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HOMOTOPIES USING CONFORMAL TRANSFORMATION

WITH INVARIANT TOTAL NORMAL TWIST

EL-SAID R. LASHIN - TAREK F. MERSAL∗

The aim of this paper is to detect a homotopy to a spherical curve with
invariant total normal twist 0. Also, we use conformal transformation to
prove a theorem that for any immersed closed C3 -curve c in the Euclidean
3-space E3 with vanishing total normal twist, there exists a Frenet curve c̃
homotopic to c in an arbitrary neighborhood of c such that the total normal
twist is invariant along the homotopy between c and c̃ in that neighborhood.

1. Introduction.

Let c : S1 −→ E3 be a regular closed smooth curve (at least of class
C3 ) for the subsequent considerations. Parallel transfer of the normal plane
along one period of the curve c with respect to the normal connection leads to
a rotation of the normal plane which is characterized (up to integer multiples of
2π ) by an oriented angle α(c) which we call the total normal twist of c. For
Frenet curves this quantity is given by their total torsion up to integer multiples
of 2π (see [1] and [6]).

It has been shown in [3] that the total normal twist of a closed curve is
invariant under similarities (homotheties). In the work of B. Wegner [7] it has
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been shown that parallel sections of the normal bundlemay remain parallel after
renormalization, if the ambient space is subjected to a conformal transformation
and consequently the local and uniform parallel ranks of immersions [2,5] into
Euclidean 3-space E3 are preserved under conformal transformations. Also, if
the total normal twist of an immersed closed curve in E3 is an integer multiple
of 2π , then the same is true for any image of the curve under a conformal
transformation of the ambient space.

2. A homotopy to spherical curve.

We begin with proving the existence of a homotopy in the Euclidean 3-
space E3 from a plane curve to a spherical one preserving the total normal
twist.

Theorem 2.1. Let c be a closed plane curve (at least of class C3). Then there
exist a curve c∗ in S2(R) and a homotopy from c to c∗ with total normal twist
0.

Proof. Let φ be the stereographic projection from the north pole x0 of the
sphere S2(R) of radius R onto the tangent plane of the south pole R

2 × {0}
(see Fig. 1). Assume that the image of c is contained in the plane. Then the
coordinates of the center of the sphere are p0 = (0, 0, R), and those of the north
pole x0 = (0, 0, 2R) = 2p0.

The mapping φ takes x ∈ S2(R) − {x0} into the intersection of the plane
R

2 × 0 with the line that passes through x and x0. It is clear that R = �x− p0�.
Then we have

R = �rφ(x ) + (1 − r)x0 − p0�

for some r ∈ [0, 1]. This will be

R = �rφ(x ) + (2(1 − r) − 1)p0�,

i.e.

(1) R = �rφ(x ) + (1 − 2r)p0�.

Equation (1) gives us

R2 = r2�φ(x )�2 + (1 − 2r)2R2 = r2�φ(x )�2 + R2 + 4r2R2 − 4r R2,
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Figure 1.

(note that < φ(x ), p0 >= 0), i.e.

r(r[�φ(x )�2 + 4R2] − 4R2) = 0.

The above equation gives us r = 0 or

(2) r =
4R2

�φ(x )�2 + 4R2
,

and

(3) 1− r =
�φ(x )�2

�φ(x )�2 + 4R2
.

Substituting Equations (2), (3) in x = rφ(x ) + (1 − r)x0 gives

(4) x =
4R2

�φ(x )�2 + 4R2
φ(x ) +

�φ(x )�2

�φ(x )�2 + 4R2
x0.

Setting R = 1
λ
and denoting more precisely with �λ the stereographic projec-

tion belonging to the sphere with radius 1
λ
, Equation (4) will be

(5) x =
1

λ2��λ(x )�2 + 4
{4�λ(x ) + λ2��λ(x )�

2x0}.
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Hence let c be a closed curve in the plane R
2 × {0} and consider this as the

image of the curve �−1
λ ◦ c on S2( 1

λ
). Using the formula (5) we can de�ne a

homotopy H as follows:

(6) H (t, λ) =
1

λ2�c(t)�2 + 4
{4c(t) + λ2�c(t)�2x0}.

It is clear that H (t, 0) = c(t) which has total normal twist 0 (because c is a
plane curve). λ = 1 de�nes a spherical curve

c∗(t) =
1

�c(t)�2 + 4
{4c(t) + �c(t)�2x0}

lying in the sphere S2 (1) with center (0, 0, 1). For any λ ∈ [0, 1], H (t, λ) is a
spherical curve lying in S2( 1

λ
), and consequently it has total normal twist 0, and

this proves the theorem. �

Remark. At λ = 1, we have the sphere S2(1) of this family of ambient spheres,
containing c∗ . For decreasing values of λ from 1 to 0 in the interval [0,1] the
corresponding sphere S2( 1

λ
) begins to blow up and �nally tends to a sphere

passing through in�nity (plane) at λ = 0 (R = ∞) where c was located.

Note that not all the notions given above in E3 are straightforward in E4.
Hence it is suitable to give some remarks about curves in E4 before giving our
main theorem.

Proposition 2.1. Let c : S1 −→ E4 be a regular closed smooth curve in E4 ,
then there exists a parallel section ξ of the normal bundle of c.

Proof. Let l denote the length of c. According to the de�nition of normal
holonomy map,

A : νc(s) ⊂ E3 −→ νc(s + l) = νc(s) ⊂ E3

it is an orientation preserving linear isometry, where νc(s) is a normal vector
space of c at s . Hence A has 1 as an eigenvalue of multiplicity 1 at least. Let

A(ξ0) = ξ0,

i.e. ξ0 is an eigenvector of A in νc(s). This implies that ξ0 can be extended by
parallel transfer in the normal bundle to a globally de�ned vector �eld ξ . �

To de�ne the total normal twist of c in E4 let {T , N1, N2, N3} be an
orthonormal frame �eld along c, T denoting the �eld of unit tangents. As has
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been shown in Proposition 2.1, we may choose N1 as a parallel section of the
normal bundle of c. Hence starting parallel transfer of Ni (0), i = 1, 2, 3, in c(0)
will leave N1(0) invariant after one period, and it will rotate N2(0) and N3(0) by
an angle α(c) in the (N2(0), N3(0))-plane. This may be taken as the total normal
twist α of c in E4.

Under these assumptions the calculation of α in terms of the given frame
�eld was done in our work [3], and it will takes the following formula:

α (c) =

� 1

0

ω32(s) ds,

where ω32 =< ∇T N3, N2 >.
A spherical curve in E3 has total normal twist zero. By using the above formula
it is easy to extend this fact to spherical curves in E4. For more details see [4],
[6].

Theorem 2.2. Let c : S1 −→ E3 be an immersion of class C3 in the Euclidean
3-space E3 such that α(c) = 0. Then for each δ > 0, there exist a Frenet curve
c̃ with �c̃ − c�3 < δ and a homotopy Hλ between c and c̃, λ ∈ [0, 1], with
�Hλ − c�3 < δ such that α(Hλ) = 0 for all λ ∈ [0, 1].

Proof. Let c : S1 −→ E3 be a regular smooth curve of class C3 parametrized
by arc length in the Euclidean space E3. Let

φ : S3(1) − {x0} −→ E3

be the stereographic projection from the north pole x0 into the hyperplane
E3 ⊂ E4. Then the spherical curve

ĉ = φ−1 ◦ c : S1 −→ S3(1) ⊂ E4

is of class C3 . Since φ is a conformal mapping, tangents of c are sent to tangents
of ĉ, and osculating circles of c are sent to osculating circles of ĉ. It is clear that
ĉ is a Frenet curve (ĉ has non-zero curvature).
De�ning a mapping

� : S1 × S1 −→ S3(1)

by
�(s, θ ) = m(s) + r(s)(N (s) cos θ + T (s) sin θ ),

where m(s) is the center of curvature of ĉ at s, r(s) is the radius of curvature of
ĉ at s . Then � is differentiable of class C1 . Since dim(S1 × S1) = 2 <

dim S3(1) = 3, we have that �(S1 × S1) is nowhere dense in S3(1), i.e.
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S3(1) − �(S1 × S1) is dense in S3(1). Hence for given ε > 0, there exists
x̂ ∈ S3(1) − (�(S1 × S1) ∪ {x0}) such that

�x̂ − x0� < ε.

Rotating ĉ into ĉ1 in S
3(1), ĉ1 = R1 ◦ ĉ, with the unique rotation R1 mapping

x̂ to x0 (x̂ has been brought into the position of the north pole). Applying the
stereographic projection

φ : S3(1) − {x0} −→ E3

to the curve ĉ1. This yields a curve c̃1 in E
3, φ ◦ ĉ1 = c̃1. Since φ is C∞ , there

exists for given δ > 0 and c an ε > 0 such that with the notations above

�φ ◦ ĉ − φ ◦ ĉ1�3 < δ,

i.e.
�c − c̃1�3 < δ.

But we have that x̂ /∈ �(S1 × S1), which implies that c̃1 is a Frenet curve in E
3.

The spherical curve ĉ1 ∈ S3(1) has total normal twist 0 (integer multiple of 2π )
as we have shown before and illustrated in [4], [6]. Also, since φ is a conformal
mapping, then c̃1 has total normal twist 0.
Now we are going to prove that there exists a homotopy between the curves
c and c̃1 in the δ-neighborhood of c preserving the total normal twist 0.
Connecting x̂ with x0 by a shortest geodesic path in S3 (1). It is clear that
for any

xλ = λx̂ + (1 − λ)x0, λ ∈ [0, 1],

the rotation Rλ mapping xλ to x0 yields a rotation of ĉ to ĉλ , i.e. Rλ ◦ ĉ = ĉλ ,
where ĉ0 = ĉ, such that

�xλ − x0� < ε.

Then applying φ to ĉλ gives a C3 curve c̃λ in the Euclidean space E3 such that

�c − c̃λ�3 < δ,

and α(c̃λ) = 0. Hence the homotopy

H : S1 × [0, 1] −→ E3

between c and c̃1 is given by

H (s, λ) = (φ ◦ Rλ ◦ φ−1)(c(s))
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where Rλ is the rotation mapping of xλ to the north pole x0 and satis�es the
conditions required.
It is easy to see that

H (s, 0) = (φ ◦ Id ◦ φ−1)(c(s)) = c(s),

H (s, 1) = (φ ◦ R1)(ĉ(s)) = φ(ĉ1(s)) = c̃1(s),

and α(H (., λ)) = 0, because all the curves of the family H (., λ) are images of
spherical curves under conformal transformations. �
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