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NEW SOLUTION OF THE GENERALIZED

ELLIPSOIDAL WAVE EQUATION

HAROLD EXTON

Certain aspects and a contribution to the theory of new forms of solu-
tions of an algebraic form of the generalized ellipsoidal wave equation are
deduced by considering the Laplace transform of a soluble system of linear
differential equations. An ensuing system of non-linear algebraic equations is
shown to be consistent and is numerically implemented by means of the com-
puter algebra package MAPLE V. The main results are presented as series
of hypergeometric type of there and four variables which readily lend them-
selves to numerical handling although this does not indicate all of the detailed
analytic properties of the solutions under consideration.

1. Introduction.

Considerable interest has recently arisen in Heun�s equation and its con-
�uent forms. A detailed general overview has been compiled by Ronveaux [4]
to which the reader should refer. Such equations have recently been tackled
successfully by considering the inverse Laplace transform of soluble systems of
linear differential equations. See Exton [3], for example.

The purpose of this paper is to present a contribution to the study of new
forms of solutions of the generalized ellipsoidal wave equation (GEWE), a
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second-order differential equation with four singularities. Three of these are
regular and one is irregular of the �rst type, usually at in�nity. The ellipsoidal
wave equation, a special case of the GEWE, is the most recondite member of
the class of linear differential equations of the second order which arise when
the three-dimensional wave equation is separated in ellipsoidal coordinates. The
standard form of the GWEW can be written as

(1.1) X (X − 1)(X − A)Z� + [αX 2 + βX + γ ]Z � + [φX 2 + �X + χ ]Z = 0.

Complicated solutions of this equation of perturbation type have been discussed
by Exton [2]. More compact solutions with triple and quadruple series repre-
sentations of hypergeometric type are obtained in this study by the application
of the inverse Laplace transform to a soluble system of linear differential equa-
tions This is followed by a process of matching the parameters with (1.1). The
ensuing system of non-linear algebraic equations is shown to be consistent by
the use of the computer algebra package MAPLE V.

In what follows, any values of parameters leading to results which do
not make sense are tacitly excluded and indices of summation are taken to
run over all of the non-negative integers. The Pochhammer symbol (a, n) =

�(a = n)/�(a) is frequently used and the interchanging of the operations of
summation and integration is justi�ed in all cases on account of the convergence
of the series or integral representations involved. Constant multipliers which
have no bearing on any �nal results are often left out for convenience.

2. A soluble system of differential equations.

Consider the differential equations

(2.1) (at + b)v� + cv = u

and

(2.2) (t/a + d)u��� + ( f t + g)u�� + (ht + j )u� + ku = 0,

which are equivalent to the fourth-order equation

(2.3) [t2 + (b/a + ad)t + bd]v���� +

+ [a f t2 + (ag + bf + 3 + c/a)t + cd + bg + 3ad]v��� +

+ [akt2 + (aj + bh + 2a f + c f )t + cg +�� ag + bj ]v�� +
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+ [(ah + ch + ak)t + aj + cj + bk]v� + ckv = 0.

Let the inverse Laplace transform be given by

(2.4) v(t) =

�

exp(−xt)y(x ) dx ,

where the contour of integration is a simple closed path on the Riemann
surface of the integrand, such that this integrand remains unchanged after the
completion of one circuit.

The function y(x ) is found to be given by the differential equation

(2.5) (x 4 − a f x 3 + ahx 2)y �� + [(b/a + ad)x 4 +

+ (5 − ag − b f − c/a)x 3 + (aj + bh + c f − 4a f )x 2 +

+ (3ah − ch − ak)x ]y �[(4b/a + 4ad)x 3 + (3 − 3ag − 3bf − 3c/a)x 2 +

+ (2aj + 2bh + 2cf − 2a f )x + ah − ch − ak]y = 0.

Let

(2.6) x = pX and y = exp(qX )X�Z ,

when (2.5) becomes

(2.7) (X 3 − a f p−1X 2 + ahp−2X )Z �� +

+ [(2q + bp/d + adp)X 3 + (5 − ag − bf − c/a − 2a f q/p + 2r)X 2 +

+ (aj/p + bh/p + cf/p − 4a f/p + 2qah/p2 − 2ra f/p)X +

+ (2rah/p2 + 3ah/p2 − ch/p2 − ak/p2)]Z � +

+ [(q2 +bqp/a−adpq)X 3 + (−a f q2/p+5q−agq−bf q−cq/a−4bp/a+

+ 4adp + 2qr + bpr/a + adpr)X 2 +

+ (r2 + 4r − agr − bf r − cr/a − 2a f qr/p + ahq2/p2 + ajq/p + bhq/p +

+ chq/p − 4a f q/p + 3 − 3ag− 3bf − 3c/a)X −

−a f/p+ajr/p+bhr/p+c f r/p−4a f r/p+2qahr/p2 +3ahq/p2−chq/p2−

− akq/p2 + 2a f/p − 2aj/p − 2aj/p − 2bh/p − 2cf/p +

+ (3ahr/p2 − chr/p2 − akr/p2 + ah/p2 − ch/p2 = ak/p2)/X ]z = 0.
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On comparing (2.7) with (2.1), a system of eleven non-linear algebraic equa-
tions involving the twelve quantities a, b, c, d, f, g, h, j, k, p, q , and r , any one
of which is arbitrary. This system can be shown to be consistent and also nu-
merically implemented by means of the computer algebra package MAPLE V.
This process, the main theoretical point of which is to establish the existence
of the solutions of this system of non-linear algebraic equations is very lengthy
and it is impracticable to record the details here. Ultimate numerical implemen-
tation follows from the application of the MAPLE V package itself. Hence, the
solution of the GEWE depends upon the solution of (2.1) and (2.2).

3. The solution of (2.1) and (2.2).

From (2.2),

(3.1) (t + ad)u��� + (a f t + ag)u�� + (aht + aj )u� + aku = 0.

Let

(3.2) u =

�

exp(st)η(s) ds,

where

(3.3) η�/η = [ads3 + (ag−3)s2 + (aj −2a f )s+ak−ah]/[s(s2 +a f s+ah)]

For convenience, put

(3.4) a f = −ξ − ξ and ah = −ξξ,

and we can then write (3.3) in the form

(3.5) η�/η = ad + λ/s + µ/(s − ξ ) + ν/(s − ζ ).

Hence,

(3.6) η = exp(ads)sλ(s − ξ )µ(s − ζ )ν.

More than one relevant form of u can then be obtained.



NEW SOLUTION OF THE GENERALIZED. . . 215

4. A solution of the GEWE relative to the origin.

Bearing in mind that the contour of integration of (3.2) is the same as that of
(2.4), the sign of λ is immaterial and we expand the function η(s) in ascending
powers of s:

(4.1) η(s) = exp(ads)
�

m,n

[(−µ,m)(−ν, n)ξ−m ζ −nsλ+m+n]/[m!n!],

so that, apart from a constant multiplier, we have, formally,

(4.2) u ∼ (ad + t)−λ−1
�

m,n

[(−µ,m)(−ν, n)(−ξ )−m (−ζ )−n ·

· (1 + λ,m + n)(ad + t)−m−n]/[m!n!].

Any formal processes used below can always be justi�ed by noting that instead
of divergent series, corresponding convergent integrals can always be used to
obtain equivalent results.
From (2.1), (t + b/a)v� + ca−1v

(4.3) (ad + t)−λ−1
�

m,n

[(−µ,m)(−ν, n)(1 + λ,m + n)(−ξ )−m ·

· (−ζ )−n(ad + t)−m−n]/[m!n!].

Hence, by means of the usual method of solution of the linear differential
equation of the �rst order,

(4.4) v = τ−c/a
�

m,n,M

[(−µ,m)(−ν, n)(−ξ )−m (−ζ )−n(1 + λ,m + n + M) ·

· (ad − b/a)M ]/[m!n!M!]xτ c/a−lambda−2−m−n−Mdτ.

Thus, v is proportional to

(4.5)
�

m,n,M

[(−µ,m)(−ν, n)(1 + λ,m+ n+ M)(−ξ )−M (−ζ )−n(ad − b/a)M ·

· (λ+2−c/a,m+n+M)τ c/a−λ−1−m−n−M]/[m!n!M!(λ+3−c/a,m+n+M)].

From (2.4) by inversion, bearing in mind (4.4),

(4.6) y = exp(−bx/a)

�

exp(τ x )v(τ ) dτ
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From (4.5) and (2.6), we have

(4.7) Z = exp[(bp/a − q)X λ−c/a−r ·

·
�

m,n,M

{(−µ,m)(−ν, n)(1 + λ,m + n + M)(λ − c/a + 2,m + n + M)

(−ξpX )m (−ζ pX )n[(ad − b/a)pX ]M}/

/{(λ + 3 − c/a,m + n + M)(λ + 1 − c/a,m + n + M)m!n!M!}.

Put

(4.8) ad − b/a = 1/p,

which �xes the parameter d which was previously arbitrary.
Hence, we obtain a solution of the GEWE relative to its regular singularity

at the origin. This representation converges within the unit circle as expected.

5. A formal solution of the GEWE relative to the point at in�nity.

The function η(s) is expanded in descending power of s :

(5.1) η(s) = exp(ads)sλ+µ+ν
�

m,n

[(−µ,m)(−ν, n)ξm ζ ns−m−n]/[m!n!].

Hence, from (3.2), apart from a constant multiplier,

(5.2) u(t) = (ad + t)−λ−µ−ν−1
�

m,n

[(−µ,m)(−ν, n)ξm ζ n(ad + t)m+n] ·

· [m!n!(−λ − µ − ν,m + n)]

and from (2.1) and (4.4),

(5.3) v� = −cv/(aτ ) +

+ τ−1
�

m,n

[(−µ,m)(−ν, n)ξm ζ n(τ + ad − b/a)−λ−µ−ν−1+m+n]/

/[m!n!(−λ − µ − ν,m + n)].
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We then see that

(5.4) v = τ−λ−µ−ν
�

m,n,M

[(−µ,m)(−ν, n)(λ + µ + ν + 1, M − m − n) ·

· (c/a − λ − µ − ν − 1,m + n + M)(b/a − ad)−M ]/

/[m!n!M!(c/a − λ − µ − ν,m + n + M)]x [ξmζ nτm+n+M ]

and from (4.6), formally,

(5.5) y ∼ exp(−bx/a)xλ+ν−1
�

m,n,M

[(−µ,m)(−ν, n)(λ+µ+ν+1, M−m−n) ·

· (c/a−λ−µ− ν −1,m+n+M)]/[m!n!M!(c/a −λ−µ− ν,m+ n+M)] ·

· [(−ξ )m (−ζ )n(ad − b/a)−Mx−m−n−M .

If this expression is combined with (2.6), a formal representation of a solution of
the GEWE relative to the irregular singularity at the point at in�nity is obtained.
As expected, the series does not converge.

6. A global solution of the GEWE.

By comparison with the con�uent Heun equation, global solution of the
GEWE might be expected to exist. Compare Ronveaux [4], p. 100.

With the form of v as given by (5.3), employ a Pochhammer double-loop
contour in the integral (4.6). First of all, the expression (5.3) is written as a
double series of Gauss hypergeometric functions, namely

(6.1) v = τ−λ−µ−ν
�

m,n

[(−µ,m)(−ν, n)(λ + µ + ν + 1,m + n) ·

· (c/a − λ − µ − ν − 1,m + n)][m!n!(c/a − λ − µ − ν,m + n)] ·

· ξmζ nτm+n
2F1[λ + µ + ν + 1 −m − n; c/a − λ − µ − ν − 1 + m + n,

c/a − λ − µ − ν +m + n; (b/a − ad)−1τ ].

Euler�s transform

(6.2) 2F1[a, b; c; x ] = (1 − x )c−a−b2F1[c − a, c− b; c; x ],
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Erdelyi [1], p. 105, is applied to the inner hypergeometric function on the right
of (6.1), so that (4.6) now takes the form

(6.3) y = exp(−bx/a)
�

m,n,M,N

[(−µ,m)(−ν, n) ·

·(c/a − 2λ − 2µ − 2ν − 1 − 2m − 2n, M)x N ]/

/[m!n!N !]ξm ζ n(b/a − ad)−M(−1)N ·

· [1 − (b/a − ad)−1τ ]−λ−µ−ν+m+nτ−λ−µ−ν+m+n+M+Ndτ,

where the contour of integration is taken to a Pochhammer double loop slung
around the origin and the point b/a − ad in the τ−plane.

Apart from a constant multiplier, it is found that

(6.4) y = exp(−bx/a)
�

m,n,M,N

[(−µ,m)(−ν, n) ·

·(c/a − 2λ − 2µ − 2ν − 1 − 2m − 2n, M)x Nξmζ n]/

/[m!n!N !(c/a − λ − µ − ν�,m + n + N ] ·

· [(b/a− ad)m+n+N (1 − λ − µ − ν,m + n)(1 − λ − µ − ν,m + n + M + N )]/

/[(2 − 2λ − 2µ − 2ν, 2m + 2n + M + N )].

This representation furnishes a global solution of the GEWE which converges
throughout the whole of the x -plane.

Additional solutions of the GEWE can be deduced from the above results
using the appropriate symmetries of the GEWE as outlined by Exton [3].
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