CHARACTERIZATION OF NON-CONNECTED BUCHSBAUM CURVES IN \mathbb{P}^{n}

MARTA CASANELLAS

In this paper we characterize non-connected Buchsbaum curves C in \mathbb{P}^{n} and we give a sharp bound for the number of disjoint connected components of C .

Introduction.

The purpose of this note is to classify non-connected Buchsbaum curves C in \mathbb{P}_{k}^{n}. It is well known that the only non-connected Buchsbaum curve C in \mathbb{P}_{k}^{3} is the disjoint union of two lines (cf. [4] Theorem 2.1 and [3] Remark 3.11 (5)). Moreover it is easy to check that the Hartshorne-Rao module, $M(C):=\bigoplus_{t \in \mathbb{Z}} H^{1}\left(\mathbb{P}^{n}, I_{C}(t)\right)$, of two disjoint lines, $C=L_{1} \cup L_{2} \subset \mathbb{P}_{k}^{3}$, is

$$
M(C)_{t}=\left\{\begin{array}{lll}
k & \text { if } & t=0 \\
0 & \text { if } & t \neq 0 .
\end{array}\right.
$$

It is natural to ask whether this result generalizes to higher dimensional projective spaces and if it is possible to characterize all non-connected Buchsbaum curves $C \subset \mathbb{P}_{k}^{n}$.

Entrato in Redazione il 27 luglio 1999.
Partially supported by Comissionat per a Universitats i Recerca del departament de presidència de la Generalitat de Catalunya.
1991 Mathematics Subject Classification: 14H45, 14M05, 13C13.
Keywords and phrases: Buchsbaum curves, connected curves.

We will see that in \mathbb{P}_{k}^{4} there are non-connected Buchsbaum curves $C \subset \mathbb{P}_{k}^{4}$ of arbitrary degree but, indeed, all of them have Hartshorne-Rao module

$$
M(C)_{t}=\left\{\begin{array}{lll}
k & \text { if } & t=0 \\
0 & \text { if } & t \neq 0 .
\end{array}\right.
$$

This result is no longer true in $\mathbb{P}_{k}^{n}, n \geq 5$. We will prove the existence of non-connected Buchsbaum curves $C \subset \mathbb{P}_{k}^{n}, n \geq 5$, of arbitrary degree with arbitrary Buchsbaum invariant (see Definition 1.3) and whose Hartshorne-Rao modules have arbitrary diameter (see Definition 1.1). Nevertheless, all of them are characterized by the following theorem:

Theorem 1. Every non-degenerate Buchsbaum curve $C \subset \mathbb{P}_{k}^{n}$ is connected unless it is of the form $C=C_{1} \cup C_{2}$ with C_{1}, C_{2} disjoint Buchsbaum curves and $<C_{1}>\cap<C_{2}>=\emptyset$ (being $<C_{i}>$ the least linear subspace of \mathbb{P}_{k}^{n} containing C_{i}).

As application of Theorem 1, we will give, in terms of n, a sharp bound for the number of disjoint connected components of Buchsbaum curves $C \subset \mathbb{P}_{k}^{n}$ (Corollary 2.6).

In Section 1 we fix the notation and definitions needed in the sequel.
In Section 2 we prove the above theorem using algebraic tools. Then we remark the differences between the cases $n=3,4$ and $n \geq 5$, and we give some examples.

1. Notation and conventions.

Let k be an algebraically closed field of characteristic $0, S=k\left[X_{0}, X_{1}, \ldots\right.$ $\left.\ldots, X_{n}\right], \mathbf{m}=\left(X_{0}, \ldots, X_{n}\right)$ and $\mathbb{P}^{n}=\operatorname{Proj} S$.

By a curve we mean a locally Cohen-Macaulay, equidimensional, closed subscheme of \mathbb{P}^{n} of dimension 1 .

Let C be any closed subscheme of \mathbb{P}^{n}, then $I(C)$ will denote its saturated ideal and I_{C} its sheafification. C is said to be degenerate if it is contained in a hyperplane of \mathbb{P}^{n}.

We say that C has degenerate hyperplane section if for a general hyperplane $H, C \cap H$ is degenerate respect to H.

We will denote by $<C>$ the least linear subspace of \mathbb{P}^{n} containing C as a subscheme.

If \mathcal{F} is a sheaf of $\mathcal{P}_{\mathbb{P}^{n}}$-modules we define $\left.H_{*}^{i} \mathcal{F}\right):=\bigoplus_{t \in \mathbb{Z}} H^{i}\left(\mathbb{P}^{n}, \mathcal{F}(t)\right)$, $i=0, \ldots, n$.

Definition 1.1. Given a curve $C \subset \mathbb{P}^{n}$, the Hartshorne-Rao module $M(C)$ is the graded S-module defined by

$$
M(C)=\bigoplus_{t \in \mathbb{Z}} H^{1}\left(\mathbb{P}^{n}, I_{C}(t)\right)
$$

If C is locally Cohen-Macaulay and equidimensional, then $M(C)$ has finite length and we can define the diameter of $M(C)$, diam $M(C)$, to be the number of components from the first one different from zero to the last (inclusive).

Definition 1.2. A curve $C \subset \mathbb{P}^{n}$ is called arithmetically Buchsbaum (or simply Buchsbaum) if and only if $M(C)$ is annihilated by the maximal ideal $\left(X_{0}, \ldots, X_{n}\right)$ of S.

In other words, a curve C is Buchsbaum if the multiplication in $M(C)$ by any linear form is the zero map.

Definition 1.3. If $C \subset \mathbb{P}^{n}$ is a Buchsbaum curve, the integer

$$
N=\sum_{i} \operatorname{dim}_{k} M(C)_{i}
$$

is called the Buchsbaum invariant of C.
For instance, if diam $M(C)=1$ then C is trivially a Buchsbaum curve. This is the case of the disjoint union of two lines in \mathbb{P}^{3}. In \mathbb{P}^{3}, the simplest nontrivial example of a Buchsbaum curve is a degree 10 curve (cf. [5] Example 1.5.6). We will see in Remark 3.3 that we can find examples of Buchsbaum curves in \mathbb{P}^{7} with $\operatorname{diam} M(C)=2$ and $\operatorname{deg} C=6$.
Remark 1.4. Let $M(C)$ be the Hartshorne-Rao module of a Buchsbaum curve $C \subseteq \mathbb{P}^{n}$, then $M(C)_{t}=0$ for all $t<0$. This is easy to see considering a general hyperplane H and the following exact sequence:

$$
0 \longrightarrow I_{C}(t) \xrightarrow{\times H} I_{C}(t+1) \longrightarrow I_{C \cap H, H}(t+1) \longrightarrow 0, \quad t \in \mathbb{Z}
$$

Taking cohomology we get the long exact sequence

$$
\begin{aligned}
0 \longrightarrow & H^{0}\left(\mathbb{P}^{n}, I_{C}(t)\right) \longrightarrow H^{0}\left(\mathbb{P}^{n}, I_{C}(t+1)\right) \longrightarrow \\
& \longrightarrow H^{0}\left(H, I_{C \cap H, H}(t+1)\right) \longrightarrow M(C)_{t} \xrightarrow{\times H} M(C)_{t+1} \longrightarrow \cdots
\end{aligned}
$$

and for $t<0$ we have

$$
0 \longrightarrow M(C)_{t} \xrightarrow{\times H} M(C)_{t+1}
$$

So if C is Buchsbaum, $M(C)_{t}$ must be 0 for $t<0$.

For more general results on Buchsbaum curves the reader can see, for instance, [3].

2. Non-connected Buchsbaum curves in \mathbb{P}^{n}.

We begin this section with the following basic lemma.
Lemma 2.1. Let $C_{1}, C_{2} \subseteq \mathbb{P}^{n}$ be two disjoint curves such that their union $C_{1} \cup C_{2}$ is a non-degenerate curve, then the following two conditions are equivalent:
(i) $<C_{1}>\cap<C_{2}>=\emptyset$
(ii) $I\left(C_{1}\right)+I\left(C_{2}\right)=\left(X_{0}, \ldots, X_{n}\right)$

Proof. (i) \Rightarrow (ii): Since $C_{1} \cup C_{2}$ is non-degenerate $\left.\ll C_{1}\right\rangle \cup<C_{2} \gg=\mathbb{P}^{n}$, which together with the hypothesis (i) implies that

$$
\operatorname{dim}<C_{1}>+\operatorname{dim}<C_{2}>=n-1 .
$$

Let $r=\operatorname{dim}\left\langle C_{1}\right\rangle, \operatorname{dim}\left\langle C_{2}\right\rangle=n-r-1$ and call L_{1}, \ldots, L_{n-r} the n-r k-independent linear forms in $I\left(C_{1}\right)$, and H_{1}, \ldots, H_{r+1} those in $I\left(C_{2}\right)$. They must be all k-linearly independent because $<C_{1}>\cap<C_{2}>=\emptyset$. Thus $\operatorname{dim}_{k}\left(I\left(C_{1}\right)+I\left(C_{2}\right)\right)=\operatorname{dim}_{k} S_{1}=n+1$, so $I\left(C_{1}\right)+I\left(C_{2}\right)=\left(X_{0}, \ldots, X_{n}\right)$.
(ii) \Rightarrow (i): Since $C_{1} \cup C_{2}$ is non-degenerate, $I\left(C_{1}\right)$ and $I\left(C_{2}\right)$ cannot have any linear form in common. Therefore, ordering if necessary, we may assume under the hypothesis (ii) that $X_{0}, \ldots, X_{t} \in I\left(C_{1}\right)$ and $X_{t+1}, \ldots, X_{n} \in I\left(C_{2}\right)$, and this implies $<C_{1}>\cap<C_{2}>=\emptyset$.
Lemma 2.2. Let $C=C_{1} \cup C_{2} \subseteq \mathbb{P}^{n}$ be the disjoint union of two Buchsbaum curves. Assume that C is non-degenerate and $\left.\left\langle C_{1}\right\rangle \cap<C_{2}\right\rangle=\emptyset$, then C is a Buchsbaum curve.
Proof. By Lemma $\left.2.1<C_{1}>\cap<C_{2}\right\rangle=\emptyset$ is equivalent to $I\left(C_{1}\right)+I\left(C_{2}\right)=$ (X_{0}, \ldots, X_{n}). Consider the following exact sequence

$$
0 \longrightarrow I(C) \longrightarrow I\left(C_{1}\right) \oplus I\left(C_{2}\right) \longrightarrow I\left(C_{1}\right)+I\left(C_{2}\right) \longrightarrow 0 ;
$$

sheafifying and taking cohomology we obtain the exact diagram

$$
0 \longrightarrow I(C) \longrightarrow I\left(C_{1}\right) \oplus I\left(C_{2}\right) \longrightarrow S \longrightarrow M(C) \longrightarrow M\left(C_{1}\right) \oplus M\left(C_{2}\right)
$$

because $H_{*}^{0}\left(I_{C_{1}}+I_{C_{2}}\right)=S$ since C_{1} and C_{2} are disjoint (use the Nullstellensatz). Thus, $H_{*}^{0}\left(I_{C_{1}}+I_{C_{2}}\right) /\left(I\left(C_{1}\right)+I\left(C_{2}\right)\right) \cong S / \mathbf{m} \cong k$ as graded S-modules and the next sequence is exact:

$$
0 \longrightarrow S / \mathbf{m} \cong k \longrightarrow M(C) \xrightarrow{\varphi} M\left(C_{1}\right) \oplus M\left(C_{2}\right) \longrightarrow 0
$$

Let H be a linear form in S and consider the commutative diagram for $t \geq 1$, $t \in \mathbb{Z}$:

Since C_{1}, C_{2} are Buchsbaum curves, the multiplication by H in $M(C)$ must be also the zero morphism. For $t=0$ we have

Thus, for all $f \in M(C)_{0}, \varphi_{1}(H . f)=H . \varphi_{0}(f)=0$, and using that φ_{1} is injective we conclude that C is a Buchsbaum curve.

Now we will see that the only non-connected Buchsbaum curves in \mathbb{P}^{n} are those described in Lemma 2.2.
Theorem 2.3. Let $C \subseteq \mathbb{P}^{n}$ be a non-degenerate Buchsbaum curve. Then C is connected unless $C=C_{1} \cup C_{2}$ with C_{1}, C_{2} disjoint Buchsbaum curves and $<C_{1}>\cap<C_{2}>=\emptyset$.
Proof. By Lemma 2.1 we have to see that $I\left(C_{1}\right)+I\left(C_{2}\right)=\left(X_{0}, \ldots, X_{n}\right)$ to prove $<C_{1}>\cap<C_{2}>=\emptyset$.
By the following exact sequence,

$$
\begin{aligned}
& 0 \longrightarrow I(C) \longrightarrow I\left(C_{1}\right) \oplus I\left(C_{2}\right) \longrightarrow \\
& \longrightarrow H_{*}^{0}\left(I_{C_{1}}+I_{C_{2}}\right) \longrightarrow M(C) \longrightarrow M\left(C_{1}\right) \oplus M\left(C_{2}\right) \longrightarrow \cdots
\end{aligned}
$$

and since $C_{1} \cap C_{2}=\emptyset$, we obtain the short exact sequence:

$$
0 \longrightarrow S /\left(I\left(C_{1}\right)+I\left(C_{2}\right)\right) \longrightarrow M(C) \longrightarrow M\left(C_{1}\right) \oplus M\left(C_{2}\right) \longrightarrow 0
$$

Note that $k \subset S /\left(I\left(C_{1}\right)+I\left(C_{2}\right)\right)$ so $k \subset M(C)_{0}$.
Suppose that there exists $i \in 0, \ldots, n$ such that $X_{i} \notin I\left(C_{1}\right)+I\left(C_{2}\right)$. Then $0 \neq\left[X_{i}\right] \in S /\left(I\left(C_{1}\right)+I\left(C_{2}\right)\right) \subseteq M(C)$ and the multiplication by X_{i}

$$
\begin{gathered}
M(C)_{0} \xrightarrow{\times X_{i}} M(C)_{1} \\
1 \longmapsto X_{i}
\end{gathered}
$$

would not be the zero map, which is in contradiction with the assumption of C being Buchsbaum.
Therefore $I\left(C_{1}\right)+I\left(C_{2}\right)=\left(X_{0}, \ldots, X_{n}\right)$ and the quotient $S /\left(I\left(C_{1}\right)+I\left(C_{2}\right)\right)$ is k.

Now we have to show that C_{1} and C_{2} are Buchsbaum curves. We use the exact sequence of graded S-modules

$$
0 \longrightarrow k \longrightarrow M(C) \xrightarrow{\varphi} M\left(C_{1}\right) \oplus M\left(C_{2}\right) \longrightarrow 0 .
$$

Let H be a linear form in S and consider the multiplication by H. Let $t \in \mathbb{Z}$, if $t \geq 1$ the multiplication by H in $M\left(C_{i}\right)_{t}$ is the zero map because φ_{t} are isomorphisms.
If $t=0$, we have the following commutative diagram

For all $\left(s_{1}, s_{2}\right) \in M\left(C_{1}\right)_{0} \oplus M\left(C_{2}\right)_{0}$, there exists $f \in M(C)_{0}$ such that $\varphi_{0}(f)=$ $\left(s_{1}, s_{2}\right)$. Now, since C is Buchsbaum, H.f $=0$, so $\varphi_{1}(H . f)=0$ and by the commutativity of the diagram we get $H .\left(s_{1}, s_{2}\right)=0$. Thus C_{1} and C_{2} are also Buchsbaum curves.

Remark 2.4. Applying this theorem to the case $n=4$, we get that the only non-connected Buchsbaum curves $C \subset \mathbb{P}^{4}$ are the union of a curve contained in a plane π and a line skew with π. As a consequence, every non-connected Buchsbaum curve $C \subseteq \mathbb{P}^{n}, n \leq 4$, is contained in a hyperquadric and has

$$
M(C)_{t}= \begin{cases}k & \text { if } \quad t=0 \\ 0 & \text { if } \quad t \neq 0\end{cases}
$$

For $n \geq 5$, as a result of Theorem 2.3, we have that every non-connected Buchsbaum curve $C=C_{1} \cup C_{2} \subseteq \mathbb{P}^{n}$ also lies in a hyperquadric Q (we can take Q equal to the union of one hyperplane containing C_{1} and one containing C_{2}). But in the proof of the theorem we have seen that for $t \geq 1, M(C)_{t} \cong$ $M\left(C_{1}\right)_{t} \oplus M\left(C_{2}\right)_{t}$, so we will have non-connected Buchsbaum curves for which $M(C)$ has arbitrary diameter and arbitrary Buchsbaum invariant.
In this way we can find non-connected Buchsbaum curves $C \subseteq \mathbb{P}^{7}$ of degree 6 and $\operatorname{diam} M(C)>1$:
Let $C_{1} \subset H_{1} \cong \mathbb{P}^{3}$ be the curve obtained from the union X of two disjoint lines, performing a basic double link with a plane and a quadric containing X (for the definition and facts about basic double links see, for instance, [1]). Then

$$
M\left(C_{1}\right)_{t}= \begin{cases}k & \text { if } \quad t=1 \\ 0 & \text { if } \quad t \neq 1\end{cases}
$$

and $\operatorname{deg}\left(C_{1}\right)=4$. Now take $C_{2} \subset H_{2} \cong \mathbb{P}^{3}$ to be the disjoint union of two lines such that $H_{1} \cap H_{2}=\emptyset$. If we let $C=C_{1} \cup C_{2} \subset \mathbb{P}^{7}$, then C is a Buchsbaum curve (by lemma 2.2) of degree 6 and

$$
M(C)_{t}= \begin{cases}k^{2} & \text { if } \quad t=0 \\ k & \text { if } \quad t=1 \\ 0 & \text { if } \quad t \neq 0,1\end{cases}
$$

Remark 2.5. In \mathbb{P}^{3} and \mathbb{P}^{4} Buchsbaum non-connected curves C coincide with those non-connected curves having degenerate hyperplane section: Let $H \subseteq \mathbb{P}^{n}$ be a general hyperplane and consider the exact sequence

$$
0 \longrightarrow I_{C} \xrightarrow{\times H} I_{C}(1) \longrightarrow I_{C \cap H, H}(1) \longrightarrow 0
$$

taking cohomology we get the exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(I_{C}\right) \longrightarrow H^{0}\left(I_{C}(1)\right) \longrightarrow H^{0}\left(I_{C \cap H, H}(1)\right) \longrightarrow \\
& \longrightarrow M(C)_{0} \xrightarrow{\times H} M(C)_{1} \longrightarrow \cdots
\end{aligned}
$$

C is a Buchsbaum curve, thus the last morphism is 0 and $h^{0}\left(I_{C \cap H, H}(1)\right) \neq 0$, i.e. the general hyperplane section of C is degenerate.

For $n=3$, the proof results by [4]; Theorem 2.1 shows that in this case C must be the union of two skwe lines. For $n=4$, we may use the results of [2] where curves in \mathbb{P}^{4} are characterized.

In $\mathbb{P}^{n}, n \geq 5$ this is no longer true. Consider the following example:
In \mathbb{P}^{5} let $C=C_{1} \cup C_{2}, C_{1} \cap C_{2}=\emptyset$, with C_{1} a plane curve and C_{2} the disjoint union of two lines in \mathbb{P}^{3}. Then $<C_{1}>\cap<C_{2}>\neq \emptyset$ (so C is not a Buchsbaum curve) and the general hyperplane section will be degenerate:

$$
\begin{aligned}
\operatorname{dim}< & C \cap H>=\operatorname{dim}<C_{1} \cap H>+\operatorname{dim}<C_{2} \cap H>- \\
& -\operatorname{dim}\left(<C_{1} \cap H>\cap<C_{2} \cap H>\right)=1+1-(-1)=3 .
\end{aligned}
$$

As application of Theorem 2.3, we will bound the number of disjoint connected components of Buchsbaum curves $C \subset \mathbb{P}^{n}$ in terms of n and we will prove that the bound we give is optimal. To this end, for any $x \in \mathbb{R}$, set $[x]:=\max \{m \in \mathbb{Z} \mid m \leq x\}$. We have
Corollary 2.6. Let $C \subset \mathbb{P}^{n}, n \geq 2$, be a Buchsbaum curve. Denote by $m(C)$ the number of disjoint connected components of C. Then $m(C) \leq\left[\frac{n+1}{2}\right]$. Moreover there exist Buchsbaum curves $C \subset \mathbb{P}^{n}$ which attain this bound.
Proof. We proceed by induction on n. Since all plane curves are connected and the only non-connected Buchsbaum curve in \mathbb{P}^{3} is the disjoint union of two skew lines, the result is true for $n=2$ and $n=3$.

We assume $n \geq 4$. By Theorem 2.3 if $C \subset \mathbb{P}^{n}$ is a non-connected Buchsbaum curve, we can write $C=C_{1} \cup C_{2}$ with C_{1}, C_{2} Buchsbaum curves spanning disjoint linear subspaces. Set $\left\langle C_{1}>\cong \mathbb{P}^{i},<C_{2}>\cong \mathbb{P}^{j}\right.$ with $1 \leq i \leq j$; so $i+j \leq n-1$. If C has the maximum number of disjoint connected components among Buchsbaum curves in \mathbb{P}^{n}, we need $i+j=n-1$, so $j=n-1-i$. Now applying the induction hypothesis to the Buchsbaum curves $C_{1} \subseteq \mathbb{P}^{i}$, and $C_{2} \subseteq \mathbb{P}^{n-1-i}$, we get

$$
m(C)=m\left(C_{1}\right)+m\left(C_{2}\right) \leq\left[\frac{i+1}{2}\right]+\left[\frac{n-i}{2}\right] \leq\left[\frac{n+1}{2}\right]
$$

which proves what we want.
To prove the existence of curves $C \subset \mathbb{P}^{n}$ attaining this bound, one can consider the following curves:
(1) If n is odd, take C equal to the disjoint union of $\frac{n+1}{2}$ lines $L_{1}, \ldots, L_{\frac{n+1}{2}}$ such that $L_{t} \cap<L_{1} \cup \ldots \cup L_{t-1}>=\emptyset, t=2, \ldots, \frac{n+1}{2}$.
(2) If n is even, take C equal to the union of $\frac{n}{2}-1$ disjoint lines $L_{t}, \ldots, L_{\frac{n}{2}-1}$ and a curve contained in a plane π such that $L_{t} \cap<L_{1} \cup \ldots \cup$ $L_{t-1}>=\emptyset, \emptyset, t=2, \ldots, \frac{n}{2}-1$, and $\pi \cap<L_{1} \cup \ldots \cup L_{\frac{n}{2}-1}>=\emptyset$. These curves exist, are Buchsbaum according to Lemma 2.2, and satisfy the bound for $m(C)$.

Remark 2.7. It is easy to check by induction on n, that any curve attainig this bound for $m(C)$ is as (1),(2) in the proof of the corollary.

REFERENCES

[1] G. Bolondi - J. Migliore, The Lazarsfeld-Rao Problem for Buchsbaum Curves, Rend. Sem. Mat. Univ. Padova, 82 (1989).
[2] N. Chiarli - S. Greco - U. Nagel, On the genus and Hartshorne-Rao module of projective curves, Math. Zeitshrift, 229 (1998), pp. 695-724.
[3] A.V. Geramita - J. Migliore, On the Ideal of an Arithmetically Buchsbaum Curve, J. Pure Appl. Alg., 54 (1988), pp. 215-247.
[4] J. Migliore, Buchsbaum curves in \mathbb{P}^{3}, Proceedings of the Conference on Algebraic Geometry, East Berlin, 1985, Teubner-Texte zur Mathematik.
[5] J. Migliore, Introduction to Liaison Theory and Deficiency Modules, Birkhäuser, Progress in Mathematics, 165 (1998).

> Dpt. Algebra i Geometria,
> Fac. Matematiques,
> Univ. Barcelona, Gran Via 585,
> 08007 Barcelona (SPAIN)
> e-mail:casanell@mat.ub.es

