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FANOMANIFOLDS AS AMPLE DIVISORS

MARIA LUCIA FANIA

We study polarized manifolds (X, L) with L having a smooth element
A in its linear system which is a Fano manifold of coindex 3 and second Betti
number greater or equal than 2.

1. Introduction.

Let A be a complex projective manifold of dimension n ≥ 4 which is
an ample divisor in a projective manifold X . Let L = Ox (A) be the line
bundle on X associated to the divisor A. We are interested in the classi�cation
of polarized pairs (X, L) with A ∈ |L| a Fano manifold of coindex 3. Such
classi�cation has been worked out in [19] under the assumption that b2(A) = 1.
It is natural to extend such classi�cation to polarized pairs (X, L) with A ∈ |L|

a Fano manifold of coindex 3 and b2(A) ≥ 2. While the classi�cation in the
case b2(A) = 1 is fairly straightforward, the one in which b2(A) ≥ 2 is more
involved.

The main reason for being interested in such classi�cation is the fact that
among the Fano manifolds A of coindex 3 and b2(A) ≥ 2 there are manifolds
with a P1-bundle structure either over P3 or Q3. These manifolds are natural
candidates for examples supporting the standing conjecture on smooth Pd -
bundles, p : A → B , over a manifold B of dimension b, as ample divisor,
([3], (5.5.1)).
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Such conjecture, which we recall in the last section of this paper, has been
shown except when d = 1, b ≥ 3 and when the base B does not map �nite-to-
one into its Albanese variety. The case when either d ≥ 2 or B is a submanifold
of an Abelian variety follows from Sommese�s extension theorems, see [23] and
[11]. The conjecture is also known in the cases d = 1 and b ≤ 2. For d = 1
and b = 1 see [1] and [2], while for d = 1 and b = 2 see [8], [9], [22] and [21].

The paper is organized as follows. In section 2 we give the preliminaries
and recall, for the convenience of the reader, the theorems needed in the
paper. In section 3 we prove a general result about P1-bundles over a smooth
projective 3-fold which will be needed later on in the paper. In section 4 we
classify polarized pairs (X, L) with A ∈ |L| a Fano manifold of coindex 3 and
b2(A) ≥ 2. In the last section we make some �nal remarks.

2. Notations and Preliminaries.

In this section we recall some de�nitions and results which will be needed
throughout the paper. The notation used is the standard one in adjunction theory
(see [3], [10]).

We work over the complex �eld C. By a manifold we mean a smooth
projective variety over C.

Line bundles and invertible sheaves of their sections are used with little
or no distinction. Hence we will freely switch from the multiplicative to the
additive notation and viceversa.

De�nition 2.0.1. Let L be a line bundle on a manifold X . L is said to be nef if
L · D ≥ 0 for all effective curves D on X , and in this case L is said to be big if
c1(L)

n > 0, where c1(L) is the �rst Chern class of L .

De�nition 2.0.2. Let X be a complex projective manifold. Let KX be the
canonical divisor of X . We say that X is a Fano manifold if −KX is linearly
equivalent to rH , where H is an ample divisor on X . If r is the largest integer
dividing −KX then r is called the index of X . The integer dim X − r + 1 is
called coindex of X .

Fano manifolds of coindex 3 are well understood, see [17], [24] and [25]
for dimension ≥ 4. We recall the structure of such Fano manifolds with b2 ≥ 2
since it will be used later on in section 4.

Theorem 2.1. ([12], [14]). Let X be a Fano 4-fold of coindex 3 and of product
type, i.e. X ∼= P1 × M where M is a Fano 3-fold of even index. Then M is one
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of the following: P3, Vd,W, P1 × P1 × P1 , where Vd is a Del Pezzo manifold
with d = 7 or 1 ≤ d ≤ 5 and W is a divisor of bidegree (1, 1) on P2 × P2.

Theorem 2.2. ([17], [24], [25]). Let X be a Fano manifold of dimension ≥ 4,
coindex 3, b2 ≥ 2 and with a smooth 3-dimensional section. If X is not a Fano
4-fold of product type, then X is isomorphic to one of the following or a linear
section of its fundamental model:

(i) a double cover of P2 × P2 whose branch locus is a divisor of bidegree
(2, 2);

(ii) a divisor of P2 × P3 of bidegree (1, 2)
(iii) P3 × P3;
(iv) P2 × Q3;
(v) the blow up of a smooth 4-dimensional quadric Q4 ⊂ P5 along a conic

C on it such that the plane < C > spanned by C is not contained in Q4;
(vi) the blow up of P5 along a line;
(vii) X has two P1-bundle structures and can be realized either as P(NCB),

where NCB is the null correlation bundle over P3, that is a stable rank-2
bundle with c1 = 0, c2 = 1, or P(E), where E is a stable rank-2 bundle
on Q3 with c1(E) = −1, c2(E) = 1;

(viii) the P1-bundle P(OQ3(−1) ⊕ OQ3 ) over Q3 ⊂ P4;
(ix) the P1-bundle P(OP3 (−1) ⊕ OP3 (1)) over P3.

The following result on maps of projective spaces and quadrics will be
used.

Theorem 2.3. ([16], [6], [8]). Let Y be a smooth projective variety of dimension
n.

(i) if there exists a dominant regular map f : Pn → Y then Y is isomorphic
to Pn ;

(ii) if there exists a dominant regular map f : Qn → Y then Y ∼= Pn or
Y ∼= Qn and in the latter case the map is biregular.

For the convenience of the reader we recall the followingwell known result
on adjoint bundles which will be used very often throughout the paper.

Theorem 2.4. ([10], (11.2), (11.7), (11.8)) Let (X, L) be a polarized manifold
with dim X = n ≥ 2. Let K be the canonical bundle on X . Then K + nL is nef
unless (X, L) ∼= (Pn, OPn(1)). In particular K + t L is always nef if t > n.
Suppose that K + nL is nef. Then K + (n − 1)L is nef except in the following
cases:

(i) X is a hyperquadric in Pn+1 and L = OX (1);
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(ii) (X, L) ∼= (P2, OP2(2));
(iii) (X, L) is a scroll over a smooth curve.

Suppose that K + (n − 1)L is nef and that n > 2. Then K + (n − 2)L is nef
except in the following cases:

(iv) there exists an effective divisor E on X such that (E, LE ) ∼= (Pn−1,

OPn−1 (1)) and [E]E = OE (−1);
(v0) (X, L) is a Del Pezzo manifold with b2(X ) = 1, or (P3, OP3 ( j )) with

j = 2 or 3, (P4, OP4 (2)), or a hyperquadric in P4 with L = O(2);
(v1) there is a �bration f : X → W over a smooth curve W with one of the

following properties:
(v1-V) (F, LF ) ∼= (P2, OP2 (2)) for every �ber F of f ;
(v1-Q) every �ber F of f is an irreducible hyperquadric in Pn having only

isolated singularities;
(v2) (X, L) is a scroll over a smooth surface.

3. P1-bundles as ample divisors.

In this sectionwe will prove a general result about holomorphic P1-bundles
over a smooth projective 3-fold Y with Y �= P3 as ample divisor. This will
be needed in section 4 to show that some special manifolds cannot be ample
divisors in any manifold.

Lemma 3.1. Let g : A → Y be a holomorphic P1-bundle over a smooth
projective manifold Y with dim Y = 3 and Y �= P3. Assume that A is an ample
divisor in a projective manifold X . Let L be the line bundle on X associated to
A. Then K + 4L is nef.

Proof. Note that X is a 5-dimensional manifold and L is an ample line bundle
on X . Using Theorem 2.4 it follows that the bundle K + 6L is always nef and
that K + 5L is nef unless (X, L) ∼= (P5, OP5 (1)). But (X, L) ∼= (P5, OP5 (1))
implies, being A ample, that Pic(A) ∼= Z while we know that Pic(A) ∼=

Pic(Y ) ⊕ Z. Hence the bundle K + 5L is nef and again by Theorem 2.4 we see
that the exceptions to K + 4L being nef are: (Q5, OQ5(1)), (P2, OP2 (2)), (X, L)
is a scroll over a smooth curve B .

The case (X, L) ∼= (Q5, OQ5(1)) is ruled out by Pic(A) ∼= Pic(Y ) ⊕ Z.
The case (X, L) ∼= 4P2, OP2 (2)) is clearly impossible since dim X + 5.
Let (X, L) be a scroll over a smooth curve B . Note that in this case (A, LA )

is a scroll over B . Let P3 be the general �ber of A over B . Note that dim g(P3)
is either 0 or 3. But dim g(P3) �= 0. In fact if g(P3) = y ∈Y then P3 ⊂ g−1(y).
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On the other hand g−1(y) = P1 since g is a P1-bundle, hence a contradiction.
Thus dim g(P3) = 3 and we have a �nite surjective morphism from P3 onto
Y . Using Theorem 2.3, we get that Y ∼= P3, which contradicts our assumption.
Hence we conclude that K + 4l is nef. �

The following result was claimed by Sommese in ([8], p. 216). In the next
proposition we will provide a proof since we don�t know any reference for it.

Proposition 3.2. Let g : A → Y be a holomorphic P1-bundle over a smooth
projective manifold Y with dimY = 3 and Y �= P3 . Assume that A �= P1 × P3

and that it is an ample divisor in a projective manifold X . Then Y ∼= Q3 .

Proof. By Lemma 3.1 the adjoint bundle K + 4L is nef. Hence by the
Kawamata-Shokurov basepoint free theorem ([15], Sect. 3) there is an integer
k > 0 such that |k(K+4L)| is base point free. Let � : X → W be the morphism
associated to |k(K +4L)| with k suf�ciently large so that W = �(X ) is normal
and � has connected �bers. We have the following possibilities:

(i) dimW = 0 and K ≈ −4L;
(ii) dimW = 1 and the general �ber of � is a smooth quadric Q ⊂ P5 with

LQ ≈ OQ(1);
(iii) dimW = 2 < n, � is a P3-bundle over a smooth surface W and the

restriction of L to a �ber is OP3 (1);
(iv) dimW = n = 5.

In case (i) the polarized pair (X, L) is a Del Pezzo manifold. Using [12],
[14] we see that the Del Pezzo manifolds with 1 ≤ d ≤ 5 have Pic(X ) ∼= Z and
thus they are ruled out since we know that Pic(X ) ∼= Pic(A) ∼= Pic(Y )⊕ Z . The
Del Pezzo manifold with degree ≥ 6 cannot occur either since dim X = 5, see
([13], Sect. 5).

Let (X, L) be as in case (iii). Note that in this case (A, LA ) is a scroll over
W . Let P2 be the general �ber of A over W . Note that dim g(P2) is either 0
or 2. But dim g(P2) �= 0. In fact if g(P2) = y ∈ Y then P2 ⊂ g−1(y). On the
other hand g−1(y) = P1 since g : A → Y is a P1-bundle. Thus dim g(P2) = 2
and we have a �nite surjective morphism from P2 onto g(P2). By Theorem 2.3,
we see that g(P2) ∼= P2. Note that two different P2�s on Y cannot meet since
otherwise the �bers of � would intersect. Thus on Y we have a 2-dimensional
family of P2�s and this contradicts dim Y = 3.

Let (X, L) be as in case (iv). Then W is the �rst reduction of X and
A� = �(A) is the �rst reduction of A. Let E ∼= P3 be an exceptional divisor
in A. Note that dim g(E) = 3. Hence we have a �nite surjective morphism
from P3 onto Y and using Theorem 2.3, we get that Y ∼= P3, contradicting our
assumption.
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Let (X, L) be as in case (ii). Then (A, LA ) is also a hyperquadric �bration
over W . Let Q3 be the general �ber of �. Note that dim g(Q3) �= 0. In fact
if g(Q3) = y ∈ Y then Q3 ⊂ g−1(y). We also have g−1(y) = P1 since g is a
P1-bundle over Y . Thus dim g(Q3) is either 1, or 2, or 3.

Let dim g(Q3) = 1. Let y be a general point in g(Q3). Then the
general �ber of g|Q3 : Q3 → g(Q3) is 2-dimensional. On the other hand

g−1
|Q3(y) = g−1(y) ∩ Q3 = P1 ∩ Q3. Hence dim g−1

|Q3(y) ≤ 1, a contradiction.

Let dim g(Q3) = 2. Let y be a general point in g(Q3). Then dim g−1
|Q3(y) =

1. On the other hand g−1
|Q3 (y) = g−1(y) ∩ Q3 = P1 ∩ Q3. Hence P1 ⊂

Q3, g−1
|Q3(y) = P1 and thus �(P1) = w ∈W . This implies that (K + 4L)P1 =

OP1 . We also know that (K + 4L)P1 = OP1 (−2) + OP1 (4a) with a ≥ 1, a
contradiction.

Thus dim g(Q3) = 3 and we have a �nite surjective morphism from Q3

onto Y . Since Y �= P3, by Theorem 2.3 it follows that Y ∼= Q3. �

4. Fano manifolds of coindex 3 as ample divisors.

In this section we will assume that A is a Fano manifold of coindex 3,
b2 ≥ 2 and that A is contained as ample divisor in a smooth projective manifold
X .

We classify pairs (X, L), where L is the line bundle associated to the
divisor A, under the assumption that dim A ≥ 4. We are interested in such
classi�cation because it is related to the standing conjecture on Pd -bundles ([3],
(5.5.1)), for a statement see section 5. In fact among the Fano 4-folds of coindex
3 and b2 ≥ 2 there are Fano 4-folds with a P1-bundle structure either over P3 or
Q3. We will see that such manifolds are not ample in any manifold X , so that
we have examples supporting the conjecture.

Note also that we made the assumption b2 ≥ 2 since for b2 = 1 it follows
that the Picard number of A is 1 and such pairs (X, A) have been considered in
[19].

Proposition 4.1. Let be a Fano 4-fold of index two and of product type, that
is A ∼= P1 × M, where M is a Fano 3-fold of even index. Assume that A is
an ample divisor in a projective manifold X . Then A ∼= P1 × P3 and X is a
P4-bundle over P1.

Proof. By Theorem 2.1 it follows that A ∼= P1 × M , where M is one of the
following: P3, Vd,W, P1 × P1 × P1. Here Vd is a Del Pezzo manifold with
d = 7 or 1 ≤ d ≤ 5, while W is a divisor of bidegree (1, 1) on P2 × P2. Thus
A can be seen as a P1-bundle over M . Using Proposition 3.2 we see that if
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M �= P3 then M ∼= Q3. Thus the only possibility for A is P1 × P3. Since A is
ample in X it follows that X is a P4-bundle over P1, see [23]. �

Proposition 4.2. Let A be a Fano manifold of dimension ≥ 4, coindex 3,
b2 ≥ 2, with a smooth 3-dimensional section and assume that A ∼= P3 × P3 ,
or P2 × Q3 , or is the blow up of P5 along a line . Then A cannot be an ample
divisor in any manifold.

Proof. This follows from ([23], Prop. IV) and ([11], (5.8)). �

Proposition 4.3. Let A be a Fano 4-fold of coindex 3, with b2 = 2 such that A
is either the blow up of a smooth 4-dimensional quadricQ4 ⊂ P5 along a conic
C on it such that the plane < C > spanned by C is not contained in Q4 or the
blow up of a smooth 4-dimensional quadric Q4 ⊂ P5 along a line C. Assume
that A is ample in a smooth projective variety X . Then X is the blow up of P5

along C.

Proof. For a proof see ([11], (5.10)). �

Proposition 4.4. Let A be a Fano 4-fold of coindex 3, with b2 = 2 and such
that A is a P1-bundle P(OP3 (−1) ⊕ OP3 (1)) over P3. Then A cannot be ample
in any manifold.

Proof. Assume that A is an ample divisor in a manifold X . By ([9], (2.1)) it
follows that A ∼= P1 × P3, a contradiction. Thus A cannot be ample in any
manifold. �

Proposition 4.5. Let A be a Fano 4-fold of coindex 3, with b2 = 2, such that
A has two P1-bundle structures and can be realized either as P(NCB), where
NCB is the null correlation bundle over P3, or P(E), where E is a stable rank-2
bundle on Q3 with c1(E) = −1, c2(E) = 1. Then A cannot be an ample divisor
in any manifold.

Proof. Assume that A is an ample divisor in a manifold X . Since A has two
P1-bundle structure we can think of A as a P1-bundle over P3. By ([9], (2.1))
it follows that A ∼= P1 × P3, a contradiction. Thus A cannot be ample in any
manifold. �

Proposition 4.6. Let A be a Fano 4-fold of coindex 3, with b2 = 2 and such
that A is a P1-bundle, P(OQ3(−1) ⊕ OQ3), over Q3 ⊂ P4. Then A cannot be
an ample divisor in any manifold.

Proof. The idea of the proof is taken from ([9], (2.1)). Let E = OQ3(−1)⊕OQ3 .
Assume that A is an ample divisor in a manifold X . Let p : A → Q3 be
the map which gives to A the structure of a P1-bundle. We can think of p as
the map associated to the linear system |p∗(OQ3(1))|. Let L ∈ Pic(X ) be the
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extension of p∗(OQ3 (1)) to X . Let F ∈ |p∗(OQ3(1))|, i.e. F = p−1(Q2). If
�(X, L) → �(A,�A) → 0 then the map p extends to X and this would give
the contradiction that dimQ3 ≤ 2, see ([23], Prop. V). Thus we can assume that
H 1(X, L− [A]) �= 0. This implies that H 1(A, LA − t[A]) �= 0 for some t > 0.
For such t we consider the following exact sequence

(1) 0 → KA + t[A] − [F] → KA + t[A] → KF + t[A]F − [F]F → 0

From the cohomology sequence associated to (1), Kodaira vanishing theorem
and the fact that H 3(A, KA + t[A]− [F]) �= 0 since by hypothesis H 1(A, LA −

t[A]) �= 0, it follows that H 2(F, KF + t[A]F − [F]F ) �= 0. Note that F is
a P1-bundle pF : F → Q2. Let G ∈ |p∗(OQ2 (1))|, i.e. G = p−1

F (B) where
B ∈ |p∗(OQ2 (1))|. We consider the sequence

(2) 0 → KF + t[A]F − [G] → KF + t[A]F → KG + t[A]G − [G]G → 0

Reasoning as above we conclude that H 1(G, KG + t[A]G − [G]G) �= 0.
This along with the fact that G is a P1-bundle over B ∼= P1 implies that
G = F0. Therefore EB is trivial and hence c1(EB ) = 0. On the other hand
E = OQ3 (−1) ⊕ O

3
Q which gives that c1(EB ) �= 0, a contradiction. Thus A

cannot be ample in any manifold. �

Proposition 4.7. Let A be a Fano 4-fold of coindex 3 with b2 = 2, such that A
is a double cover of P2 × P2 whose branch locus is a divisor of bidegree (2, 2).
Then A cannot be an ample divisor in any manifold.

Proof. Assume that A is an ample divisor in a manifold X . Let L denote the
line bundle on X associated to the divisor A. We will show that A cannot be
ample in any manifold. The proof will be done in various steps.

Claim 4.8. X has either two P3-bundle structures over P2, or two quadric
bundle structures over P2 , or a P3-bundle structure over P2 and a quadric
bundle structure over P2.

Proof of Claim. Since A is a Fano 4-fold of index two there exists an ample
divisor H on A such that 2H is linearly equivalent to −KA . Going carefully
through Sect. 5 in [25] one can see that both extremal rays of A are numerically
effective. Let φ1, φ2 : A → P2 be the contraction morphisms of the two
rays. By ([25], (1.3)) it follows that no contraction of A has a 3-dimensional
�ber. Thus φ1, φ2 : A → P2 are equidimensional with general �ber being a
smooth 2-dimensional quadric P1 × P1. Moreover H restricted to such �ber
is isomorphic to OP1×P1 (1, 1). Since by assumption the divisor A is ample in
X then by ([23], Prop. III) the morphisms φ1, φ2 extend to morphisms φ1, φ2
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from X to P2. Let H be the extension to X of the divisor H , which it exists by
the Lefschetz theorem. Note that HP1×P1 = OP1×P1 (1, 1). A reasoning similar
to that in ([11], (4.10)) gives that the �ber Xt of φ i , i = 1, 2 is either P3 or a
hyperquadric in P4. In the case in which the general �ber Xt of φ i is isomorphic
to P3, then (X, H ) = (P(E), ξ ). In the case in which the general �ber of φ i is
isomorphic to a hyperquadric in P4, then At is a hyperplane section of Xt and
thus LAt = OAt (1).

We will show that none of the possibilities listed in Claim 4.8 can occur.
In order to prove it we need to show that the bundle K + 3L is nef.

Claim 4.9. K + 3L is nef.

Proof of Claim. Since dim X = 5 and Pic(A) ∼= Z ⊕ Z, by Theorem 2.4 it
follows that K + t L is nef for t = 6, 5 and that the exception to K + 4L being
nef is: (X, L) is a scroll over a smooth curve B . In this case, since q(A) = 0, we
have that (A, LA ) is a scroll (P(E), ξ ) over P1. The adjunction formula gives:
KA = −4ξ + π∗(OP1(−2) + det E) = −4LA + π∗

OP1 (e− 2), where e is such
that det E = OP1 (e). Since -KA is ample and since (A, LA ) is a scroll over P1

it follows that 2 − e > 0. This contradicts the fact that E is an ample rank 4
vector bundle over P1. Hence the bundle K + 4L is nef and by the Kawamata-
Shokurov basepoint free theorem ([15], Sect. 3) there is an integer k > 0 such
that |k(K+4L)| is base point free. Let � : X → W be the morphism associated
to |k(K +4L)| with k suf�ciently large so that W = �(X ) is normal and � has
connected �bers. We have the following possibilities:

(i) dimW = 0 and K ≈ −4L;

(ii) dimW = 1 and the general �ber of � is a smooth quadric Q ⊂ P5 with
LQ ≈ OQ(1);

(iii) dimW = 2 < n, � is a P3 bundle over a smooth surface W and the
restriction of L to a �ber is OP3 (1);

(iv) dimW = n = 5.

Case (i) cannot occur since this would imply that A is a Fano manifold of
index three, contradicting our assumption.

Let (X, L) be as in case (ii). Then (A, LA ) is also a hyperquadric �bration
over W . Since we have a morphism from A onto a curve, by ([25], (14)) it
follows that A ∼= P1 × M where M is either a Fano 3-fold of index two or P3,
a contradiction.

Let (X, L) be as in case (iii). Note that (X, L) is a scroll over W . Let P3

be the general �ber of X over W . Note that φ i (P
3) = t ∈ P2. Thus P3 ⊂ φ

−1

i (t)
which is a quadric in P4, a contradiction.
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Let (X, L) be as in case (iv). Then W is the �rst reduction of X and
A� = φ(A) is the �rst reduction of A. Let E ∼= P3 be an exceptional divisor
in A. Then φi (E) = t ∈ P2 and hence φi has a 3-dimensional �ber. By ([25],
(1.3)) it follows that A is a ruled Fano 4-fold, a contradiction.

We now use Theorem 2.4 to get that K + 3L is nef.

Claim 4.10. X cannot have two P3-bundle structure, φ i : X → P2, over P2 ,
with i = 1, 2.

Proof of Claim. If X has two P3-bundle structures over P2, by ([20], Theorem
A) it follows that X ∼= P2 × P2, a contradiction.

Claim 4.11. X cannot have two quadric bundle structures, φi : X → P2 , over
P2, with i = 1, 2.

Proof of Claim. As seen in Claim 4.9, the bundle K+3L is nef. Let ψ : X → Y
be the morphism associated to a suf�ciently high power of K + 3L . We will
prove that the morphism ψ has P2 as image and moreover that it factors through
φi . In fact since the general �ber Q of φ i is a hyperquadric in P4 and since
LQ = OQ(1) it follows that (K + 3L)Q = OQ . Thus ψ factors through
φi , ψ = g ◦ φi , where g : P2 → Y . Note that Y = ψ(X ) = g(φi (X )) = g(P2).
Thus dimY = 0, 2. But dimY = 0 would imply that (X, A) is a Fano 5-fold
of coindex 3 and b2 = 2. Going through the list in ([17], Theorem 6) we see
that none of the cases have A as a linear section. Thus dimY = 2 and hence
the morphism g : P2 → Y is onto. Moreover Y is smooth, see [5]. We now use
Theorem 2.3 to conclude that Y ∼= P2. We actually have that the morphism g
is an isomorphism since it is �nite-to-one and since the �bers of both ψ and φ i
are connected. Thus ψ and φ i are the same (modulo g). And hence the same
holds for φ1, φ2. But this is impossible since φi are two different contractions.
Thus we conclude that X cannot have two quadric bundle structures.

Claim 4.12. X cannot have a P3-bundle structure, φ1 : X → P2, over P2 and
quadric bundle structure, φ2 : X → P2, over P2.

Proof of Claim. Assume that φ1 : X → P2 is a P3-bundle and that φ2 :
X → P2 is a quadric bundle. Let P3 be a general �ber of φ1. Note that

φ2(P
3) = t ∈ P2. Thus P3 ⊂ φ

−1

2 (t) which is a quadric in P4, a contradiction.

Thus we have shown that A cannot be an ample divisor in any manifold X .
�

Proposition 4.13. Let A be a Fano 4-fold of coindex 3 with b2 = 2 and such
that A is a divisor of P2 × P2 of bidegree (1, 2). Assume that A is ample
in a manifold X . Then either X is isomorphic to P2 × P3, or X is a non
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equidimensional scroll over a normal 3-fold, or X is a quadric bundle over
P2.

Proof. Let H be an ample divisor on A such 2H is linearly equivalent to −KA .
Going carefully through Sect. 5 in [25] one can see that both extremal rays of
A are numerically effective. Let φ1 and φ2 be the two contraction morphisms.
Under our assumption, we see that φ1 : A → P2 and φ2 : A → P3. Moreover
by ([25], (1.3)) it follows that no contraction of A has a 3-dimensional �ber.
Thus φ1 : A → P2 is equidimensional with general �ber being a smooth 2-
dimensional quadric P1×P1. Moreover H restricted to such �ber is isomorphic
to OP1×P1 (1, 1). As for φ2 : A → P3, such morphism has a �nite number of
�bers of dimension 2, each one of them being isomorphic to P2, see ([25],
(1.2) along with (5.1)). Now since the divisor A is ample in X , by ([23], Prop.
III) the morphism φ1 extends to a morphism φ1 from X to P2. Let H be the
extension to X of the divisor H , which it exists by the Lefschetz theorem. Note
that H P1×P1 = OP1×P1 (1, 1). A reasoning similar to that in ([12], (4.10)) gives
that the �ber Xt of φ1 is either P3 or a hyperquadric in P4. In the former case
(X, H) = (PP2 (E), ξ ) in the latter case At is a hyperplane section of Xt and
thus LAt = OAt (1).

Let (X, H) = (PP2 (E), xi). We use adjunction theory to understand the
structure of the polarized pair (X, L). We show �rst that the bundle K + 3L is
nef, where L = OX (A). The proof is essentially the same as that in Claim 4.9.
The only case which has to be treated differently is the one in which the
morphism � : X → W associated to a suf�ciently high power of K + 4L
has a 2-dimensional image. Note that the general �ber P3 of � is sent via
φ1 to a point since dimφ1(P

3) can be either 0 or 3. Thus we get a morphism
g : P2 → W such that g ◦ φ1 = �. Moreover the morphism g is onto and
therefore by Theorem 2.3 we get that W ∼= P2. In order to see that such case
cannot occur we argue as follows. The morphism g : P2 → W is �nite to one
and since the �bers of both � and φ1 are connected it follows that g is indeed
an isomorphism. This implies that � and φ1 are the same (modulo g) and hence
φ1 = �A . But �A : A → P2 is a scroll over P2, a contradiction since we know
that the general �ber of φ1 is P1 × P1. Thus we conclude, using Theorem 2.4,
that K + 3L is nef. Let ψ : X → Y be the morphism with connected �bers and
normal image Y associated to a suf�ciently high power of K + 3L . Note that
dimY ≤ 3 or dimY = 5, see [3] or [10].

If dimY = 0 then (X, L) is a Fano 5-fold of coindex 3 and b2 = 2. Going
through the list in ([17], Theorem 6) we see that none of the cases have A as a
linear section.

If dimY = 1 then A has a morphism, ψA , onto a smooth curve Y and by
([25], (1.4)) A must be a ruled Fano manifold, a contradiction.
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If dimY = 2 then ψ : X → Y is a quadric bundle over Y . Let P3 be a
general �ber of φ1. Note that ψ(P3) = t ∈ Y . Thus P3 ⊂ ψ−1(t) which is a
quadric in P4, a contradiction.

If dim Y = 3 then the general �ber F of ψ is such that (F, LF ) =

(P2, OP2 (1)). We will consider separately the following two cases:

(a) ψ is equidimensional;
(b) otherwise.

In case (a), since ψ is equidimensional, by ([13], (2.12)) it follows that Y is
smooth and that (X, L) = (PY (E), ξE), where ξE is the tautological line bundle
of E. Note that the �ber P3 of φ1 cannot be sent to a point via ψ , since the
�bers of ψ are P2�s. Thus ψ(P3) = Y and, by Theorem 2.3, Y ∼= P3. Hence
our manifold X has two projective bundle structures: one over P2 and the other
one over P3. By ([20], Theorem A) we get that X ∼= P2 × P3. It is easy to see
that LP2 = OP2 (1) and LP3 = OP3 (2) and thus A is a divisor in P2 × P3 of type
(1, 2).

In case (b) X is a non equidimensional scroll over a normal 3-fold Y .
If dim Y = 5 then ψ : X → Y is birational. Note that ψA : A → Y is also

birational and it contracts some curves. By ([4], (0.4.3)) there exists an extremal
rational curve C such that (KA + 2LA) · C = 0. Moreover by ([4], (0.7)), one
can choose an extremal rational curve l such that R = R+[l], (KA+2LA) ·l = 0
and −KA · l = length(R). Let f be the contraction morphism associated to R.
Then ψA factors through f , i.e. ψA = g◦ f . Hence in particular f is birational.
Thus R is not nef. This is a contradiction since we are in the case in which both
extremal rays of A are nef.

We now consider the case in which the �ber of φ1 is isomorphic to a
(possibly singular) hyperquadric in P4. In this case At is a hyperplane section
of Xt and thus [A]At = OAt (1). Reasoning as in the proof of Claim 4.11, we
conclude that the morphism ψ associated to a high power of K + 3L has P2 as
image. Thus ψ : X → P2 is a quadric bundle. Moreover such ψ factor through
φ1. �

Proposition 4.14. Let A be a Fano 4-fold of coindex 3 with b2 = 2 and such
that A is a divisor of P2 × Q3 of bidegree (1, 1). Assume that A is ample in a
manifold X . Then either X is isomorphic to P2 × Q3, or X is isomorphic to
P2 × P3 or X is a quadric bundle over P2, or X is a non equidimensional scroll
over a normal 3-fold Y .

Proof. Let H be an ample divisor on A such that 2H is linearly equivalent to
−KA . Going carefully through Sect. 5 in [25] one can see that both extremal
rays of A are numerically effective. Let φ1 and φ2 be the two contraction
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morphisms. Under our assumption, we see that φ1 : A → P2 and φ2 : A → Q3.
Moreover by ([25], (1.3)) it follows that no contraction of A has a 3-dimensional
�ber. Thus φ1 : A → P2 is equidimensional with general �ber being a
smooth 2-dimensional quadric P1 × P1. Moreover H restricted to such �ber
is isomorphic to OP1×P1 (1,1). As for φ2 : A → Q3, such morphism has a �nite
number of �bers of dimension 2 and each one of them is isomorphic to P2, see
([25], (1.2) along with (5.1)). Now since the divisor A is ample in X , by ([23],
Prop. III) the morphism φ1 extends to a morphism φ1 from X to P2. Let H be
the extension to X of the divisor H , which it exists by the Lefschetz theorem.
Note that HP1×P1 = OP1×P1 (1, 1). A reasoning similar to that in ([12], (4.10))
gives that the �ber Xt of φ1 is either P3 or a hyperquadric in P4. In the former
case (X, H) = (PP2 (E), ξ ) in the latter case At is a hyperplane section of Xt
and thus LAt = OAt (1).

If (X, H ) = (PP2 (E), ξ ), a reasoning similar to the corresponding case in
Proposition 4.13 gives that K+3L is nef. Let ψ : X → Y be the morphismwith
connected �bers and normal image Y associated to a suf�ciently high power of
K + 3L . Note that dimY ≤ 3 or dimY = 5, see [3], [10].

If dimY = 0 then (X, L) is a Fano 5-fold of coindex 3 and b2 = 2. Going
through the list in ([17], Theorem 6) we see that X ∼= P2 × Q3.

If dimY = 1, 2, 5 we rule these cases out as in Proposition 4.13.
If dim Y = 3 then the general �ber F of ψ is such that (F, LF ) =

(P2, OP2 (1)) and the following two cases occur:

(a) ψ is equidimensional;
(b) otherwise.

Reasoning as in Proposition 4.13, we get that either X ∼= P2 × P3 and A is a
divisor in P2 × P3 of type (1, 2), or X is a non equidimensional scroll over a
normal 3-fold Y .

If the �ber of φ1 is isomorphic to a (possibly singular) hyperquadric in P4

then, as in Proposition 4.13, we get that X is a quadric bundle over P2. �

Proposition 4.15. Let A be a Fano 4-fold of coindex 3 with b2 = 2 and such
that A is the intersection of two divisors of bidegree (1, 1) on P3 × P3. Assume
that A is ample in a manifold X . Then either X is isomorphic to a divisor of
bidegree (1, 1) on P3 × P3, or X ∼= P2 × Q3 , or X is a quadric bundle over P2 ,
or X is a scroll over a smooth 3-fold Y , or X is a non equidimensional scroll
over a normal 3-fold Y .

Proof. Since the fourfold A is the intersection of two divisor of bidegree (1, 1
on P3×P3, going carefully through Sect. 5 in [25] one can see that both extremal
rays of A are numerically effective. Let φ1, φ2 : A → P3 be the contraction
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morphisms of the two rays. Since A is not a ruled Fano manifold, by ([25], (1.2)
and (5.1)) it follows that there exists a �ber of φi isomorphic to P2.

In order to understand the structure of the manifold X containing A as an
ample divisor we use adjuction theory. We start by showing that the adjoint
bundle K + 3L is nef, where L = OX (A). The proof is essentially as in
Claim 4.9. The cases to be treated differently are the one in which the morphism
� : X → W associated to a suf�ciently high power of K + 4L has 2-
dimensional image and the case in which � is birational.

We consider �rst the case in which the morphism � : X → W has a 2-
dimensional image. In this case �A : A → W is a scroll over W . Let P2

be a 2-dimensional �ber of φi . Note that such P2 is rigid and thus its image
via �A is W . Thus we have an onto morphism �P2 : P2 → W and using
Theorem 2.3, we get that W ∼= P2. Thus (A, LA ) is a scroll (P(E), ξ ) over P2.
By the adjunction formula we get that −KA = 3LA + π∗(OP2 (3 − c1(E))),
where we take LA and π∗(OP2 (1)) as generators of Pic(A). On the other
hand, since A is a Fano manifold of index 2, it follows that −KA = 2H for
some ample line bundle H on A. The line bundle H , with respect to the
basis LA and π∗(OP2 (1)), will be of the form H = αLA + βπ∗(OP2 (1)) for
some α, β ∈ Z. Combining the latter with the adjuction formula we get that
3LA + π∗(OP2 (3 − c1(E))) = 2αLA + 2βπ∗(OP2 (1)), which gives 3 = 2α and
3 − c1(E) = 2β , a contradiction since α, β ∈ Z .

We consider next the case in which the morphism � : X → W is
birational. Note that the restriction morphism �A : A → �A(A) is the
morphism associated to some high power of KA + 3LA . Such morphism is also
birational and it contracts some curves. By ([4], (0.4.3)) there exists an extremal
rational curve C such that (KA + 3LA) · C + 0. Moreover by ([4], (0.7)), one
can choose an extremal rational curve l such that R = R+[l], (KA +2LA · l = 0
and −KA · l = length(R). Let f be the contraction morphism associated to R.
Then �A factors through f , i.e. �A = g ◦ f . Hence in particular f birational.
Thus R is not nef and this is impossible since, as we have remarked earlier, in
this case both extremal rays of A are nef. Thus we can conclude, using Theorem
2.4, that the adjoint bundle K + 3L is nef.

Let ψ : X → Y be the morphism with connected �bers and normal image
Y associated to a suf�ciently high power of K + 3L . Using [3], [10] we have
that dimY ≤ 3 or dim Y = 5.

If dimY = 0 then (X, L) is a Fano 5-fold of coindex 3 and b2 = 2. Going
through the list in [([17], Theorem 6) we see that either X is a divisor of bidegree
(1,1) on P3 × P3, or X ∼= P2 × Q3.

If dimY = 1 then A has a morphism, ψA , onto a smooth curve and by
([25], (1.4)) A must be a ruled Fano manifold, a contradiction.
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If dim Y = 2 then ψ : X → Y is a quadric bundle over Y . Note that
ψA : A → Y is also a quadric bundle over Y . Let P2 be a 2-dimensional �ber
of φi . Note that P2 cannot be sent to a point via ψA since ψA is a quadric
bundle. Thus ψA(P

2) = Y . Moreover Y is smooth, see [5]. Using Theorem 2.3
we get that Y ∼= P2.

If dim Y = 3 then the general �ber F of ψ is such that (F, LF ) =

(P2, OP2 (1)) and the following two cases occur:

(a) ψ is equidimensional;
(b) otherwise.

In case (a), since ψ is equidimensional, by ([13], (2.12)) it follows that Y is
smooth and that (X, L) = (PY (E), ξ ), where ξ is the tautological bundle of E.
In case (b) X is a non equidimensional scroll over a normal 3-fold Y .

If dimY = 5 then K + 3L is nef and big and thus KA + 2LA is nef and
big. As we have seen earlier, the fact that KA +2LA is nef and big would imply
the existence in A of a not nef extremal ray. This latter fact is not possible since
both extremal rays of A are nef. �

5. Remarks.

For the convenience of the reader we recall the standing conjecture on
smooth Pd -bundles, ([3], (5.5.1)), and see how the manifolds considered are
natural candidates for examples supporting such conjecture.

Conjecture 5.1. ([3], (5.5.1)). Let L be an ample line bundle on a smooth
projective variety, X , of dimension n ≥ 3. Assume that there is a smooth A∈ |L|

such that A is a Pd -bundle, p : A → B, over a manifold B , of dimension b.
Then d ≥ b − 1 and it follows that (X, L) ∼= (P(E), H ), for an ample vector
bundle, E, on B with p equal to the restriction to A of the induced projection
P(E) → B, except if either:

(i) X ⊂ P4 is a quadric and L ∼= OP4 (1)X ,
(ii) (X, L) ∼= (P3, OP3(2));
(iii) A ∼= P1 × Pn−2 , p is the product projection onto the second factor,

(X, L) ∼= (P(E), H ), for an ample vector bundle, E, on P1 with the
product projection of A onto the �rst factor equal to the induced projection
P(E) → P1.

Remark 5.2. The Fano manifold P1 × Qn−1 cannot be an ample divisor in any
manifold if n ≥ 3. In fact T. Fujita has proved that if A is a �ber bundle over
a manifold S with �ber being a smooth hyperquadric in Pn , then A cannot be
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ample divisor in any manifold if n ≥ 3, see ([13], (4.10)). Hence, in particular,
the Fano manifold P1 × Qn−1 cannot be an ample divisor in any manifold if
n ≥ 3.

On passing we would like to point out that this was not noted in ([19],
(2.5)) and consequently (2.6) in [19] is not precise.

Remark 5.3. The Fano manifold P1 × Q3 can be seen as a P1-bundle over Q3

and, as remarked earlier, it cannot be ample in any manifold.

The manifold P1 × Q3 is certainly an example supporting the above
conjecture. The other ones are those discussed in 4.4, 4.5, 4.6.
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