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CHARACTERIZATION OF NON-CONNECTED

BUCHSBAUM CURVES IN P
n

MARTA CASANELLAS

In this paper we characterize non-connected Buchsbaum curves C in Pn

and we give a sharp bound for the number of disjoint connected components
of C.

Introduction.

The purpose of this note is to classify non-connected Buchsbaum curves
C in P

n
k . It is well known that the only non-connected Buchsbaum curve C

in P
3
k is the disjoint union of two lines (cf. [4] Theorem 2.1 and [3] Remark

3.11 (5)). Moreover it is easy to check that the Hartshorne-Rao module,

M(C) :=
�

t∈Z
H 1(Pn, IC (t)), of two disjoint lines, C = L1

∅

∪ L2 ⊂ P
3
k , is

M(C)t =

�
k if t = 0

0 if t �= 0.

It is natural to ask whether this result generalizes to higher dimensional
projective spaces and if it is possible to characterize all non-connected Buchs-
baum curves C ⊂ P

n
k .
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We will see that in P
4
k there are non-connected Buchsbaum curves C ⊂ P

4
k

of arbitrary degree but, indeed, all of them have Hartshorne-Rao module

M(C)t =

�
k if t = 0

0 if t �= 0.

This result is no longer true in P
n
k , n ≥ 5. We will prove the existence

of non-connected Buchsbaum curves C ⊂ P
n
k , n ≥ 5, of arbitrary degree with

arbitrary Buchsbaum invariant (see De�nition 1.3) and whose Hartshorne-Rao
modules have arbitrary diameter (see De�nition 1.1). Nevertheless, all of them
are characterized by the following theorem:

Theorem 1. Every non-degenerate Buchsbaum curve C ⊂ P
n
k is connected

unless it is of the form C = C1 ∪ C2 with C1, C2 disjoint Buchsbaum curves
and < C1 > ∩ < C2 >= ∅ (being < Ci > the least linear subspace of P

n
k

containing Ci ).

As application of Theorem 1, we will give, in terms of n, a sharp bound
for the number of disjoint connected components of Buchsbaum curves C ⊂ P

n
k

(Corollary 2.6).
In Section 1 we �x the notation and de�nitions needed in the sequel.
In Section 2 we prove the above theorem using algebraic tools. Then we

remark the differences between the cases n = 3, 4 and n ≥ 5, and we give some
examples.

1. Notation and conventions.

Let k be an algebraically closed �eld of characteristic 0, S = k[X0, X1, . . .

. . . , Xn], m = (X0, . . . , Xn) and P
n =Proj S .

By a curve we mean a locally Cohen-Macaulay, equidimensional, closed
subscheme of P

n of dimension 1.
Let C be any closed subscheme of P

n , then I (C) will denote its saturated
ideal and IC its shea��cation. C is said to be degenerate if it is contained in a
hyperplane of P

n .
We say that C has degenerate hyperplane section if for a general hyper-

plane H , C ∩ H is degenerate respect to H .
We will denote by < C > the least linear subspace of P

n containing C as
a subscheme.

If F is a sheaf of OPn -modules we de�ne Hi
∗(F ) :=

�
t∈Z

Hi (Pn, F (t)),
i = 0, . . . , n.
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De�nition 1.1. Given a curve C ⊂ P
n , the Hartshorne-Rao module M(C) is

the graded S-module de�ned by

M(C) =
�

t∈Z

H 1(Pn, IC (t)).

If C is locally Cohen-Macaulay and equidimensional, then M(C) has �nite
length and we can de�ne the diameter of M(C), diam M(C), to be the number
of components from the �rst one different from zero to the last (inclusive).

De�nition 1.2. A curve C ⊂ P
n is called arithmetically Buchsbaum (or

simply Buchsbaum) if and only if M(C) is annihilated by the maximal ideal
(X0, . . . , Xn) of S .

In other words, a curve C is Buchsbaum if the multiplication in M(C) by
any linear form is the zero map.

De�nition 1.3. If C ⊂ P
n is a Buchsbaum curve, the integer

N =
�

i

dimk M(C)i

is called the Buchsbaum invariant of C .

For instance, if diam M(C) = 1 then C is trivially a Buchsbaum curve.
This is the case of the disjoint union of two lines in P

3. In P
3, the simplest non-

trivial example of a Buchsbaum curve is a degree 10 curve (cf. [5] Example
1.5.6). We will see in Remark 3.3 that we can �nd examples of Buchsbaum
curves in P

7 with diam M(C) = 2 and degC = 6.

Remark 1.4. Let M(C) be the Hartshorne-Rao module of a Buchsbaum curve
C ⊆ P

n , then M(C)t = 0 for all t < 0. This is easy to see considering a general
hyperplane H and the following exact sequence:

0 �� IC (t)
×H

�� IC (t + 1) �� IC∩H,H (t + 1) ��0 , t ∈ Z.

Taking cohomology we get the long exact sequence

0 �� H 0(Pn, IC(t)) �� H 0(Pn, IC(t + 1)) ��

�� H 0(H, IC∩H,H (t + 1)) �� M(C)t
×H

�� M(C)t+1
�� · · ·

and for t < 0 we have

0 �� M(C)t
×H

�� M(C)t+1 .

So if C is Buchsbaum, M(C)t must be 0 for t < 0.
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For more general results on Buchsbaum curves the reader can see, for
instance, [3].

2. Non-connected Buchsbaum curves in P
n.

We begin this section with the following basic lemma.

Lemma 2.1. Let C1, C2 ⊆ P
n be two disjoint curves such that their union

C1 ∪ C2 is a non-degenerate curve, then the following two conditions are
equivalent:

(i) < C1 > ∩ < C2 >= ∅

(ii) I (C1) + I (C2) = (X0, . . . , Xn)

Proof. (i) ⇒ (ii): Since C1∪C2 is non-degenerate << C1 > ∪ < C2 >>= P
n ,

which together with the hypothesis (i) implies that

dim < C1 > + dim < C2 >= n − 1.

Let r = dim < C1 >, dim < C2 >= n − r − 1 and call L1, . . . , Ln−r the n-r
k-independent linear forms in I (C1), and H1, . . . , Hr+1 those in I (C2). They
must be all k-linearly independent because < C1 > ∩ < C2 >= ∅. Thus
dimk(I (C1) + I (C2)) = dimk S1 = n + 1, so I (C1) + I (C2) = (X0, . . . , Xn).

(ii) ⇒ (i): Since C1 ∪ C2 is non-degenerate, I (C1) and I (C2) cannot have
any linear form in common. Therefore, ordering if necessary, we may assume
under the hypothesis (ii) that X0, . . . , Xt ∈ I (C1) and Xt+1, . . . , Xn ∈ I (C2),
and this implies < C1 > ∩ < C2 >= ∅. �

Lemma 2.2. Let C = C1 ∪ C2 ⊆ P
n be the disjoint union of two Buchsbaum

curves. Assume that C is non-degenerate and < C1 > ∩ < C2 >= ∅, then C
is a Buchsbaum curve.

Proof. By Lemma 2.1 < C1 > ∩ < C2 >= ∅ is equivalent to I (C1)+ I (C2 ) =

(X0, . . . , Xn). Consider the following exact sequence

0 �� I (C) �� I (C1) ⊕ I (C2) �� I (C1) + I (C2 ) ��0;

shea�fying and taking cohomology we obtain the exact diagram

0 �� I (C) �� I (C1) ⊕ I (C2 ) �� S �� M(C) �� M(C1) ⊕ M(C2)

� �

m
� �

0 0
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because H 0
∗ (IC1

+ IC2
) = S since C1 and C2 are disjoint (use the Nullstellen-

satz). Thus, H 0
∗ (IC1

+ IC2
)/(I (C1) + I (C2)) ∼= S/m ∼= k as graded S-modules

and the next sequence is exact:

0 ��S/m ∼= k �� M(C)
ϕ

�� M(C1) ⊕ M(C2) ��0

Let H be a linear form in S and consider the commutative diagram for t ≥ 1,
t ∈ Z:

M(C)t

×H

��

∼=
�� M(C1)t ⊕ M(C2)t

×H

��

M(C)t+1

∼=
�� M(C1)t+1 ⊕ M(C2)t+1

Since C1, C2 are Buchsbaum curves, the multiplication by H in M(C) must be
also the zero morphism. For t = 0 we have

0 �� k �� M(C)0

×H

��

ϕ0
�� M(C1)0 ⊕ M(C2)0

×H

��

0 �� M(C)1
ϕ1

�� M(C1)1 ⊕ M(C2)1

Thus, for all f ∈ M(C)0, ϕ1(H. f ) = H.ϕ0( f ) = 0, and using that ϕ1 is
injective we conclude that C is a Buchsbaum curve. �

Now we will see that the only non-connected Buchsbaum curves in P
n are

those described in Lemma 2.2.

Theorem 2.3. Let C ⊆ P
n be a non-degenerate Buchsbaum curve. Then C

is connected unless C = C1 ∪ C2 with C1, C2 disjoint Buchsbaum curves and
< C1 > ∩ < C2 >= ∅.

Proof. By Lemma 2.1 we have to see that I (C1) + I (C2) = (X0, . . . , Xn) to
prove < C1 > ∩ < C2 >= ∅.
By the following exact sequence,

0 �� I (C) �� I (C1) ⊕ I (C2) ��

�� H 0
∗ (IC1

+ IC2
) �� M(C) �� M(C1) ⊕ M(C2) �� · · ·

and since C1 ∩ C2 = ∅, we obtain the short exact sequence:

0 ��S/(I (C1) + I (C2 )) �� M(C) �� M(C1) ⊕ M(C2) ��0



192 MARTA CASANELLAS

Note that k ⊂ S/(I (C1) + I (C2)) so k ⊂ M(C)0.
Suppose that there exists i ∈ 0, . . . , n such that Xi /∈ I (C1) + I (C2). Then
0 �= [Xi ]∈ S/(I (C1) + I (C2)) ⊆ M(C) and the multiplication by Xi

M(C)0
×Xi

�� M(C)1

1 �−→ Xi

would not be the zero map, which is in contradiction with the assumption of C
being Buchsbaum.
Therefore I (C1) + I (C2) = (X0, . . . , Xn) and the quotient S/(I (C1) + I (C2))

is k.
Now we have to show that C1 and C2 are Buchsbaum curves. We use the

exact sequence of graded S-modules

0 ��k �� M(C)
ϕ

�� M(C1) ⊕ M(C2) ��0 .

Let H be a linear form in S and consider the multiplication by H . Let t ∈ Z,
if t ≥ 1 the multiplication by H in M(Ci )t is the zero map because ϕt are
isomorphisms.
If t = 0, we have the following commutative diagram

0 �� k �� M(C)0

×H

��

ϕ0
�� M(C1)0 ⊕ M(C2)0

×H

��

0 �� M(C)1
ϕ1

�� M(C1)1 ⊕ M(C2)1

For all (s1, s2) ∈ M(C1)0 ⊕ M(C2)0, there exists f ∈ M(C)0 such that ϕ0( f ) =

(s1, s2). Now, since C is Buchsbaum, H. f = 0, so ϕ1(H. f ) = 0 and by the
commutativity of the diagram we get H.(s1, s2) = 0. Thus C1 and C2 are also
Buchsbaum curves. �

Remark 2.4. Applying this theorem to the case n = 4, we get that the only
non-connected Buchsbaum curves C ⊂ P

4 are the union of a curve contained
in a plane π and a line skew with π . As a consequence, every non-connected
Buchsbaum curve C ⊆ P

n , n ≤ 4, is contained in a hyperquadric and has

M(C)t =

�
k if t = 0

0 if t �= 0.
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For n ≥ 5, as a result of Theorem 2.3, we have that every non-connected
Buchsbaum curve C = C1 ∪ C2 ⊆ P

n also lies in a hyperquadric Q (we can
take Q equal to the union of one hyperplane containing C1 and one containing
C2 ). But in the proof of the theorem we have seen that for t ≥ 1, M(C)t ∼=

M(C1)t ⊕M(C2)t , so we will have non-connected Buchsbaum curves for which
M(C) has arbitrary diameter and arbitrary Buchsbaum invariant.
In this way we can �nd non-connected Buchsbaum curves C ⊆ P

7 of degree 6
and diam M(C) > 1:
Let C1 ⊂ H1

∼= P
3 be the curve obtained from the union X of two disjoint lines,

performing a basic double link with a plane and a quadric containing X (for the
de�nition and facts about basic double links see, for instance, [1]). Then

M(C1)t =

�
k if t = 1

0 if t �= 1

and deg(C1) = 4. Now take C2 ⊂ H2
∼= P

3 to be the disjoint union of two lines
such that H1 ∩ H2 = ∅. If we let C = C1 ∪ C2 ⊂ P

7, then C is a Buchsbaum
curve (by lemma 2.2) of degree 6 and

M(C)t =






k2 if t = 0

k if t = 1

0 if t �= 0, 1.

Remark 2.5. In P
3 and P

4 Buchsbaum non-connected curves C coincide with
those non-connected curves having degenerate hyperplane section: Let H ⊆ P

n

be a general hyperplane and consider the exact sequence

0 �� IC
×H

�� IC (1) �� IC∩H,H (1) ��0

taking cohomology we get the exact sequence

0 �� H 0(IC ) �� H 0(IC (1)) �� H 0(IC∩H,H (1)) ��

�� M(C)0
×H

�� M(C)1 �� · · ·.

C is a Buchsbaum curve, thus the last morphism is 0 and h0(IC∩H,H (1)) �= 0,
i.e. the general hyperplane section of C is degenerate.

For n = 3, the proof results by [4]; Theorem 2.1 shows that in this case C
must be the union of two skwe lines. For n = 4, we may use the results of [2]
where curves in P

4 are characterized.
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In P
n , n ≥ 5 this is no longer true. Consider the following example:

In P
5 let C = C1 ∪ C2 , C1 ∩ C2 = ∅, with C1 a plane curve and C2 the

disjoint union of two lines in P
3. Then < C1 > ∩ < C2 >�= ∅ (so C is not a

Buchsbaum curve) and the general hyperplane section will be degenerate:

dim < C ∩ H >= dim < C1 ∩ H > + dim < C2 ∩ H > −

− dim(< C1 ∩ H > ∩ < C2 ∩ H >) = 1 + 1 − (−1) = 3.

As application of Theorem 2.3, we will bound the number of disjoint
connected components of Buchsbaum curves C ⊂ P

n in terms of n and we
will prove that the bound we give is optimal. To this end, for any x ∈ R, set
[x ] := max{m ∈ Z | m ≤ x}. We have

Corollary 2.6. Let C ⊂ P
n , n ≥ 2, be a Buchsbaum curve. Denote by m(C) the

number of disjoint connected components of C. Then m(C) ≤ [ n+1
2
]. Moreover

there exist Buchsbaum curves C ⊂ P
n which attain this bound.

Proof. We proceed by induction on n. Since all plane curves are connected
and the only non-connected Buchsbaum curve in P

3 is the disjoint union of two
skew lines, the result is true for n = 2 and n = 3.

We assume n ≥ 4. By Theorem 2.3 if C ⊂ P
n is a non-connected

Buchsbaum curve, we can write C = C1 ∪ C2 with C1, C2 Buchsbaum curves
spanning disjoint linear subspaces. Set < C1 >∼= P

i, < C2 >∼= P
j with

1 ≤ i ≤ j ; so i + j ≤ n − 1. If C has the maximum number of disjoint
connected components among Buchsbaum curves in P

n , we need i + j = n−1,
so j = n − 1 − i . Now applying the induction hypothesis to the Buchsbaum
curves C1 ⊆ P

i , and C2 ⊆ P
n−1−i , we get

m(C) = m(C1) + m(C2) ≤
� i + 1

2

�
+

�n − i

2

�
≤

�n + 1

2

�

which proves what we want.

To prove the existence of curves C ⊂ P
n attaining this bound, one can

consider the following curves:
(1) If n is odd, take C equal to the disjoint union of n+1

2
lines L1, . . . , L n+1

2

such that Lt ∩ < L1 ∪ . . . ∪ Lt−1 >= ∅, t = 2, . . . , n+1
2
.

(2) If n is even, take C equal to the union of n
2

− 1 disjoint lines
Lt , . . . , L n

2−1 and a curve contained in a plane π such that Lt ∩ < L1 ∪ . . . ∪

Lt−1 >= ∅, t = 2, . . . , n
2
−1, and π ∩ < L1 ∪ . . .∪ L n

2 −1 >= ∅. These curves
exist, are Buchsbaum according to Lemma 2.2, and satisfy the bound for m(C).

�

Remark 2.7. It is easy to check by induction on n, that any curve attainig this
bound for m(C) is as (1),(2) in the proof of the corollary.
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