On the genus and Hartshorne-Rao module of projective curves, Math. Zeitshrift, 229 (1998), pp. 695–724.
- [3] A.V. Geramita J. Migliore, On the Ideal of an Arithmetically Buchsbaum Curve, J. Pure Appl. Alg., 54 (1988), pp. 215–247.
- [4] J. Migliore, Buchsbaum curves in P³, Proceedings of the Conference on Algebraic Geometry, East Berlin, 1985, Teubner-Texte zur Mathematik.
- [5] J. Migliore, *Introduction to Liaison Theory and Deficiency Modules*, Birkhäuser, Progress in Mathematics, 165 (1998).

Dpt. Algebra i Geometria, Fac. Matematiques, Univ. Barcelona, Gran Via 585, 08007 Barcelona (SPAIN) e-mail:casanell@mat.ub.es