HOMOTOPIES USING CONFORMAL TRANSFORMATION WITH INVARIANT TOTAL NORMAL TWIST

EL-SAID R. LASHIN - TAREK F. MERSAL*

Abstract

The aim of this paper is to detect a homotopy to a spherical curve with invariant total normal twist 0 . Also, we use conformal transformation to prove a theorem that for any immersed closed C^{3}-curve c in the Euclidean 3 -space E^{3} with vanishing total normal twist, there exists a Frenet curve \tilde{c} homotopic to c in an arbitrary neighborhood of c such that the total normal twist is invariant along the homotopy between c and \tilde{c} in that neighborhood.

1. Introduction.

Let $c: S^{1} \longrightarrow E^{3}$ be a regular closed smooth curve (at least of class C^{3}) for the subsequent considerations. Parallel transfer of the normal plane along one period of the curve c with respect to the normal connection leads to a rotation of the normal plane which is characterized (up to integer multiples of $2 \pi)$ by an oriented angle $\alpha(c)$ which we call the total normal twist of c. For Frenet curves this quantity is given by their total torsion up to integer multiples of 2π (see [1] and [6]).

It has been shown in [3] that the total normal twist of a closed curve is invariant under similarities (homotheties). In the work of B. Wegner [7] it has

[^0]been shown that parallel sections of the normal bundle may remain parallel after renormalization, if the ambient space is subjected to a conformal transformation and consequently the local and uniform parallel ranks of immersions [2,5] into Euclidean 3-space E^{3} are preserved under conformal transformations. Also, if the total normal twist of an immersed closed curve in E^{3} is an integer multiple of 2π, then the same is true for any image of the curve under a conformal transformation of the ambient space.

2. A homotopy to spherical curve.

We begin with proving the existence of a homotopy in the Euclidean 3space E^{3} from a plane curve to a spherical one preserving the total normal twist.

Theorem 2.1. Let c be a closed plane curve (at least of class C^{3}). Then there exist a curve c^{*} in $S^{2}(R)$ and a homotopy from c to c^{*} with total normal twist 0.

Proof. Let ϕ be the stereographic projection from the north pole x_{0} of the sphere $S^{2}(R)$ of radius R onto the tangent plane of the south pole $\mathbb{R}^{2} \times\{0\}$ (see Fig. 1). Assume that the image of c is contained in the plane. Then the coordinates of the center of the sphere are $p_{0}=(0,0, R)$, and those of the north pole $x_{0}=(0,0,2 R)=2 p_{0}$.

The mapping ϕ takes $x \in S^{2}(R)-\left\{x_{0}\right\}$ into the intersection of the plane $\mathbb{R}^{2} \times 0$ with the line that passes through x and x_{0}. It is clear that $R=\left\|x-p_{0}\right\|$. Then we have

$$
R=\left\|r \phi(x)+(1-r) x_{0}-p_{0}\right\|
$$

for some $r \in[0,1]$. This will be

$$
R=\left\|r \phi(x)+(2(1-r)-1) p_{0}\right\|,
$$

i.e.

$$
\begin{equation*}
R=\left\|r \phi(x)+(1-2 r) p_{0}\right\| . \tag{1}
\end{equation*}
$$

Equation (1) gives us

$$
R^{2}=r^{2}\|\phi(x)\|^{2}+(1-2 r)^{2} R^{2}=r^{2}\|\phi(x)\|^{2}+R^{2}+4 r^{2} R^{2}-4 r R^{2},
$$

Figure 1.
(note that $\left\langle\phi(x), p_{0}>=0\right.$), i.e.

$$
r\left(r\left[\|\phi(x)\|^{2}+4 R^{2}\right]-4 R^{2}\right)=0 .
$$

The above equation gives us $r=0$ or

$$
\begin{equation*}
r=\frac{4 R^{2}}{\|\phi(x)\|^{2}+4 R^{2}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
1-r=\frac{\|\phi(x)\|^{2}}{\|\phi(x)\|^{2}+4 R^{2}} . \tag{3}
\end{equation*}
$$

Substituting Equations (2), (3) in $x=r \phi(x)+(1-r) x_{0}$ gives

$$
\begin{equation*}
x=\frac{4 R^{2}}{\|\phi(x)\|^{2}+4 R^{2}} \phi(x)+\frac{\|\phi(x)\|^{2}}{\|\phi(x)\|^{2}+4 R^{2}} x_{0} . \tag{4}
\end{equation*}
$$

Setting $R=\frac{1}{\lambda}$ and denoting more precisely with Φ_{λ} the stereographic projection belonging to the sphere with radius $\frac{1}{\lambda}$, Equation (4) will be

$$
\begin{equation*}
x=\frac{1}{\lambda^{2}\left\|\Phi_{\lambda}(x)\right\|^{2}+4}\left\{4 \Phi_{\lambda}(x)+\lambda^{2}\left\|\Phi_{\lambda}(x)\right\|^{2} x_{0}\right\} . \tag{5}
\end{equation*}
$$

Hence let c be a closed curve in the plane $\mathbb{R}^{2} \times\{0\}$ and consider this as the image of the curve $\Phi_{\lambda}^{-1} \circ c$ on $S^{2}\left(\frac{1}{\lambda}\right)$. Using the formula (5) we can define a homotopy H as follows:

$$
\begin{equation*}
H(t, \lambda)=\frac{1}{\lambda^{2}\|c(t)\|^{2}+4}\left\{4 c(t)+\lambda^{2}\|c(t)\|^{2} x_{0}\right\} . \tag{6}
\end{equation*}
$$

It is clear that $H(t, 0)=c(t)$ which has total normal twist 0 (because c is a plane curve). $\lambda=1$ defines a spherical curve

$$
c^{*}(t)=\frac{1}{\|c(t)\|^{2}+4}\left\{4 c(t)+\|c(t)\|^{2} x_{0}\right\}
$$

lying in the sphere $S^{2}(1)$ with center $(0,0,1)$. For any $\lambda \in[0,1], H(t, \lambda)$ is a spherical curve lying in $S^{2}\left(\frac{1}{\lambda}\right)$, and consequently it has total normal twist 0 , and this proves the theorem.
Remark. At $\lambda=1$, we have the sphere $S^{2}(1)$ of this family of ambient spheres, containing c^{*}. For decreasing values of λ from 1 to 0 in the interval [0,1$]$ the corresponding sphere $S^{2}\left(\frac{1}{\lambda}\right)$ begins to blow up and finally tends to a sphere passing through infinity (plane) at $\lambda=0 \quad(R=\infty)$ where c was located.

Note that not all the notions given above in E^{3} are straightforward in E^{4}. Hence it is suitable to give some remarks about curves in E^{4} before giving our main theorem.
Proposition 2.1. Let $c: S^{1} \longrightarrow E^{4}$ be a regular closed smooth curve in E^{4}, then there exists a parallel section ξ of the normal bundle of c.
Proof. Let l denote the length of c. According to the definition of normal holonomy map,

$$
A: v_{c}(s) \subset E^{3} \longrightarrow v_{c}(s+l)=v_{c}(s) \subset E^{3}
$$

it is an orientation preserving linear isometry, where $v_{c}(s)$ is a normal vector space of c at s. Hence A has 1 as an eigenvalue of multiplicity 1 at least. Let

$$
A\left(\xi_{0}\right)=\xi_{0},
$$

i.e. ξ_{0} is an eigenvector of A in $v_{c}(s)$. This implies that ξ_{0} can be extended by parallel transfer in the normal bundle to a globally defined vector field ξ.

To define the total normal twist of c in E^{4} let $\left\{T, N_{1}, N_{2}, N_{3}\right\}$ be an orthonormal frame field along c, T denoting the field of unit tangents. As has
been shown in Proposition 2.1, we may choose N_{1} as a parallel section of the normal bundle of c. Hence starting parallel transfer of $N_{i}(0), i=1,2,3$, in $c(0)$ will leave $N_{1}(0)$ invariant after one period, and it will rotate $N_{2}(0)$ and $N_{3}(0)$ by an angle $\alpha(c)$ in the $\left(N_{2}(0), N_{3}(0)\right)$-plane. This may be taken as the total normal twist α of c in E^{4}.

Under these assumptions the calculation of α in terms of the given frame field was done in our work [3], and it will takes the following formula:

$$
\alpha(c)=\int_{0}^{1} \omega_{32}(s) d s
$$

where $\omega_{32}=<\nabla_{T} N_{3}, N_{2}>$.
A spherical curve in E^{3} has total normal twist zero. By using the above formula it is easy to extend this fact to spherical curves in E^{4}. For more details see [4], [6].
Theorem 2.2. Let $c: S^{1} \longrightarrow E^{3}$ be an immersion of class C^{3} in the Euclidean 3 -space E^{3} such that $\alpha(c)=0$. Then for each $\delta>0$, there exist a Frenet curve \tilde{c} with $\|\tilde{c}-c\|_{3}<\delta$ and a homotopy H_{λ} between c and $\tilde{c}, \lambda \in[0,1]$, with $\left\|H_{\lambda}-c\right\|_{3}<\delta$ such that $\alpha\left(H_{\lambda}\right)=0$ for all $\lambda \in[0,1]$.
Proof. Let $c: S^{1} \longrightarrow E^{3}$ be a regular smooth curve of class C^{3} parametrized by arc length in the Euclidean space E^{3}. Let

$$
\phi: S^{3}(1)-\left\{x_{0}\right\} \longrightarrow E^{3}
$$

be the stereographic projection from the north pole x_{0} into the hyperplane $E^{3} \subset E^{4}$. Then the spherical curve

$$
\hat{c}=\phi^{-1} \circ c: S^{1} \longrightarrow S^{3}(1) \subset E^{4}
$$

is of class C^{3}. Since ϕ is a conformal mapping, tangents of c are sent to tangents of \hat{c}, and osculating circles of c are sent to osculating circles of \hat{c}. It is clear that \hat{c} is a Frenet curve (\hat{c} has non-zero curvature).
Defining a mapping

$$
\Psi: S^{1} \times S^{1} \longrightarrow S^{3}(1)
$$

by

$$
\Psi(s, \theta)=m(s)+r(s)(N(s) \cos \theta+T(s) \sin \theta)
$$

where $m(s)$ is the center of curvature of \hat{c} at $s, r(s)$ is the radius of curvature of \hat{c} at s. Then Ψ is differentiable of class C^{1}. Since $\operatorname{dim}\left(S^{1} \times S^{1}\right)=2<$ $\operatorname{dim} S^{3}(1)=3$, we have that $\Psi\left(S^{1} \times S^{1}\right)$ is nowhere dense in $S^{3}(1)$, i.e.
$S^{3}(1)-\Psi\left(S^{1} \times S^{1}\right)$ is dense in $S^{3}(1)$. Hence for given $\varepsilon>0$, there exists $\hat{x} \in S^{3}(1)-\left(\Psi\left(S^{1} \times S^{1}\right) \cup\left\{x_{0}\right\}\right)$ such that

$$
\left\|\hat{x}-x_{0}\right\|<\varepsilon
$$

Rotating \hat{c} into \hat{c}_{1} in $S^{3}(1), \hat{c}_{1}=R_{1} \circ \hat{c}$, with the unique rotation R_{1} mapping \hat{x} to x_{0} (\hat{x} has been brought into the position of the north pole). Applying the stereographic projection

$$
\phi: S^{3}(1)-\left\{x_{0}\right\} \longrightarrow E^{3}
$$

to the curve \hat{c}_{1}. This yields a curve \tilde{c}_{1} in $E^{3}, \phi \circ \hat{c}_{1}=\tilde{c}_{1}$. Since ϕ is C^{∞}, there exists for given $\delta>0$ and c an $\varepsilon>0$ such that with the notations above

$$
\left\|\phi \circ \hat{c}-\phi \circ \hat{c}_{1}\right\|_{3}<\delta
$$

i.e.

$$
\left\|c-\tilde{c}_{1}\right\|_{3}<\delta
$$

But we have that $\hat{x} \notin \Psi\left(S^{1} \times S^{1}\right)$, which implies that \tilde{c}_{1} is a Frenet curve in E^{3}. The spherical curve $\hat{c}_{1} \in S^{3}(1)$ has total normal twist 0 (integer multiple of 2π) as we have shown before and illustrated in [4], [6]. Also, since ϕ is a conformal mapping, then \tilde{c}_{1} has total normal twist 0 .
Now we are going to prove that there exists a homotopy between the curves c and \tilde{c}_{1} in the δ-neighborhood of c preserving the total normal twist 0 . Connecting \hat{x} with x_{0} by a shortest geodesic path in $S^{3}(1)$. It is clear that for any

$$
x_{\lambda}=\lambda \hat{x}+(1-\lambda) x_{0}, \quad \lambda \in[0,1],
$$

the rotation R_{λ} mapping x_{λ} to x_{0} yields a rotation of \hat{c} to \hat{c}_{λ}, i.e. $R_{\lambda} \circ \hat{c}=\hat{c}_{\lambda}$, where $\hat{c}_{0}=\hat{c}$, such that

$$
\left\|x_{\lambda}-x_{0}\right\|<\varepsilon .
$$

Then applying ϕ to \hat{c}_{λ} gives a C^{3} curve \tilde{c}_{λ} in the Euclidean space E^{3} such that

$$
\left\|c-\tilde{c}_{\lambda}\right\|_{3}<\delta
$$

and $\alpha\left(\tilde{c}_{\lambda}\right)=0$. Hence the homotopy

$$
H: S^{1} \times[0,1] \longrightarrow E^{3}
$$

between c and \tilde{c}_{1} is given by

$$
H(s, \lambda)=\left(\phi \circ R_{\lambda} \circ \phi^{-1}\right)(c(s))
$$

where R_{λ} is the rotation mapping of x_{λ} to the north pole x_{0} and satisfies the conditions required.
It is easy to see that

$$
\begin{gathered}
H(s, 0)=\left(\phi \circ I d \circ \phi^{-1}\right)(c(s))=c(s) \\
H(s, 1)=\left(\phi \circ R_{1}\right)(\hat{c}(s))=\phi\left(\hat{c}_{1}(s)\right)=\tilde{c}_{1}(s),
\end{gathered}
$$

and $\alpha(H(., \lambda))=0$, because all the curves of the family $H(., \lambda)$ are images of spherical curves under conformal transformations.

REFERENCES

[1] F.J. Craveiro De Carvalho - S.A. Robertson, Self-parallel curves, Math. Scand., 65 (1989), pp. 67-74..
[2] H.R. Farran - S.A. Robertson, Parallel immersions in Euclidean space, J. London Math. Soc., (2) 35 (1987), pp. 527-538..
[3] T.F. Mersal - B. Wegner, Variation of the total normal twist of closed curves in Euclidean spaces, Proceedings of the Ist international meeting on Geometry and Topology, Braga (Portugal) 1997, pp. 223-231.
[4] T.F. Mersal, Geometric and analytic considerations of the exterior parallelism for submanifolds, Ph. D. thesis, Fac. of Sc., Menoufia Univ. (Egypt), 1998.
[5] B. Wegner, Some remarks on parallel immersions, Coll. Math. J. Bolyai Soc., 56 (1989/1992), pp. 707-717..
[6] B. Wegner, Self parallel and transnormal curves, Geom. Dedicata, 38 (1991), pp. 175-191.
[7] B. Wegner, Parallel immersions into spaces of constant curvature and conformal transformations, Proceedings of the German-Romanian Seminar in geometry, Sibiu 1997.

> Department of Mathematics, Faculty of Science, Menoufia University,
> Shebin El-Kom (Egypt).
> e-mail: tmersal@yahoo.com

[^0]: Entrato in Redazione il 9 marzo 1999
 *Most of the work in this paper was done at Technische Universitat Berlin, Germany. I would like to thank the staff and the director, Professor B. Wegner, for their help, support and hospitality.

